
Vol. 36, No. 2 ACTA AUTOMATICA SINICA February, 2010

Control of Spatially Interconnected Systems with

Random Communication Losses
LI Hui1, 2 WU Qing-He1, 2 HUANG Huang1, 2

Abstract This paper deals with analysis and synthesis problems of spatially interconnected systems where communicated infor-
mation may get lost between subsystems. Spatial shift operator and temporal forward shift operator are introduced to model the
interconnected systems as discrete time-space multidimensional linear systems with Markovian jumping parameters which reflect the
state of communication channels. To ensure the whole system′s well-posedness and mean square stability for a given packet loss rate,
a condition is derived through analysis. Then a procedure of designing distributed dynamic output feedback controllers is proposed.
The controllers have the same structure as the plants and are solved within the linear matrix inequality (LMI) framework. Finally,
we apply these results to study the effect of communication losses on the multiple vehicle platoon control system, which further
illustrates the effectiveness of the proposed model and method.

Key words Spatially interconnected system, communication loss, Markovian jump linear system, linear matrix inequality (LMI)

DOI 10.3724/SP.J.1004.2010.00258

Many large-scale systems consist of similar units which
interact with their nearest neighbors, such as automated
vehicle platoon, airplane formation flight, and multi-robot
formation system. Researchers have studied the control
of these systems in different manners, such as central-
ized control[1], decentralized control[2], and distributed
control[3]. These studies have assumed perfect communi-
cations between subsystems, i.e. each subsystem could get
information about the state of either the global leader or
its neighbors.

In most cases, the information is transmitted through
a network. The use of network may lead to intermittent
losses or delay of communicated information, which will
deteriorate the control performance or even destabilize the
system. For example, Tanner et al.[4] showed that the for-
mation string stability would be lost if the followers could
not get information of their leader. So it is necessary to
study the stability problem of interconnected systems un-
der the effect of communication packet losses between sub-
systems.

Teo et al.[5] have looked into the problem of multiple
vehicle control over a lossy data link. They presented an
estimation method to handle the dropouts and analyzed the
stability of the closed loop system. However, their method
was based on a centralized control scheme. As a result, the
system had a large number of inputs and outputs, which im-
posed high costs of computation. Furthermore, the central-
ized scheme was technically more sensitive to model trans-
formation: if the number of subsystems was changed, the
controller would be transformed into a completely different
one.

Typically, the subsystems often have their own sensors
and actuators. So, taking advantage of this characteristic,
we design distributed controllers and present a comparison
with the former study[5]. In this framework, each subsys-
tem uses its own controller, which can reduce calculation
burden. The controllers have the same structure as the
plants, i.e., controllers also interact with their neighbors,
which are called structured distributed controllers. This
scheme respects the interconnection topology and is easy
to reconfigure.
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There are already some results for this kind of structured
distributed control of large-scale spatially interconnected
systems. In the light of conditions developed in [6] for
the well-posedness, stability, and performance of these sys-
tems, the authors used models with identical units, which
are well coupled with their nearest neighbors. The results
were later extended to parameter-varying systems[7] and
heterogeneous systems[8]. In [9], the results of [6, 8] were
further extended to a larger class of interconnection topol-
ogy with both ideal and non-ideal interconnections con-
sidered over an arbitrary graph. It was later applied to
the analysis and synthesis problems of spatially intercon-
nected systems with small communication delays between
subsystems[10]. However, relatively little attention has been
paid to the communication packet losses problem in the
structured distributed control community, with the excep-
tion of [11]. Although [11] is based on the method of [9]
and has discussed distributed control of interconnected sys-
tem over failing channels, but the result of [11] is a litter
conservative: the designed controllers guaranteed a given
performance level just for arbitrary failures model. In ad-
dition, the degree of influence of different packet loss rates
on control performance could not be manifested from their
simulation results.

On the other hand, the field of networked control sys-
tems (NCSs) has rich literatures on studying the effect of

packet losses[12−14]. But what have been considered are the
control problems with lossy data links between sensors and
controllers, or between controllers and actuators. Further-
more, the results are derived in the context of a single plant,
hence cannot be applied directly to large-scale distributed
control systems.

In this paper, we analyze the effect of random infor-
mation losses between subsystems on the stability of spa-
tially interconnected systems, due to the unreliable com-
munication network, as shown in Fig. 1. we find a group
of structured distributed controllers such that the whole
system is mean square stable for a given packet loss rate.
We consider spatially interconnected discrete time systems
and model the interconnected systems with random packet
losses as discrete time-space multidimensional systems with
Markovian jumping parameters. Analysis conditions and
controller synthesis method are developed to ensure the
mean square stability of the whole interconnected system.
The results are stated in terms of linear matrix inequalities
(LMIs) and are thus tractable for computation.

The paper is organized as follows: In Section 1, the
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model of spatially interconnected systems with random
communication dropouts between subsystems is presented.
Then, the results of discrete time Markovian jump linear
systems (MJLSs) are extended to our spatially intercon-
nected systems in Section 2. An analysis condition is devel-
oped to ensure the well-posedness and mean square stabil-
ity of the whole system. It is noteworthy that the existing
outcomes on MJLS are just dynamic in time domain, while
our results are based on interconnected systems not only
in temporal direction but also in spatial direction. Section
3 gives an LMI condition for controller synthesis. An ex-
ample with simulation results is presented in Section 4 and
the conclusion is given in Section 5.

1 Spatially interconnected systems
with random connection

The system we considered in this paper is shown as
Fig. 1. It consists of several similar subsystems that com-
municate and interact with their neighbors through net-
work. Compared with the interconnection over arbitrary
graph, this structure is more regular. It can reduce the
number of connections and lighten the communication bur-
den, while ensuring sufficient information exchange. This
model of interconnected systems is employed in many cases
as well[2, 15].

Fig. 1 The model of spatially interconnected systems

The signals we deal with in the system are func-
tions indexed by L + 1 independent variables x =
x(k, s1, s2, · · · , sL), where k ∈ Z+ denotes the temporal
variable, and si ∈ Z expresses the spatial variables, L de-
notes the spatial dimension. For simplicity, we confine
ourselves to one-dimensional systems, i.e., L = 1. Our
approach can be extended directly to the cases of higher
dimensions[6].

The basic building block (shown in Fig. 2) is a finite di-
mensional linear discrete time system governed by the fol-
lowing state-space equations




xT (k + 1, s)
w(k, s)
y(k, s)


 =




ATT ATS BT

AST ASS BS

CT CS 0







xT (k, s)
v(k, s)
u(k, s)




(1)
where xT (k, s) ∈ Rm0 are the state variables, u(k, s) ∈
Rp are control inputs, and y(k, s) ∈ Rq are the measured

output signals. v(k, s) =

[
v+(k, s)
v−(k, s)

]
and w(k, s) =

Fig. 2 A basic subsystem block

[
w+(k, s)
w−(k, s)

]
are the interconnected variables between sub-

systems. We assume that v+(k, s) and w+(k, s) are of the
same size as m+ and v−(k, s) and w−(k, s) are of the same
size as m−.

For a signal x(k, s), define a spatially shift operator S as

Sx(k, s) = x(k, s + 1)

S−1x(k, s) = x(k, s− 1)
(2)

and a temporal forward shift operator T as

Tx(k, s) = x(k + 1, s) (3)

Since there may be communication losses between sub-
systems, the connections between subsystems are modeled
as

v+(k, s + 1) = γ(k)w+(k, s)

v−(k, s− 1) = δ(k)w−(k, s)
(4)

Here, γ(k) and δ(k) are Bernoulli processes respectively
and are independent of each other, governed by P (γ(k) =
0) = P (δ(k) = 0) = p and P (γ(k) = 1) = P (δ(k) = 1) =
1 − p. γ(k) = 1 or δ(k) = 1 implies that the packet is
transmitted perfectly, while γ(k) = 0 or δ(k) = 0 means
a packet is lost. Thus, p represents the communication
packet loss rate.

Using the definition of spatially shift operator S, (4) can
be rewritten as

v+(k, s) = γ(k)S−1w+(k, s)

v−(k, s) = δ(k)Sw−(k, s)
(5)

So, the plant model (1) becomes

TxT (k, s) = ATT xT (k, s) + A1
TSγ(k)S−1w+(k, s) +

A−1
TSδ(k)Sw−(k, s) + BT u(k, s)

w+(k, s) = A1
ST xT (k, s) + A1,1

SSγ(k)S−1w+(k, s) +

A1,−1
SS δ(k)Sw−(k, s) + B1

Su(k, s)

w−(k, s) = A−1
ST xT (k, s) + A−1,1

SS γ(k)S−1w+(k, s) +

A−1,−1
SS δ(k)Sw−(k, s) + B−1

S u(k, s)

y(k, s) = CT xT (k, s) + C1
Sγ(k)S−1w+(k, s) +

C−1
S δ(k)Sw−(k, s)

(6)

Let xS1(k, s) = w+(k, s − 1), xS−1(k, s) = w−(k, s +
1), and group the spatial variables together as xS(k, s) =[
xT

S1(k, s), xT
S−1

(k, s)
]T

. Define structured operator 4S =

diag
{
SIm+ , S−1Im−

}
. Then, model (6) can be rewritten

as


TxT (k, s)
4SxS(k, s)

y(k, s)


 =




ATT ATS(θ(k)) BT

AST ASS(θ(k)) BS

CT CS(θ(k)) 0







xT (k, s)
xS(k, s)
u(k, s)




(7)
where θ(k) = (γ(k), δ(k)) are the time-varying parameters
of the system matrices which reflect the network commu-
nication situations. We can find that the interconnected
systems have four modes:

1) θ(k) = 0, i.e., γ(k) = 0, δ(k) = 0. The packets are
lost from both sides.

2) θ(k) = 1, i.e., γ(k) = 0, δ(k) = 1. The packet from the
left side is dropped, but the right side packet is received.
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3) θ(k) = 2, i.e., γ(k) = 1, δ(k) = 0. The packet from the
right side is dropped, but the left side packet is received.

4) θ(k) = 3, i.e., γ(k) = 1, δ(k) = 1. The packets are
received from both sides.

With the probability distributions of γ(k) and δ(k), the
probabilities of being in the four modes are as follows, re-
spectively,

P (θ(k) = 0) = P (γ(k) = 0, δ(k) = 0) = p2 = p0

P (θ(k) = 1) = P (γ(k) = 0, δ(k) = 1) = p(1− p) = p1

P (θ(k) = 2) = P (γ(k) = 1, δ(k) = 0) = (1− p)p = p2

P (θ(k) = 3) = P (γ(k) = 1, δ(k) = 1) = (1− p)2 = p3

(8)

It follows that the model (7) is a multidimensional discrete
time-space MJLS. We will analyze the well-posedness and
stability of such system in the next section.

2 Analysis of Markovian jump linear
interconnected systems

2.1 Well-posedness

A system is well-posed if it is physically realizable. The
reader can refer to [16] for a thorough discussion of well-
posedness.

From the model (7), we can eliminate the interconnection
variables, and express the system as

TxT (k, s) = Ã(θ(k))xT (k, s) + B̃(θ(k))u(k, s)

y(k, s) = C̃(θ(k))xT (k, s) + D̃(θ(k))u(k, s)
(9)

where
[
Ã(θ(k)) B̃(θ(k))

C̃(θ(k)) D̃(θ(k))

]
=

[
ATT BT

CT D

]
+

[
ATS(θ(k))
CS(θ(k))

]
×

(4S −ASS(θ(k)))−1 [
AST BS

]
(10)

with the assumption that 4S −ASS(θ(k)) is invertible for
whatever θ(k). It is important to note that this assump-
tion is equivalent to the well-poseness of interconnected
systems[6].

2.2 Stability

For discrete-time MJLS

x(k + 1) = A(θ(k))x(k) + B(θ(k))u(k)

y(k) = C(θ(k))x(k)

x(0) = x0, θ(0) = θ0

(11)

where Markovian chain θ(k) takes values in a finite set
Ω = {0, 1, 2, · · · , N} and has a transition probability ma-
trix P = [pij ], with pij = P (θ(k+1) = j|θ(k) = i), i, j ∈ Ω,

subject to pij ≥ 0 and
∑N

j=1 pij = 1, ∀i ∈ Ω, we discuss the

following forms of stability[17]:
Definition 1. The MJLS given by (11) with u = 0 is:
1) mean square stable (MSS) if for every initial state

(x0, θ0), limk→∝ E(‖x(k)‖2) = 0;
2) stochastically stable (SS) if for every initial state

(x0, θ0), E(
∑∝

k=0 ‖x(k)‖2) <∝;
3) exponentially mean square stable (EMSS) if for every

initial state (x0, θ0), there exist constants 0 < α < 1 and
β > 0 such that ∀k ≥ 0, E(‖x(k)‖2) < βαk‖x0‖2;

4) almost surely stable if for every initial state (x0, θ0),
P (limk→∝ ‖x(k)‖ = 0) = 1.

It was shown in [18] that for MJLS (11), the first three
definitions of stability are actually equivalent and anyone
of them implies almost surely stability. So we would like to
study the MSS of the system sequentially.

2.3 Analysis condition for well-posedness and sta-
bility of interconnected systems

Define 4m = diag{TIm0 ,4S}, and xxx(k, s) =[
xT

T (k, s), xT
S (k, s)

]T
. We get a more briefer expression of

model(7)

[ 4mxxx(k, s)
y(k, s)

]
=

[
A(θ(k)) B(θ(k))
C(θ(k)) 0

] [
xxx(k, s)
u(k, s)

]

(12)
where

A(θ(k)) =

[
ATT ATS(θ(k))
AST ASS(θ(k))

]

B(θ(k)) =

[
BT

BS

]

C(θ(k)) =
[

CT CS(θ(k))
]

(13)

For notation simplicity, when θ(k) = j, i.e., the system is
in mode j ∈ Ω = {0, 1, 2, 3}, we use the following notations:
A(θ(k)) = Aj , B(θ(k)) = Bj , and C(θ(k)) = Cj . The
system is denoted as M = {Aj , Bj , Cj}.

Define the following set of scaling matrices

G = {G = GT, G = diag{G0, G1, G−1},
det(G) 6= 0, G0 > 0} (14)

Assume that the probability of the plant being in mode j
at time k + 1 is independent of the plant′s mode at time k,
i.e., pij = pj for all i, j ∈ {0, 1, 2, 3}. We have the following
theorem, whose proof can be consulted from Appendix.

Theorem 1. Assume that pij = pj , ∀i, j ∈ {0, 1, 2, 3},
the spatially interconnected systems which are composed
of the subsystems (12) with random communication losses
between adjacent units are well-posed and MSS, if there
exists a matrix G ∈ G, such that

G−
3∑

j=0

pjA
T
j GAj > 0 (15)

Remark 1. This analysis condition is independent of
the number of blocks in interconnected systems. The size
of the resulting condition (15) is only a function of the
size of the basic building block (12). This is propitious to
system reconfigurability: elements can be added or removed
without affecting the well-posedness and stability of the
whole interconnected system.

Remark 2. In the absence of spatial dynamics, condi-
tion (15) simply reduces to the MSS condition of discrete-

time Markovian jump linear system[17−18]. Here, matrix G
is structured, which may have some conservativeness. Note
that only G0 is required to be positive definite. This is be-
cause the system is causal in temporal direction but not
causal in spatial direction.

3 Controller synthesis

In this section, Theorem 1 is used to derive an LMI condi-
tion for controller synthesis. We assume that the controller
has the same structure and the same packet loss rate as the
plant, i.e., if the plant cannot receive the packet from its
neighbors, neither can the controller.
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Consider a plant MG = {AG
j , BG

j , CG
j } which has a state

space realization as model (12) and (13). The controller to
be designed is captured by

[4K
mxK(k, s)
u(k, s)

]
=

[
AK(θ(k)) BK(θ(k))
CK(θ(k)) 0

] [
xK(k, s)
y(k, s)

]

(16)

where xK(k, s) ∈ RmK

are the controller states. Again, for
θ(k) = j ∈ {0, 1, 2, 3}, we use AK

j , BK
j , and CK

j to denote
the matrices of the controller in four modes, respectively.

So the closed loop system matrices are

AC
cl,j =

[
AG

j BG
j CK

j

BK
j CG

j AK
j

]
, j = 0, 1, 2, 3 (17)

The transition probabilities are the same as the plant′s,
i.e., pcl,j = pj . Note that the system matrices (17) are
not in the standard form as given in (12). For xcl(k, s) =[
xT (k, s)T, xS(k, s)T, xK

T (k, s)T, xK
S (k, s)T

]T
, the temporal

and spatial variables are not grouped together as they are
in (12). Define a permutation matrix P as follows

P =




ImG
0

0 0 0 0 0

0 0 0 ImK
0

0 0

0 ImG
+

0 0 0 0

0 0 0 0 ImK
+

0

0 0 ImG
−

0 0 0

0 0 0 0 0 ImK
−




(18)

Note that PPT = PTP = I, and that

Pdiag{4G
m,4K

m}PT =

diag{TImG
0 +mK

0
, SImG

++mK
+

, S−1ImG
−+mK

−
} (19)

The closed loop system matrices which have the same
structure as the model (12) are expressed as

Acl,j = PAC
cl,jP

T, Bcl,j = PBC
cl,j , Ccl,j = CC

cl,jP
T (20)

Then, by Theorem 1, we can conclude that the closed
loop interconnected systems are MSS if there exists a ma-
trix G ∈ G, such that

G−
3∑

j=0

pcl,jA
T
cl,jGAcl,j > 0 (21)

Since det(G) 6= 0, let Z = G−1. By pre- and post-
multiplying this condition (21) with Z, and using Schur
complements lemma four times, we have the following the-
orem.

Theorem 2. If pcl,ij = pcl,j for all i, j ∈ {0, 1, 2, 3},
then the closed loop interconnected systems are well-posed
and MSS if there exists a matrix Z = diag{Z0, Z1, Z−1},
where Zi =

[
ZG

i ZGK
i

(ZGK
i )T ZK

i

]
, and Z0 > 0, such that




Z (·)T (·)T (·)T (·)T√
p0Acl,0Z Z 0 0 0√
p1Acl,1Z 0 Z 0 0√
p2Acl,2Z 0 0 Z 0√
p3Acl,3Z 0 0 0 Z


 > 0 (22)

(·)T denotes matrix entries which can be inferred from the
symmetry of the matrix.

This theorem gives a bilinear matrix inequality condition
for the closed loop system to be mean square stable. It is
linear in the controller parameters which are embedded in
Acl,j for a fixed scaling matrix Z, or in Z for fixed controller
matrices. Our goal is to design controllers to make the
whole interconnected system MSS. The approach of vari-
able substitution is used to obtain an equivalent LMI condi-
tion which is more convenient for controller synthesis[16, 19].

Let P be the permutation matrix defined in (18). Denote
Z̄ = PTZP , Pre- and post-multiply condition (22) with PT

and P , respectively. The inequality (22) becomes




Z̄ (·)T (·)T (·)T (·)T√
p0A

C
cl,0Z̄ Z̄ 0 0 0√

p1A
C
cl,1Z̄ 0 Z̄ 0 0√

p2A
C
cl,2Z̄ 0 0 Z̄ 0√

p3A
C
cl,3Z̄ 0 0 0 Z̄




> 0 (23)

Recall the structure of scaling matrix Z, it follows that
the matrix Z̄ inherits the following structure

Z̄ =

[
ZG ZGK

(ZGK)T ZK

]
(24)

where

ZG = diag{ZG
0 , ZG

1 , ZG
−1}, ZG

0 > 0

ZGK = diag{ZGK
0 , ZGK

1 , ZGK
−1 }

ZK = diag{ZK
0 , ZK

1 , ZK
−1}, ZK

0 > 0
(25)

Define the following set of scaling matrices

XG = {XG : XG = diag{XG
0 , XG

1 , XG
−1},

XG
i ∈ R

mG
i ×mG

i
S , XG

0 > 0} (26)

Now we are in the position to state the main result for
controller synthesis.

Theorem 3. There exists Z̄ as shown in (24), and
AK

j , BK
j , CK

j for j = 0, 1, 2, 3 such that the inequality (23)

holds if and only if there exist matrices RG and ZG in XG,
and matrices Lj , Fj , and Wj for j = 0, 1, 2, 3, such that the
inequality (30) holds.

Proof. Since Z is invertible, so is Z̄.

For Z̄ =

[
ZG ZGK

(ZGK)T ZK

]
, denote R̄ = Z̄−1 =

[
RG RGK

(RGK)T RK

]
, where RG and ZG in XG. Then

Z̄R̄ = I. So

Z̄

[
RG

(RGK)T

]
=

[
I
0

]
(27)

and

Z̄

[
RG I

(RGK)T 0

]
=

[
I ZG

0 (ZGK)T

]
(28)

Define T1 =

[
RG I

(RGK)T 0

]
and T2 =

[
I ZG

0 (ZGK)T

]
. Then

Z̄T1 = T2 (29)
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


[
RG I
I ZG

]
(·)T (·)T (·)T (·)T

√
p0

[
Y AG

0 + L0C
G
0 W0

AG
0 AG

0 X + BG
0 F0

] [
RG I
I ZG

]
(·)T (·)T (·)T

√
p1

[
Y AG

1 + L1C
G
1 W1

AG
1 AG

1 X + BG
1 F1

] [
0 0
0 0

] [
RG I
I ZG

]
(·)T (·)T

√
p2

[
Y AG

2 + L2C
G
2 W2

AG
2 AG

2 X + BG
2 F2

] [
0 0
0 0

] [
0 0
0 0

] [
RG I
I ZG

]
(·)T

√
p3

[
Y AG

3 + L3C
G
3 W3

AG
3 AG

3 X + BG
3 F3

] [
0 0
0 0

] [
0 0
0 0

] [
0 0
0 0

] [
RG I
I ZG

]




> 0

(30)

and

TT
1 AC

cl,jZ̄T1 = TT
1 AC

cl,jT2 =

[
RGAG

j +RGKBK
j CG

j RGAG
j ZG+RGKBK

j CG
j ZG+RGBG

j CK
j (ZGK)T+RGKAK

j (ZGK)T

AG
j AG

j ZG + BG
j CK

j (ZGK)T

]

(31)

TT
1 Z̄T1 = TT

1 T2 =

[
RG I
I ZG

]
(32)

For j = 0, 1, 2, 3, denote

Fj = CK
j (ZGK)T

Lj = RGKBK
j

Wj = RGAG
j ZG + RGBG

j Fj +

LjC
G
j ZG + RGKAK

j (ZGK)T

(33)

It follows that, given matrices RG and ZG in XG,
and non-singular matrices RGK and ZGK , we can acquire
the controller matrices AK

j , BK
j , and CK

j exclusively from
Fj , Lj , and Wj .

On the other side, pre- and post-multiplying
inequality (23) by diag{TT

1 , TT
1 , TT

1 , TT
1 , TT

1 }, and
diag{T1, T1, T1, T1, T1}, we can get the matrix inequality
(30) with denotations (33). ¤

Remark 3. The inequality (30) is an LMI on matrix
variables Fj , Lj , Wj , R

G, and ZG. We can get solutions
if the LMI is feasible. However, when we construct con-
trollers, the non-singular matrices RGK and ZGK should
be acquired at first. The following lemma shows the exis-
tence condition for RGK and ZGK . The reader can refer to
[6] for the proof.

Lemma 1. Given in X1, Y1 in Rn×n
S , let k = rank(I −

X1Y1). Then there exist X2, Y2 in Rn×k, and X3, Y3 in

Rk×k
S such that

[
Y1 Y2

(Y2)
T Y3

]−1

=

[
X1 X2

(X2)
T X3

]
(34)

Let k = mK
0 + mK

+ + mK
− = rank(I −RGZG), and make

a full-rank factorization on matrix (I −RGZG). Then, we
can obtain RGK and ZGK from RGK(ZGK)T = I−RGZG.

Remark 4. When the LMI (30) has feasible solutions,
we can construct a mean square stabilizing controller from
the above procedure. The Matlab LMI toolbox makes this
feasibility problem computationally tractable.

4 An illustrative example

In this section, we study an example of multiple vehi-
cle platoon system which suffers from the communication
losses when information is transmitted between vehicles.
The technique presented above is used.

Consider a group of three vehicles platoon as shown in
Fig. 3. In this framework, we view vehicles as masses and
the connections through network between them as virtual
springs. This model is adopted from [20]. The i-th vehicle′s
dynamics is governed by

miẍi = ki+1(xi+1 − xi)− ki−1(xi − xi−1) + ui

yi = xi (35)

where xi is the position of i-th vehicle from its equilibrium
position, ui is its control input, yi is the measurement sig-
nal, mi is the mass of the vehicle, ki+1 and ki−1 are pre-
and post-virtual spring coefficients respectively. They are
just used to reflect the influence coefficients of other ve-
hicles on vehicle i. Here, we assume that mi = m, and
ki = k for ∀i. The goal of platoon is to keep the vehicle
moving with desired constant spacing behind its preceding
one. This is equivalent to the stability with respect to the
zero equilibrium of the plant′s error dynamical model (35).
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


ẋ2(t, s)
ẋ1(t, s)

xS1(t, s + 1)
xS−1(t, s− 1)

y(t, s)


 =




0 −2k

m

k

m
γ(t)

k

m
δ(t)

1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0







x2(t, s)
x1(t, s)
xS1(t, s)
xS−1(t, s)


 +




1

m
0
0
0
0




u(t, s) (36)

AK
0 =




−0.3103 −0.5163 −0.0009 −0.0009
0.1780 −0.2241 −0.0002 −0.0002
0.0001 −0.0010 0.0000 0.0000
0.0001 −0.0010 0.0000 0.0000


 , BK

0 =




0.6776
−0.9069
−0.9999
−0.9999


 , CK

0 =
[

2.3314 0.6029 0.0021 0.0021
]

AK
1 =




−0.3110 −0.5197 0.0003 −0.0011
0.1782 −0.2241 0.0001 −0.0003
0.0001 −0.0010 0.0000 0.0000
0.0001 −0.0010 0.0000 0.0000


 , BK

1 =




0.6756
−0.9065
−0.9999
−0.9999


 , CK

1 =
[

2.3326 0.6051 0.0026 0.9993
]

AK
2 =




−0.3110 −0.5197 0.0003 −0.0011
0.1782 −0.2241 0.0001 −0.0003
0.0001 −0.0010 0.0000 0.0000
0.0001 −0.0010 0.0000 0.0000


 , BK

2 =




0.6756
−0.9065
−0.9999
−0.9999


 , CK

2 =
[

2.3326 0.6051 0.9993 0.0026
]

AK
3 =




−0.3116 −0.5231 −0.0001 0.0001
0.1786 −0.2242 −0.0000 −0.0000
0.0001 −0.0010 0.0000 0.0000
0.0001 −0.0010 0.0000 0.0000


 , BK

3 =




0.6737
−0.9062
−0.9999
−0.9999


 , CK

3 =
[

2.3337 0.6074 0.9998 0.9998
]

(37)

Fig. 3 Vehicle platoon model

Since the vehicle state information xi is transmitted
through network for compact hardwiring, vehicle i may not
get its neighbors′ states sometimes when there are commu-
nication losses. We want to design controllers to ensure
that the whole formation system is still stable under this
situation. Here, by stability we mean mean square stability.

Defining x1(t, s) = xi, x2(t, s) = ẋ1(t, s), xS−1(t, s) =
xi+1, xS1(t, s) = xi−1, and u(t, s) = ui, we can get the
realization of system as (36).

In (36), γ(t) and δ(t) describe the network packet loss
situations which have been explained in detail in Section 1.

Assume that k = m and the sampling time is 0.5 s. Let
the package loss rate p = 0.2. Checking the feasibility of
LMI (30) and designing controllers using Theorem 3, we
have the mean square stabilizing controllers (37).

Note that the controllers′ structure satisfies

AK
0 ≈ AG

0 + BK
0 CG

0 −BG
0 CK

0

AK
1 ≈ AG

1 + BK
1 CG

1 −BG
1 CK

1

AK
2 ≈ AG

2 + BK
2 CG

2 −BG
2 CK

2

AK
3 ≈ AG

3 + BK
3 CG

3 −BG
3 CK

3 (38)

In other words, the controllers can play the role of ob-
servers based on xK(k) being estimates of −x(k), the states

of the augmented plant. Furthermore, BK
j are the observer

gains and CK
j are the feedback gains. Finally, we can find

that CK
j ≈

[
2.33 0.61 γ(k) δ(k)

]
, with γ(k) and

δ(k) reflecting the situation of communication channels.
Thus, once the estimates of the states are obtained, we do
not have the problem of varying the feedback gain based on
the loss or arrival of the information from its neighboring
subsystems.

Let the initial errors of each vehicle be x1 = 5m, x2 =
20 m, and x3 = −10m, respectively. We can get the sim-
ulation result as shown in Fig. 4, which indicates that the
platoon system is MSS with the designed controllers. Com-
pared with the result of packet loss rate p = 0.7 (See Fig. 5),
it shows that the higher the packet loss rate, the poorer the
control performance.

Fig. 4 Simulation results with p = 0.2
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Fig. 5 Simulation results with p = 0.7

5 Conclusions

In this paper, we considered the distributed control of
spatially interconnected systems with the effect of ran-
dom communication packet losses between subsystems. We
modeled the spatially interconnected systems with uncer-
tain stochastic connection as discrete time-space MJLSs,
and got the mean square stable condition for such systems.
An LMI condition was developed for the existence of the
mean square stabilizing controllers, and the designing pro-
cedure was presented too.

An example of multiple vehicle platoon was given to show
the effectiveness of our method. However, we can see that
mean square stability is a weak condition. In particular, it
is possible to find stabilizing controllers even for very high
packet loss rates, but it is obvious that the performance
with different packet loss rates is quite different. So these
results need to be extended to measure performance versus
different packet loss rates, which is our next work. On the
other hand, this work is about non-ideal coupling with the
nearest neighbors, and we will try to further extend the
results to arbitrary interconnections.

Appendix

Proof of Theorem 1.
1) Well-posedness
Define the following set

S4 = {4 : 4 = diag{δ1Im1 , δ2Im2 , · · · , δLImL}, |δi| = 1}
(A1)

It is obvious that operator 4S = diag{SIm1 , S−1Im−1} ∈
S4.

Referring to (10), the well-posedness of the system is
equivalent to the invertibility of (4S −ASS(θ(k))) for
whatever θ(k). So it needs to be shown that (4S −ASS,j)
is invertible for j = 0, 1, 2, 3 if there exist a matrix G ∈ G,
such that G−∑3

j=0 pjA
T
j GAj > 0.

Since (4S −ASS,j) = 4S

(
I −4−1

S ASS,j

)
, the invert-

ibility of (4S −ASS,j) is equivalent to the invertibility of(
I −4−1

S ASS,j

)
. We use the method of reduction to ab-

surdity to complete the proof.
Assume that, for j = 0, 1, 2, 3,

(
I −4−1

S ASS,j

)
is not

invertible, then there exists xj 6= 0, such that xj =
4−1

S ASS,jxj .

As G−∑3
j=0 pjA

T
j GAj > 0, it follows that

[
G1

G−1

]
−

3∑
j=0

pjA
T
SS,j

[
G1

G−1

]
ASS,j > 0

(A2)

and then

xT
j AT

SS,j

(4−1
S

)T
[

G1

G−1

]
4−1

S ASS,jxj−
3∑

j=0

pjx
T
j AT

SS,j

[
G1

G−1

]
ASS,jxj > 0 (A3)

Since the matrix parameter ASS,j varies with time ac-
cording to some probability distribution, we make mathe-
matical expectation on (A3),

3∑
j=0

pjx
T
j AT

SS,j

[
G1

G−1

] (
(4−1

S )T 4−1
S −I

)
ASS,jxj > 0

(A4)

However, as 4S ∈ S4, i.e., (4−1
S )T 4−1

S −I = 0,
a contradiction is encountered. So the assumption that(
I −4−1

S ASS,j

)
is not invertible for j = 0, 1, 2, 3 is false,

which implies that (4S −ASS,j) is invertible for j =
0, 1, 2, 3, as required.

2) Mean square stability
Suppose that there exists a matrix G ∈ G

such that inequality (15) holds. Let x =[
xT (k, s)T, xS1(k, s)T, xS−1(k, s)T

]T
and x1 =[

xT (k + 1, s)T, xS1(k, s + 1)T, xS−1(k, s− 1)T
]T

. Multi-

plying inequality (15) with xT on the left and x on the right,
and making mathematical expectation, we can obtain the
inequality (A5), where the dynamical characteristic of the
system (7) is exploited.

3∑
j=0

pj

(
xTdiag{G0, G1, G−1}x−

x1Tdiag{G0, G1, G−1}x1
)

> 0 (A5)

Summing up (A5) over all spatial coordinates, where the
well-posedness is used to guarantee that the finite sums
exist, we have

3∑
j=0

pj (〈xT (k, s), G0xT (k, s)〉l2+

〈xS1(k, s), G1xS1(k, s)〉l2+
〈xS−1(k, s), G−1xS−1(k, s)〉l2−
〈TxT (k, s), G0(TxT (k, s))〉l2−
〈SxS1(k, s), G1SxS1(k, s)〉l2−
〈S−1xS−1(k, s), G−1S

−1xS−1(k, s)〉l2
)

> 0 (A6)

Note that

〈SxS1(k, s), G1(SxS1(k, s))〉l2 =

〈xS1(k, s), S−1G1(SxS1(k, s)〉l2 =

〈xS1(k, s), G1xS1(k, s)〉l2 (A7)

So does

〈S−1xS−1(k, s), G−1(S
−1xS−1(k, s)〉l2 =

〈xS−1(k, s), G−1xS−1(k, s)〉l2 (A8)
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We have

3∑
j=0

pj (〈xT (k, s), G0xT (k, s)〉l2−

〈TxT (k, s), G0(TxT (k, s))〉l2) > 0 (A9)

It follows that there exists ε > 0, such that

3∑
j=0

pj (〈TxT , G0(TxT )〉l2 − 〈xT , G0xT 〉l2) < −ε〈xT , xT 〉l2

(A10)

Denote

V (xT (k, s)) = 〈xT (k, s), G0xT (k, s)〉l2 (A11)

as the Lyapunov function.
Then

Eθ(k) [V (xT (k + 1, s)|xT (k, s))] =

3∑
j=0

pj〈TxT (k, s), G0(TxT (k, s))〉l2 <

V (xT (k, s))− ε〈xT (k, s), xT (k, s)〉l2 ≤[
1− ε

λmax(G0)

]
V (xT (k, s)) =

αV (xT (k, s)) (A12)

where Eθ(k) [·] denotes the mathematical expectation taken
over θ(k). We can choose ε small enough so that

α = 1− ε

λmax(G0)
> 0 (A13)

Inequality (A12) follows since

〈z, Gz〉l2 ≤ λmax(G) · 〈z, z〉l2 , ∀z (A14)

We will show that the following lemma is true for ∀n ∈ N
by induction.

Lemma A1.

Pn : Eθ(k),··· ,θ(k+n−1) [V (xT (k + n, s)|xT (k, s))] <

αnV (xT (k, s)) , ∀k (A15)

P1 follows directly from inequality (A12). Assume that
Pn is true, then

Eθ(k),··· ,θ(k+n) [V (xT (k + n + 1, s)|xT (k, s))] =

3∑
j=0

pjEθ(k+1),··· ,θ(k+n) [V (xT (k + n + 1, s)|xT (k + 1, s))] <

3∑
j=0

αnpjV (xT (k + 1, s)) =

αnEθ(k) [V (xT (k + 1, s)|xT (k, s))] <

αn+1V (xT (k, s)) (A16)

That means Pn+1 holds as well. Therefore,

Eθ(k),··· ,θ(N−1)

[
n∑

k=0

V (xT (k, s)|xT (0, s))

]
<

(1 + α + · · ·+ αn) V (xT (0, s)) =

1− αn

1− α
V (xT (0, s)) (A17)

Take the limit as n tends to infinity gives inequality
(A19) below

lim
n→∞

Eθ(0),··· ,θ(n−1)

[
n∑

k=0

〈xT (k, s), xT (k, s)〉l2 |xT (0, s)

]
≤

lim
n→∞

1

λmin(G0)
×

Eθ(0),··· ,θ(n−1)

[
n∑

k=0

〈xT (k, s), G0xT (k, s)〉l2 |xT (0, s)

]
≤

(A18)

1

λmin(G0)

1

1− α
〈xT (0, s), G0xT (0, s)〉l2 = (A19)

λmax(G0)

ελmin(G0)
V (xT (0, s)) < ∞ (A20)

Inequality (A18) follows because λmin(G0)〈z, z〉l2 ≤
〈z, G0z〉l2 , for ∀z. Equality (A20) holds by definition of
α(A13), and the final cost is finite because G0 > 0 implies
λmin(G0) > 0 and λmax(G0) > 0.

Then, we can conclude that the system is stochastically
stable and hence MSS. ¤
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