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A Comprehensive Study for Asymmetric AdaBoost and

Its Application in Object Detection
GE Jun-Feng1 LUO Yu-Pin1

Abstract Asymmetry is inherent in tasks of object detection where rare positive targets need to be distinguished from enormous
negative patterns. That is, to achieve a higher detection rate, the cost of missing a target should be higher than that of a false
positive. Cost-sensitive learning is a suitable way for solving such problems. However, most cost-sensitive extensions of AdaBoost are
realized by heuristically modifying the weights and confidence parameters of the discrete AdaBoost. It remains unclear whether there
is a unified framework to interpret these methods as AdaBoost, clarify their relationships, and further derive the superior real-valued
cost-sensitive boosting algorithms. In this paper, according to the three different upper bounds of the asymmetric training error,
we not only give a detailed discussion about the various discrete asymmetric AdaBoost algorithms and their relationships, but also
derive the real-valued asymmetric boosting algorithms in the form of additive logistic regression with analytical solutions, which
are denoted by Asym-Real AdaBoost and Asym-Gentle AdaBoost. Experiments on both face detection and pedestrian detection
demonstrate that the proposed approaches are efficient and achieve better performance than the previous AdaBoost methods and
discrete asymmetric extensions.
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In recent years, the popular machine learning method
named AdaBoost has achieved tremendous practical suc-
cess on object detection in computer vision field. The gen-
eral principle of AdaBoost[1] is to linearly combine a series
of weak classifiers to produce a superior classifier. Each
weak classifier consists of a prediction and a confidence
value and each sample in the training set has an associated
weight. At each iteration, AdaBoost chooses the best weak
classifier to minimize the upper bound of training error, in-
creases the weights of wrongly classified training samples,
and decreases the weights of correctly classified samples.
Benefiting from this scheme, many AdaBoost based object
detecting algorithms for face[2−5] and pedestrian[6−9] have
been proposed with impressive performance in both speed
and accuracy, following the famous face detector introduced
by Viola[10].

However, in the tasks of object detection, rare positive
targets have to be distinguished from enormous negative
patterns. Therefore, asymmetry is usually inherent in such
domain which requires more attention to the positive tar-
gets or to make the algorithm cost-sensitive to achieve a
higher detection rate and moderate low false positive rate.
Thus, there should be different treatment for false negatives
(FN) and false positives (FP), that is, FN samples are pe-
nalized more than FP samples. Since AdaBoost aims at
minimizing the bound of classification error which treats
FP and FN equally, the symmetric AdaBoost algorithm is
not optimal for object detection tasks.

To deal with the class imbalance problem in
classification[11], various asymmetric extensions of
AdaBoost have been proposed in the literature. However,
most of them[5, 11−13] directly modify the weights and
confidence parameters of discrete AdaBoost[14], where
the weak classifier holds ht ∈ {−1, +1}, heuristically to
achieve cost-sensitivity without clarifying the relations
to the loss minimization of AdaBoost. Although some
[15−17] derive the cost-sensitive boosting algorithms from
minimizing the asymmetric loss, they only focus on one
kind of upper bound of asymmetric loss for discussion and
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resort to search procedures to get the optimal solution.
It remains unclear whether there is a unified frame-

work to interpret all the asymmetric methods as AdaBoost,
clarify their relationships, and further derive the superior
real-valued cost-sensitive boosting algorithms which adopt
confidence-rated weak learners to reduce the upper bound
of training error.

In this paper, we give a detailed discussion about the
various discrete asymmetric extensions, divide them into
three groups according to the different upper bounds of
the asymmetric training error and clarify their relations to
the loss minimization of AdaBoost with some reformula-
tions and improvements. Then, the real-valued asymmet-
ric AdaBoost algorithms are derived in the form of addi-
tive logistic regression following the way described in [18]
with analytical solutions and consideration of different ex-
ponential loss functions, which are denoted by Asym-Real
AdaBoost and Asym-Gentle AdaBoost.

The rest of the paper is organized as follows. Section 1
presents a discussion about the various discrete asymmetric
extensions and their relationship. In Section 2, we derive
the real-valued asymmetric AdaBoost in the form of addi-
tive logistic regression. Sections 3 and 4 give the experi-
mental results and the conclusion, respectively.

1 Discrete AdaBoost and asymmetric
extensions

The discrete AdaBoost proposed by Freund[14] takes as
input a training set S = 〈(x1, y1), · · · , (xm, ym)〉 where each
instance, xi, belongs to a certain domain or instance space
X, and each label yi belongs to a finite label space Y . In
the object detection application, we will only focus on the
binary case, where Y = {−1, +1}. The pseudo-code for dis-
crete AdaBoost is shown as follows. Essentially, AdaBoost
is actually an iterative procedure to reduce the upper bound
of training error in (3), where F (x) =

∑
t αtht(x). There

are three key issues in the AdaBoost algorithm:
The Pseudo-code for discrete AdaBoost

Given (x1, y1), · · · , (xm, ym), xi ∈ X, and yi ∈ {−1, +1}
Initialize sample weights D1(i) = 1/m.

Iterate t = 1, · · · , T :

1) Train weak leaner ht → Y using distribution Dt.
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2) Get the best weak classifier ht with minimal weighted train-

ing error.

3) Choose the weight updating parameter:

αt =
1

2
ln

(
1− εt

εt

)
(1)

where εt =
∑m

i=1 Dt(i)Jht(xi) 6= yiK
4) Update and normalize sample weights:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt
(2)

where Zt =
∑

i Dt(i) exp(−αtyiht(xi))

Output the final classifier: H(x) = sign(
∑T

t=1 αtht(x))

1) The sample reweighting scheme. The main effect of
the update rule is to decrease or increase the weights of
training samples classified correctly or incorrectly by ht

and makes the subsequent weak learners focus on the hard
classified samples. Therefore, this affects the training of
weak classifiers directly.

2) The choice of combination coefficient αt. The αt is
chosen to minimize or approximately minimize Zt in (2) on
each round of boosting because the training error satisfies
the bound described in (3). Different approaches for cal-
culating αt analytically or numerically can also affect the
performance of AdaBoost.

3) The discriminative weak learners. Different feature
sets or different output schemes of the weak learners can
produce distinct results.

1

m
|{i : H(xi) 6= yi}| ≤

∑
i

D1(i) exp(−yiF (xi)) =
∏

t

Zt

(3)
Most current asymmetric extensions of AdaBoost at-

tempt to achieve cost-sensitivity by direct modification of
the weight updating scheme and the combination coefficient
of AdaBoost heuristically. The main idea behind the ad-
justments is to give more weights on the positive samples,
and then the FN will be penalized more than the FP.

Viola[19] first tried to achieve the asymmetric AdaBoost
for object detection called AsymBoost by pre-weighting the
positive samples K times as large as the negative ones. But,
unfortunately the initial asymmetric weights were immedi-
ately absorbed by the first selected weak classifier as the
AdaBoost process was too greedy. Instead of pre-weighting
initially, they altered the weight update rule in each round
for applying the asymmetric weight to avoid the weight ab-
sorbing phenomenon. The modified weight update rule is

AsymBoost: Dt+1(i) =
CDt(i) exp(−αtyiht(xi))

Zt
, (4)

where C = (
√

K)(1/N) for positive samples and C =

(
√

K)(−1/N) for negative samples. K is the cost ratio and
N is the total number of the rounds for training the final
strong classifier. And AsymBoost relies on (1) to compute
αt.

AdaCost[12] proposed by Fan adopts the similar ap-
proach to make AdaBoost cost-sensitive. They incorpo-
rated a cost adjustment function βδ(i) into the weight up-
dating rule (2) and the computation of αt (1). The weight
updating formula was modified into

AdaCost: Dt+1(i) =
Dt(i) exp(−αtyiht(xi)βδ(i))

Zt
(5)

αt is computed by

AdaCost: αt =
1

2
ln

1 + rt

1− rt
(6)

where rt =
∑

i Dt(i)yiht(xi)βδ(i), δ = +1 if yi = ht(xi)
and δ = −1 otherwise. Finally, β+1(i) = −0.5Ci + 0.5
and β−1(i) = 0.5Ci + 0.5. Ci is the cost factor assigned
to the i-th sample and has to be restricted to [0 1], as
yiht(xi)βδ(i) ∈ [−1 1] was assumed in the derivation of
αt.

CSB0, CSB1, and CSB2 introduced by Ting[20] are sim-
ilar asymmetric extensions of AdaBoost, which also only
modify the weight updating method and again use (1) for
calculating αt without taking the cost items into consid-
eration. The corresponding three different weight update
rules are shown as follows.

CSB0: Dt+1(i) =
Cδ(i)Dt(i))

Zt
(7)

CSB1: Dt+1(i) =
Cδ(i)Dt(i) exp(−yiht(xi))

Zt
(8)

CSB2: Dt+1(i) =
Cδ(i)Dt(i) exp(−yiht(xi)αt)

Zt
(9)

where C−1(i) is the cost of misclassifying the i-th sample,
and C+1(i) = 1. As CSB0 and CSB1 are quite different
from AdaBoost, they will be excluded in further discus-
sion.

Considering the importance of choosing αt, Sun[11] not
only fed the cost items into the weight updating formula
but also re-derived the weight updating parameter αt to
guarantee the boosting efficiency by minimizing the corre-
sponding Zt according to the approaches in [21].

Three modifications of (2) are shown as (10)∼ (12). Each
modification is taken as a new boosting algorithm denoted
as AdaC1, AdaC2, and AdaC3, respectively.

AdaC1: Dt+1(i) =
Dt(i) exp(−αtCiht(xi)yi)

Zt
(10)

AdaC2: Dt+1(i) =
CiDt(i) exp(−αtht(xi)yi)

Zt
(11)

AdaC3: Dt+1(i) =
CiDt(i) exp(−αtCiht(xi)yi)

Zt
(12)

where Ci is an associated cost item of the i-th sample and
in the range of (0 1] for the assumption of Ciyiht(xi) ∈
[−1 1] in the calculation of αt.

Recently, Hou[15] and Hamed Masnadi-Shirazi[16] at-
tempted to derive asymmetric boosting classifiers from the
upper bounds of normalized asymmetric classifier error and
the empirical risk of cost-sensitive loss, respectively. Actu-
ally, their upper bounds are equivalent. Minimizing the
upper bound as is done by original AdaBoost leads to min-
imizing Zt (13) at each round as AdaC1.

Zt =
∑

i

Dt(i) exp(−Ciyiαtht(xi)) (13)

However, Hou embedded the cost items into the label
yi and constrained the cost items to meet the condition
C1 > C2 and C1 + C2 = 1[15] (cost C1 to misses and cost
C2 to FP). Fortunately, this made the algorithm more at-
tractive with the ability to select the best cost parameters



No. 11 GE Jun-Feng and LUO Yu-Pin: A Comprehensive Study for Asymmetric AdaBoost and · · · 1405

adaptively. Finally, they achieved the AsymAda (asym-
metric AdaBoost algorithm) that consists of the following
equations, when ht ∈ {−1, +1}.

αt =
1

2
ln

AtDt

BtCt

Ct
1 =

ln At
Bt

2αt

(14)

where At = P (yi = 1, ht(xi) = 1), Bt = P (yi =
1, ht(xi) = −1), Ct = P (yi = −1, ht(xi) = 1), and
Dt = P (yi = −1, ht(xi) = −1).

Similar approaches were taken in [16] to derive ABoost-
ing (asymmetric boosting). But, they tried to directly min-
imize (13) by solving (15). Unfortunately, their optimal
solution is not analytical and standard scalar search proce-
dures are required to find the optimal αt.

2C1 · b · cosh(C1α) + 2C2 · d · cosh(C2α) =

C1 · T+ · e−C1α + C2 · T− · e−C2α
(15)

where T+ = At + Bt, T− = Ct + Dt, b = Bt, and d = Ct.

1.1 Unified framework for asymmetric extensions
and improvements

Generally, the natural way to obtain cost-sensitive ex-
tensions of AdaBoost is to start from the asymmetric loss
function or the asymmetric classification error, and then
minimize the upper bound of the asymmetric training er-
ror as is done by AdaBoost.

For example, an asymmetric loss, with a cost of C1 for
false rejected samples and C2 for false accepted samples,
can be formulated as (16). Accordingly, the asymmetric
training error can be represented by FN and FP or asym-
metric loss in (17), where NFN and NFP indicate the num-
ber of FN and FP, respectively.

ALoss(i) =





C1, if yi = 1 and H(xi) = −1
C2, if yi = −1 and H(xi) = 1
0, otherwise

(16)

εasym(C1, C2) = C1NFN + C2NFP =
∑

i

ALoss(i) (17)

Considering the different positions between cost items
and exponent, there are three kinds of upper bounds of the
asymmetric training error as follows:

AB1 =
∑

i

exp(−Ciyi

∑
t

αtht(xi)) ≥ εasym (18)

AB2 =
∑

i

Ci exp(−yi

∑
t

αtht(xi)) ≥ εasym (19)

AB3 =
∑

i

Ci exp(−Ciyi

∑
t

αtht(xi)) ≥ εasym (20)

where Ci = C1 if yi = 1 and Ci = C2 if yi = −1.
According to the different upper bounds, all the above

asymmetric extensions of AdaBoost can be divided into
three groups as shown in Table 1.

Table 1 The three groups of asymmetric extensions of discrete

AdaBoost

Upper Weight
Extension Cost item∗ αt

bound update

AdaC1 P← C1, N← C2 (10) approximate

TP← β+
+ , FN← β+

−AB1 AdaCost (5) approximate (6)
TN← β−+ , FP← β−−

AsymAda P← C1, N← C2 (10) optimal (14)

ABoosting P← C1, N← C2 (10) optimal (15)

AdaC2 P← C1, N← C2 (11) optimal

AB2 AsymBoost P←
√

k, N← 1√
k

(4) irrational (1)

TP← 1, FN← C1
CSB2 (9) irrational (1)

TN← 1, FP← C2

AB3 AdaC3 P← C1, N← C2 (12) approximate

∗ The cost items refer to the Ci parameters in weight update

rules. Only AdaCost and CSB2 treat the correctly and wrongly

classified samples differently.

Under the unified framework, the relations between the
asymmetric extensions can be clarified, and their main dif-
ferences locate in the computation of αt and the selection
of cost items. For example, AdaCost can be regarded as
a variant of AdaC1 due to a different choice of Ci. And
comparing the AdaC1 with ABoosing, the only difference
is the way to compute αt. The optimal αt in ABoosing
outperforms the approximate solution in AdaC1[11].

Another advantage of the unified framework is that it
provides a simple way to improve the heuristically modi-
fied methods. For example, in AsymBoost, the cost items
in each round are related to the number of weak learners
(N), which is unavailable in training cascaded detectors.
However, since we know its essence, we can re-derive the
algorithm from AB2 to solve this problem.

Minimizing (19) is equivalent to minimizing AB
′
2 in (21)

at each boosting iteration.

AB
′
2 =

∑

i∈{i|yi=1}
C1D

′
t(i) exp(−αtht(xi))+

∑

i∈{i|yi=−1}
C2D

′
t(i) exp(αtht(xi))

(21)

where D
′
t(i) = exp(−yi

∑t−1
j=1 αjhj(xi)). Thus, the best

weak learner ht can be obtained by minimizing (21) and the
corresponding αt can be determined by the same method
in discrete AdaBoost. The optimal αt is uniquely selected
as

αt =
1

2
ln

∑
i,yi=ht(xi)

CiD
′
t(i)∑

i,yi 6=ht(xi)
CiD

′
t(i)

(22)

Each sample weight for learning of the next iteration is

updated as D
′
t+1(i) = D

′
t(i) exp(−αtyiht(xi)).

The similar ideas were also discussed by Sun[11], but not
considered in the reasoning process of AdaC2. In fact, the
cost items for FN and FP in AdaC2 are (Ci)

N , varying
during the training process with different number of itera-
tions. Fortunately, the problems of determining N before
training in AdaC2 and AsymBoost can be solved by taking
advantage of the above asymmetric learning scheme.

Moreover, the computation of αt in CSB2 and Asym-
Boost are the same as that of original AdaBoost, which is
unreasonable. We can replace them with the optimal one in
the same category easily. The inappropriate choice of the
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αt parameter will frequently give disproportionate weights
to weak learners and degrade the performance[16].

2 Real-valued asymmetric AdaBoost

Although the discrete asymmetric boosting algorithms
achieve better performance than the original discrete ones,
the computation of αt is approximate[11] or requires search
procedures[16]. These problems trigger us to find out
whether the superior real-valued methods like Real and
Gentle AdaBoost can be extended to cost-sensitive ones
and if there are simple and analytical ways to compute the
optimal parameters.

From a statistical perspective, AdaBoost acts as a
method for fitting an additive model F (x) =

∑
j fj(x) in a

forward stage-wise manner. Both discrete and real-valued
AdaBoosts can be derived in the form of additive logis-
tic regression by minimizing the expectation of exponential
loss function (23), which is usually motivated as an upper

bound on misclassification error[18].

J(F )) = E
[
e−yF (x)

]
≥ ε = NFP + NFN (23)

Consequently, different loss functions lead to different
boosting algorithms. As mentioned in the above section,
by integrating the cost item C into (23) in different ways,
we can obtain the following expected cost-sensitive expo-
nential loss functions, and then derive various real-valued
asymmetric AdaBoost algorithms accordingly:

Jasym(F (x), Ci) = E
[
e−CiyF (x)

]
(24a)

Jasym(F (x), Ci) = E
[
Cie

−yF (x)
]

(24b)

Jasym(F (x), Ci) = E
[
Cie

−CiyF (x)
]

(24c)

As parameter Ci is different for positive and negative sam-
ples, the above equations are not equivalent.

Taking (24a) for example, if the exponential loss function
is

ALoss(F (x)) =

{
e−C1yiF (x), if yi = 1

e−C2yiF (x), if yi = −1
(25)

We can notice that it is the upper bound of the simple
loss described in (16), thus the upper bound of asymmetric
training error is held by expected asymmetric exponential
loss defined in (26) (C1, C2 ∈ (0 1]) like other boosting
algorithms. Similarly, asymmetric extensions of AdaBoost
can be derived through fitting the additive logistic regres-
sion model by stage-wise optimization of (27).

Jasym(F (x), C1, C2) = E
[
I(y = 1)e−C1F (x)+

I(y = −1)eC2F (x)
]
≥ εasym(C1, C2)

(26)

Suppose a current hypothesis F (x) has been obtained in
the additive model. The next step is to learn an optimal
weak classifier f(x) to add in. Thus, the overall training
loss turns into

Jasym(F (x) + f(x)) = Ew

[
I(y = 1)e−C1f(x)+

I(y = −1)eC2f(x)
]

=

Pw(y = 1|x)e−C1f(x) + Pw(y = −1|x)eC2f(x)

(27)

where w = w(x, y) = e−yCF (x), C = C1 if y = 1, and
C = C2 if y = −1. Ew[·] is the weighted expectation de-
fined by

Ew [g(x, y)] =
E [w(x, y)g(x, y)]

E [w(x, y)]
(28)

Thus, the optimal weak classifier can be obtained from
minimizing (27) and described as follows:

f̂(x) = arg min
f

Jasym(F (x) + f(x), C1, C2) =

1

C1 + C2
ln

C1Pw(y = 1|x)

C2Pw(y = −1|x)

(29)

We denote the above algorithm as Asym-Real AdaBo-
ot-1. Similarly, the optimal weak hypothesis of Asym-
Gentle AdaBoot-1 can be obtained using Newton steps as
is done by Gentle AdaBoost and described as follows:

ft(x) =
C1Pw(y = 1|x)− C2Pw(y = −1|x)

C2
1Pw(y = 1|x) + C2

2Pw(y = −1|x)
(30)

Both the above two algorithms use w
(t+1)
i = w

(t)
i e−Cyft(x)

for updating weights.
If we start from (24b), the similar steps can be taken to

explore extensions of AdaBoost. The optimal weak classi-
fier selected in each iteration should satisfy

f̂(x) = arg min
f

C1P (y = 1|x)e−(F (x)+f(x))+

C2P (y = −1|x)e(F (x)+f(x))
(31)

Here, if we let w = w(x, y) = e−yF (x), then the best
weak classifiers for Asym-Real AdaBoost-2 and Asym-
Gentle AdaBoost-2 can be obtained respectively as follows,

with, the corresponding weight updating rule w
(t+1)
i =

w
(t)
i e−yft(x).

ft(x) =
1

2
ln

C1Pw(y = 1|x)

C2Pw(y = −1|x)
(32a)

ft(x) =
C1Pw(y = 1|x)− C2Pw(y = −1|x)

C1Pw(y = 1|x) + C2Pw(y = −1|x)
(32b)

If we let w′ = w′(x, y) = Ce−yF (x) and consider w′ as
the new distribution of the training samples, then the rest
steps of the asymmetric algorithms will be the same as the
symmetric AdaBoost algorithms, as discussed in Section 1.
Thus, the weak classifiers in each round can be determined
by

ft(x) =
1

2
ln

Pw′(y = 1|x)

Pw′(y = −1|x)
(33a)

ft(x) = Pw′(y = 1|x)− Pw′(y = −1|x) (33b)

The corresponding weight updating scheme is w′(t+1)
i =

w′(t)i e−yft(x). However, this approach is equivalent to the
direct pre-weighting method proposed by Viola and Jones,
so it is unworkable because of the weight absorbing phe-
nomenon.

The resulting asymmetric extensions derived from (24c)

contain two cases, too. In one case, w
(t+1)
i = w

(t)
i e−Cyft(x),

the optimal weak classifiers are

ft(x) =
1

C1 + C2
ln

C2
1Pw(y = 1|x)

C2
2Pw(y = −1|x)

(34a)
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ft(x) =
C2

1Pw(y = 1|x)− C2
2Pw(y = −1|x)

C3
1Pw(y = 1|x) + C3

2Pw(y = −1|x)
(34b)

In the other case, w
′(t+1)
i = Ce−Cy(F (x)+ft(x)) =

w
′(t)
i e−Cyft(x) is chosen as the weight updating rule, and

the corresponding weak classifiers can be obtained similarly
as (35a) and (35b). Obviously, these two extensions are like
the Asym-Real Adaboost-1 and Asym-Gentle AdaBoost-1,
respectively, except the initial weights of training samples,
hence no more discussions will be given about these exten-
sions in the following sections.

ft(x) =
1

C1 + C2
ln

C1Pw
′ (y = 1|x)

C2Pw
′ (y = −1|x)

(35a)

ft(x) =
C1Pw

′ (y = 1|x)− C2Pw
′ (y = −1|x)

C2
1Pw

′ (y = 1|x) + C2
2Pw

′ (y = −1|x)
(35b)

The extensions referring to (34a) and (34b) will be denoted
by Asym-Real AdaBoost-3 and Asym-Gentle AdaBoost-3
in further discussions.

For the cost-sensitive boosting algorithms, the costs C1

and C2 are used to characterize the identification impor-
tance of different samples, naturally specified from domain
knowledge.

In practice, there are two approaches to determine the
cost items. One is to specify the costs through empirical
methods which let cost factors chosen from certain intervals
and then test the performance of the various costs, finally
select the best cost items according to the desired perfor-
mance. The other approach is adjusting the cost items to
satisfy the given criterion during the training process, such
as minimizing the upper bound of training error mentioned
in the previous section and Neyman-Pearson criterion that
minimizes the overall risk subject to a given detection rate
or FP rate[22]. Note that because we can always set C1 = 1,
the search for optimal cost is one-dimensional. In this pa-
per, we let C2 ∈ [0.1 1] while fixing C1 = 1 for comparing
the performance of various real-valued asymmetric exten-
sions.

The weak learners widely used for real-valued AdaBoost
are domain-partitioning weak hypotheses, such as classifi-
cation and regression trees (CART)[23] and look-up table

(LUT) type weak classifier[4]. We will use these two kinds of
weak classifiers in evaluation for face detection and pedes-
trian detection, respectively.

The training process of Asym-Gentle AdaBoost-1 with
domain-partitioning weak learners can be described as fol-
lowing and the other real-valued extensions can be trained
similarly.

The training process of Asym-Gentle AdaBoost-1 with

domain-partitioning weak learners

Given (x1, y1), · · · , (xm, ym), xi ∈ X, and yi ∈ {−1, +1}
Initialize sample weights D1(i) = 1/m.

Choose cost items C1, C2. Let C1 > C2, C1, C2 ∈ (0, 1],

Iterate t = 1, · · · , T :

1) For each weak learner fj(x), it will partition X into several

disjoint subregions X1, · · · , Xn. Compute the output of fj(x) in

each subregion using (30) and the normalization factor Zj
t .

Zj
t =

∑
i

Dt(i) exp(−Ciyifj(xi)) (36)

2) Choose the weak classifier fj(x) with smallest Zj
t as the

best function at this round ft(x).

3) Update and normalize sample weights:

Dt+1(i) =
Dt(i) exp(−Ciyift(xi))

Zt
(37)

Output the final classifier: H(x) = sign(
∑T

t=1 ft(x)).

3 Experimental results

We evaluated the real-valued asymmetric algorithms on
both pedestrian detection and face detection tasks.

Regarding the comparisons of cost-sensitive classifica-
tion performance, we used the pedestrian benchmark data
set proposed by Munder and Gavrila[24] for evaluation,
which consists of three training sets and two test sets. Ev-
ery set contains 4 800 pedestrian examples and 5 000 non-
pedestrian examples. For each real-valued or discrete asym-
metric AdaBoost algorithm, the weak learners were based
on a combination of decision stumps and histograms of ori-
ented gradients (HOG) features[25], and the strong classifier
was trained with 100 iterations, by selecting one out of the
three training sets, and using the remaining for validation.
After the parameters (cost items Ci) were optimized via
cross validation, testing the classifier on the two test sets
yielded two different results, and the mean value was used
for final comparison.

The evaluation of cost-sensitive classification requires a
metric that weights some errors more than others. We
adopted the common metric described in (38) for compari-
son, where p is the FP, m is the number of missing positives
(FN), and β > 1 is a cost factor that weights misses more

heavily than FP[16].

ε = p + β ×m (38)

Three cost factors (β = 2, 5, 10) were considered and
Table 2 presents the corresponding best results of each al-
gorithm with different parameters C. Note that symmetric
AdaBoost methods performed well for small cost factors.
And real-valued asymmetric algorithms outperformed the
discrete ones a lot.

Table 2 The best results of different methods with various

cost ratios C under different criteria with β = 2, 5, 10

Method β = 2 β = 5 β = 10

Discrete 4 452
9 282 17 732

AdaBoost p = 1 232, m = 1 610

4 438 7 965 11 573
AdaC1

C2 = 0.5 C2 = 0.3 C2 = 0.2

4 526 8 378 12 438
CSB2

CP
−1 = 2 CP

−1 = 5 CP
−1 = 8

Gentle 2 790
6 162 11 782

AdaBoost p = 542, m = 1 124

2 786 5 241 8 054
Asym-Real-1

C2 = 0.5 C2 = 0.3 C2 = 0.2

2 924 5 382 8 985
Asym-Real-3

C2 = 0.7 C2 = 0.4 C2 = 0.2

2 682 4 996 7 346
Asym-Gentle-1

C2 = 0.5 C2 = 0.2 C2 = 0.2

2 835 5 182 7 947
Asym-Gentle-2

C2 = 0.6 C2 = 0.3 C2 = 0.2

For face detection, a set of 2 170 frontal face samples
and 3 000 non-face samples were collected from Internet and
normalized to 24×24 for training single stage classifiers us-
ing the real-valued symmetric and asymmetric AdaBoost.
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All the single stage classifiers were trained until they got
the zero training error using CART as the weak learner.
And the MIT+CMU test which consists of 130 images and
contains 507 frontal faces was used for evaluating the per-
formance. The ROC curves of these algorithms are shown
in Figs. 1 and 2 according to the different node numbers of
CART. We can see that the Asym-Gentle AdaBoost was
more robust than Asym-Real AdaBoost, and the Asym-
Gentle AdaBoost-1 always achieved the best performance.

Fig. 1 Detection performances of single stage classifiers with
stump on the MIT+CMU database

Fig. 2 Detection performances of single stage classifiers with
3-split CART on the MIT+CMU database

While training the cascaded face detector which follows
the flowchart in [10] using Asym-Real and Asym Gentle Ad-
aBoost algorithms, 6 930 normalized frontal face samples
and 8 400 images containing no faces were collected from
various sources. Finally, the best detector we obtained was
trained by Asym-Gentle AdaBoost-1 with the CART of two
splits and the cost factor C2 = 0.25. It contains 18 layers
and total 1 876 features, and achieved a detection rate of
98.2% and false accept rate of 2.1×10−6 on the training set.
Its performance on MIT+CMU test set is listed in Table 3
compared with the results of other asymmetric algorithms.

To compare the performance of various algorithms on
pedestrian detection task, we evaluated all the algorithms
on the well organized INRIA database[25]. In this database,

pedestrians are mostly upright standing or walking with an
image size of 64 × 128. The training set consists of 1 208
pedestrian images (2 416 with their left-right reflections)
and 1 218 person-free images. Meanwhile, there are 288
images containing 563 pedestrians and 453 images without
pedestrians in the testing set.

The framework used in our asymmetric detectors is the
same as the one described in [7]. However, we further nor-
malized the output of the weighted Fischer linear discrim-
inant (WFLD) learner to make it suitable for constructing
the LUT type weak classifier. On the basis of the LUT type
weak learner, we could directly choose the best weak classi-
fier to minimize the upper bound of the training error. The
performances of Real AdaBoost, Gentle AdaBoost, and the
best asymmetric extension on the testing set are shown in
Fig. 3, where the best result was still obtained by Asym-
Genlte AdaBoost-1 with the cost factor C2 = 0.25.

Fig. 3 Detection performances on INRIA database

4 Conclusion

For object detection, the asymmetric costs for FP and
FN are required for higher performance. Recent asymmet-
ric extensions of AdaBoost were realized based on the dis-
crete AdaBoost to solve this problem. But most of them
relied on tricks or heuristic alterations of the AdaBoost al-
gorithm to obtain cost-sensitivity.

In this paper, we presented a detailed discussion about
the various discrete cost-sensitive extensions and their re-
lationship. Moreover, we pointed out that the asymmet-
ric extensions can be derived naturally by minimizing the
upper bound of the asymmetric training error in a step-
wise manner. These ideas were adopted during deriving
the real-valued asymmetric extensions of AdaBoost. Three
different asymmetric exponential loss functions which were
motivated as the upper bound of the asymmetric training
error have led to three kinds of cost-sensitive algorithms.

The comparative experiments have demonstrated that
the proposed real-valued extensions outperform the discrete
ones on classification performance and computation of pa-
rameters. Moreover, the Asym-Gentle AdaBoost methods
are more robust than Asym-Real AdaBoost and achieve
better performance than the previous symmetric and asym-
metric AdaBoost algorithms on both face detection and
pedestrian detection.

For future work, a notable task is to fix the cost fac-
tors through some more efficient methods like the adaptive
approach proposed by Hou[15], since both the current em-
pirical and searching methods are time-consuming.
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Table 3 Frontal face detection rates for various numbers of FP on the MIT+CMU test set

FP 10 21 31 49 50 65 78 97 110

Asym-Gentle-1 91.2% 92.4% - 93.7% - 95.2% - 96.4% -

Hou 90.5% - 91.9% - 93.1% 93.9% 94.1% - 94.7%

Ma-Ding 90.1% - 91.3% - 92.5% 93.1% 93.3% - -

Viola-Jones (Asym) - - 88.5% - 91.5% 91.9% 92.1% - 93.1%
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