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Multiple Model-based Adaptive

Reconfiguration Control for

Actuator Fault
GUO Yu-Ying1, 2 JIANG Bin1

Abstract In this paper, an active fault tolerant control strat-
egy is developed to compensate for the effect of actuator fault
in the presence of non-measurable rate on the actuator second-
order dynamics. The proposed control scheme is a combination
between multiple model and adaptive reconfiguration control.
By means of the designed method, the system output can track
that of the reference model asymptotically, and the simulation
results have illustrated the effectiveness of the proposed algo-
rithms.
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Flight control systems are generally subject to various
faults caused by actuators, sensors, and unexpected pa-
rameter changes in the system. A fault in a dynamical
system is a deviation of the system structure or the sys-
tem parameters from the nominal situation. Examples are
the freezing of an actuator, the loss of a sensor, or the
disconnection of a system component due to wear of dam-
ages. These faults may cause serious performance deteri-
oration and may lead to instability, possibly resulting in
catastrophic accidents[1−4].

Reconfiguration is likely to be a feature of future gener-
ations of flight control systems[5−8]. The main motivation
for reconfiguration is greater survivability. A large number
of techniques for reconfiguration have been proposed and
some of those have actually been flight tested. A common
feature of these schemes is that they were developed for lin-
earized models of aircraft dynamics and are well suited for
actuator faults which have moderate effect on the closed-
loop dynamics. A neural network-based adaptive control
approach was developed and evaluated on a simulation
of F/A-18 aircraft. However, neural networks require on-
line adjustment of a large number of parameters (weights),
which may require very complex tuning in different flight
regimes. In [9], interactive multiple model (IMM)-based
fault detection and diagnosis (FDD) approach was pro-
posed, and an intergrated FDD and reconfigurable control
was designed for discrete-time system. The method from
[10] is based on multiple model fault detection and identifi-
cation (FDI) and fast switching among multiple controllers
based on the on-line information obtained from the FDI
subsystem. However, because a finite number of models
were used and if none of the models coincided with the
actual damage, the resulting control system could only as-
sure that the output errors were bounded, but not that
they tended to zero asymptotically. It was also shown that
adaptive control using a single model may not be adequate
for achieving this task in the presence of critical actuator
faults[11]. This is due to the fact that in a particular flight
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regime, aircraft dynamics immediately after the fault may
be very far from its nominal (no-fault) dynamics. Hence,
single model-based adaptive controller may be too slow to
bring the closed-loop system close to the new operating
regime, which may result in unacceptably large transients.
Moreover, most of the available fault reconfiguration tech-
niques are not explicitly designed for the case of higher-
order actuator dynamics, and in many situations only the
output of the actuator is available for measurement, i.e.,
its rate is not measurable, which makes the related recon-
figuration problem highly challenging.

From these points of view, in this paper, a new adap-
tive reconfiguration algorithm is developed based on mul-
tiple models. Fault is parameterized by second-order ac-
tuator dynamics and estimated accurately. In a multiple
model scheme, a bank of parallel models (observers) are
constructed, each of which is based on a model that de-
scribes the system in the presence of a particular actuator
fault. The simulation results have proved that the proposed
adaptive reconfiguration algorithm guarantees the conver-
gence of the tracking error.

The rest of the paper is organized as follows. In Sec-
tion 1, the system under consideration is described and
some preliminary definitions are stated. Moreover, the
adaptive laws for unknown parameters are designed. In
Section 2, a multiple model-based adaptive reconfigurable
control algorithm is proposed and multiple model scheme
and switching mechanism are presented consecutively. Sec-
tion 3 provides simulation results showing the effectiveness
of the developed control scheme, and finally some conclu-
sions are drawn in Section 4.

1 Preliminaries and problem formulation
1.1 Problem statement

Consider the following linearized aircraft models:

ẋxx = Axxx + Buuu (1)

yyy = Cxxx (2)

u̇1i = u2i (3)

u̇2i = −λ1iu1i − λ2iu2i + λ1iuci (4)

i = 1, 2, · · · , m

where xxx ∈ Rn and yyy ∈ Rp denote the state vector and
output vector, respectively. uuu ∈ Rm is the input vector
whose components may fail during the system operation.
u1i is actuator position and u2i is actuator rate. λ1i À λ2i,
λ1i À 1, λ1i/λ2i ≥ 20, and the pair (A, B) is known and
controllable.

1.2 Actuator fault modeling

Many aircraft accidents were caused by operational
faults in the control surfaces, such as rudder and elevator.
Because actuators are the link between the control com-
mands issued by the controller and the physical actions
performed for the system, the probability of occurrence of
faults in actuators is higher and more severe compared with
other components. Typical actuator faults are classed into
two categories[5]: 1) total LOE: the case of total Loss-of-
effectiveness (LOE) includes Lock-in-place (LIP), float, and
Hard-over-fault (HOF); 2) partial LOE.

The case of LIP faults, the effector “freezes” at a certain
condition and does not respond to subsequent commands.
HOF is characterized by the effector moving to the upper
or lower position limit regardless of the command. The
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speed of response is limited by the effector rate limit. Float
fault occurs when the effector “floats” with zero moment
and does not contribute to the control authority. Loss of
effectiveness is characterized by lowering the effector gain
with respect to its nominal value.

The parameterization of different types of actuator faults
is

ui(t) =





uci(t), ki(t) = 1, ∀t > t0, No fault
ki(t)uc(t), 0 < ε ≤ ki(t) < 1, ∀t ≥ tfi, LOE
0, ki(t) = 0, ∀t ≥ tfi, Float
uci(tfi), ki(t) = 0, ∀t ≥ tfi, LIP
uim or uiM , ki(t) = 0, ∀t ≥ tfi, HOF

Using only two parameters, i.e., σi and ki, a second-order
actuator fault model which describes both partial and total
LOE is proposed in the form[12]:

u̇1i = σiu2i (5)

u̇2i = −[λ2i + (1− σi)βi]u2i + σiλ1i(kiuci − u1i) (6)

i = 1, 2, · · · , m

where tFi denotes the time instant of fault of the i-th
actuator, uuuc ∈ Rm is the output of the controller, and
ui = kiuci, uim, and uiM are the upper or lower position
limit. ki ∈ (ε, 1] denotes the actuator effectiveness coeffi-
cient and models partial LOE fault, and ε ¿ 1. σi is the
actuator mobility coefficient. If σi = 1, the actuator is op-
erational, while during float, LIP, and HOF, σi = 0, and
σi = ki = 1 for no fault cases.

Assumption 1. λ2i is sufficiently large to assure fast
convergence of uuu2 to zero in the case of fault, so that βi

in (6) can be set to zero.
Rewrite the actuator fault model as

u̇1i = u2i (7)

u̇2i = −λ2iu2i + σiλ1i(kiuci − u1i) (8)

where only u1i is measurable, i.e., u̇1i is not measurable.
Remark 1. In [12], the rate was measurable and adap-

tive control reconfiguration was relatively easy to imple-
ment, but when it was not measurable, the reconfiguration
problem became more challenging.

In order to arrive at stable adjustment laws for the es-
timates of σi and ki, the following filtered variables are
introduced:

uF
1i =

1

s + λFi
u1i

uF
2i =

1

s + λFi
u2i (9)

uF
ci =

1

s + λFi
uci

where λFi > 0 denotes time constants of the filters. Then,
by adding the term λFi to both sides of (8) and consider-
ing (9), we have

u2i = (λFi − λ2i)u
F
2i − σiλ1i(u

F
1i − uF

ci) (10)

with modulo exponentially decaying initial conditions. Fur-
ther,

uF
2i =

1

s + λFi
u2i =

1

s + λFi
su1i = u1i − λFiu

F
1i (11)

also with modulo exponentially decaying initial conditions.
Hence, u2i can be expressed in terms of measurable of ob-
tainable signals.

1.3 Estimating fault parameters

After the fault, the values σi and ki are all unknown,
a separate adaptive observer is run for each actuator, and
estimates of σi and ki are generated on-line. In order to es-
timate them, a series of adaptive observers are constructed
as

˙̂u1i = −τi(û1i − u1i) + (λFi − λ2i)u
F
2i +

λ1iσ̂i(k̂iu
F
ci − uF

1i) + λ1iξi (12)

where τi = λ1i/λ2i and signal ξi are to be designed to
assure the stability of the overall system. Then, we have
the following error dynamics:

˙̂eui = −τiêui+λ1iφσi(k̂iu
F
ci−uF

1i)+σiλ1iφkiu
F
ci+λ1iξi (13)

where êui = û1i − u1i denotes the actuator position error,

φσi = σ̂i−σi and φki = k̂i−ki are parameter errors. Using
the singular perturbation arguments, we have

êui
∼= λ1i(φσiθ

F
σi + σiφkiθ

F
ki + ξi) (14)

where θF
σi = k̂iu

F
ci − uF

1i and θF
ki = uF

ci.
Theorem 1. The following adaptive laws assure that

êui ∈ L∞ ∩ L2:

˙̂σi = Proj[0,1]{−γσiλ2iêui(k̂iuci − u1i)}, σ̂i(0) = 1 (15)

˙̂
ki = Proj[ε,1]{−γkiλ2iêuiuci}, k̂i(0) = 1 (16)

ξ̇i = −λ2iξi − θF
σi

˙̂σi − θF
ki

˙̂
ki, ξi(0) = 0 (17)

where θσi = k̂iuci − u1i and θki = uci. The projection
operator is used to keep the parameter estimates within
the parameter bounds.

Proof. Consider the following tentative Lyapunov func-
tion:

V (êui, φσi, φki) =
1

2
[ê2

ui +
φ2

σi

γσi
+ σi

φ2
ki

γki
]

From the property of the adaptive algorithms that ς̇ =
Proj[−ς̄,ς̄]{−eω}, then ςς̇ ≤ −eςω, and σi and ki are con-

stant for t ≥ tFi, so we have that φ̇σi = ˙̂σi and φ̇ki =
˙̂
ki,

which implies that φαiφ̇αi ≤ −êuiφαiωαi. Considering
these facts, we can obtain the first derivative of V along
the trajectory of the system as

V̇ = −τiê
2
i + λ1i(φσiωσi + σiφkiωki)+

φσiφ̇σi

γσi
+ σi

φkiφ̇ki

γki
≤ −τiê

2
ui ≤ 0

So each êui is bounded, φσi and φki are bounded due to the
use of the projection algorithm. Upon integrating V̇ from
0 to ∞, we obtain

V (0)− V (∞) ≥ τi

∫ ∞

0

ê2
ui(τ)dτ

Since the term on the left-hand side is bounded, it follows
that êui ∈ L∞ ∩ L2. ¤

2 Adaptive control reconfiguration
In this section, a reconfigurable controller will be de-

signed to compensate for the effect of both total and partial
LOE effectively. First, we rewrite (7) and (8) as

ü1i = u̇2i = −λ2iu2i + σiλ1i(kiuci − u1i) (18)
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then add the term λ1iu1i to both sides of (18) and have

ü1i + λ2iu̇1i + λ1iu1i = λ1i(σikiuci + (1− σi)u1i) (19)

Equation (19) is divided by λ1i to obtain

1

λ1i
ü1i +

λ2i

λ1i
u̇1i + u1i = σikiuci + (1− σi)u1i (20)

From the fact that λ1i À λ2i, λ1i À 1, and using the
singular perturbation arguments, we have the approximate
lower order actuator fault model of the form:

u1i
∼= σikiuci + (1− σi)ū1i (21)

Then, we rewrite system (1) as

ẋxx = Axxx + BKσuuuc + B(I − σ)ūuu (22)

where
K = diag{k1 k2 · · · km}
σ = diag{σ1 σ2 · · · σm}

ū = [ū1 ū2 · · · ūm]T

i = 1, 2, · · · , m

and ūi denotes the current position of any failed actuator.
Remark 2. With each of the actuator model, there are

the following uncertainties: 1) unknown time of fault tFi;
2) unknown LOE coefficient ki; 3) unknown value at which
the actuator freezes.

Assumption 2. As in [2], we assume that system (1) is
constructed such that for any up to m− 1 actuator faults,
the remaining actuators can still achieve a desired con-
trol objective, when implemented with known parameters,
which is the standard assumption for reconfiguration con-
trol.

2.1 Control objective

The transfer function of plant (1) with actuator fault is

yyy(t) = Wp(s)uuu∗cad(t) + ȳyy(t) (23)

where Wp(s) is a p× p transfer matrix associated with the
normal actuators, uuu∗cad(t) is the nominal control vector, and
ȳyy(t) is the output with failed actuator.

The reference model to be track is of the form:

yyym(t) = Wm(s)rrr (24)

where Wm(s) = kmZm(s)/Rm(s), km ∈ R is nonzero, and
Rm(s) and Zm(s) are monic coprime polynomials of relative
degree n∗, rrr ∈ Rm is a bounded external reference input
signal vector, and all closed-loop systems are bounded.

The control objectives are to design a adaptive con-
trol controller uuucad(t) for (23) such that the output er-
ror asymptotically converges to zero, i.e., limt→∞ eeey(t) =
limt→∞(yyy(t) − yyym(t)) = 0, and all closed-loop signals are
bounded.

For the synthesis of the controller, we consider the fol-
lowing input and output filters[11]:

ẇww1 = Fwww1 + Luuucad (25)

ẇww2 = Fwww2 + Lyyy (26)

where www1 = Λ(s)[uuu0](t), www2 = Λ(s)[yyy](t), Λ(s) =
A0(s)/n(s), A0(s) = [I, sI, · · · , sl−2]T, n(s) is a monic sta-
ble polynomial of degrees l−1, the pair (F, L) is an asymp-
totically stable and controllable. l denotes a known upper
bound on the observability indices of Wp(s).

Define www(t) = [wwwT
1 (t), wwwT

2 (t), yyyT(t), rrrT(t), 1]T, ϑ(t)=
[ϑT

1 (t), ϑT
2 (t), ϑ20(t), ϑ3(t), ϑϑϑ4(t)]

T, ϑ1=[ϑ11, · · · , ϑ1(l−1)]
T,

ϑ2 = [ϑ21, · · · , ϑ2(l−1)]
T, ϑ3, ϑij ∈ Rp×p, i = 1, 2, j =

1, 2, · · · , l − 1, ϑϑϑ4 ∈ Rp is used to cancel the effect of the
failed actuators and ϑϑϑ4 = 0 when there is no actuator
fault. Then, we can obtain the following controller form:

uuu∗cad(t) = ϑT(t)www(t) (27)

Remark 3. When the actuator fault pattern changes,
to follow the plant output, the parameters of ϑ are also
changed and unknown, hence, (27) becomes

uuucad(t) = ϑ̂T(t)www(t) (28)

where ϑ̂(t) = [ϑ̂T
1 (t), ϑ̂T

2 (t), ϑ̂20(t), ϑ̂3(t), ϑ̂ϑϑ4(t)]
T is the esti-

mate of ϑ(t).

2.2 Residual generation

The residuals play a vital role in fault detection in en-
suring the safety of a flight control system. They represent
the difference between the measurements and their normal-
model values and can be used as signatures for detecting
and isolating various faults.

Substituting (23) into (27), we have

uuu∗cad = ϑT
1 www1 + ϑT

2 www2 + ϑ20[Wp(s)uuu0 + ȳyy(t)] +

ϑ3rrr + ϑϑϑ4 =

ϑT
1 Λ(s)uuu∗cad(t) + ϑT

2 Λ(s)Wp(s)uuu∗cad(t) +

ϑT
2 Λ(s)ȳyy(t) + ϑ20Wp(s)uuu∗cad(t) +

ϑ20ȳyy(t) + ϑ3rrr(t) + ϑϑϑ4 =

(I − ϑT
1 Λ(s)− ϑT

2 Λ(s)Wp(s)− ϑ20Wp(s))−1 ×
(ϑT

2 Λ(s)ȳyy(t) + ϑ20ȳyy(t) + ϑ3rrr(t) + ϑϑϑ4) (29)

There exist ϑ1, ϑ2, ϑ20, and ϑ3 such that

ϑ3W
−1
m (s)Wp(s) =

I − ϑT
1 Λ(s)− ϑT

2 Λ(s)Wp(s)− ϑ20Wp(s) (30)

Substituting (29) and (30) into (23), we have

yyy(t) = Wp(s)(ϑ3W
−1
m (s)Wp(s))−1 ×

(ϑT
2 Λ(s)ȳyy(t) + ϑ20ȳyy(t) + ϑ3rrr(t) + ϑϑϑ4) + ȳyy(t) =

Wm(s)rrr(t) + Wm(s)Ka ×
(ϑT

2 Λ(s)ȳyy(t) + ϑ20ȳyy(t) + ϑ3%(s)ȳyy(t) + ϑϑϑ4) =

Wm(s)rrr(t) + fffa(t) (31)

where %(s) is a known modified left interactor matrix and
for all fault patterns lims→∞%(s)Wp(s) = Ka, ϑ−1

3 = Ka,
and Wm(s) = %−1(s). Defining fffa(t) as the exponentially
decaying term, we have

fffa(t) , Wm(s)(KaϑT
2 Λ(s)ȳyy(t) + ϑ20ȳyy(t)+

ϑ3%(s)ȳyy(t) + ϑϑϑ4(t)) (32)

which satisfies limt→∞fffa(t) = 0. So, ignoring fffa(t) in
(31), we have

yyy(t) = Wm(s)rrr(t) (33)

Operating both sides of (30) on uuucad and considering (23),
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we have

uuucad = ϑ3W
−1
m (s)[yyy − ȳyy](t) +

ϑT
1 Λ(s)uuucad + (ϑT

2 Λ(s)− ϑ20)[yyy − ȳyy](t) =

ϑT
1 www1(t) + ϑT

2 www2(t) + ϑ20yyy(t)− ϑT
2 Λ(s)ȳyy(t) +

ϑ20ȳyy(t) + ϑ3W
−1
m (s)yyy(t)− ϑ3W

−1
m (s)ȳyy(t)

(34)

Substituting (28) into (34), we have

ϑ̃www(t) = −ϑ3rrr(t)− ϑϑϑ4 − ϑT
2 Λ(s)ȳyy(t)− ϑ20ȳyy(t) +

ϑ3W
−1
m yyy(t)− ϑ3W

−1
m ȳyy(t) (35)

From (35), we can obtain

%(s)[yyy − yyym](t) = ϑ−1
3 ϑ̃Twww(t) + ϑ−1

3 (ϑT
2 Λ(s)ȳyy(t) +

ϑ20ȳyy(t) + ϑ3W
−1
m (s)ȳyy(t) + ϑϑϑ4) =

ϑ−1
3 ϑ̃Twww(t) + %(s)fffa(t) (36)

where eeey(t) = yyy(t)− yyym(t) and ϑ̃ = ϑ̂− ϑ. Let Θ = ϑ−1
3 =

Ka, and f(s) be a stable polynomial with appropriate de-
grees. Then,

%(s)(
1

f(s)
)[yyy − yyym](t) =

Θ(
1

f(s)
)uuucad − ϑT(

1

f(s)
)www(t) (37)

Define the normalized estimation error as

εεε(t) =

%(s)(
1

f(s)
)[yyy − yyym](t) + Θ̂ξξξ(t)

Ξ2(t)
(38)

where Θ̂ is the estimate of Θ, and

ξξξ = ϑT(t)(
1

f(s)
)www(t)− (

1

f(s)
)uuu∗cad (39)

Ξ2(t) = 1 + ξξξT(t)ξξξ(t) +

((
1

f(s)
)www(t))T((

1

f(s)
)www(t)) (40)

Ignoring some exponentially decaying terms, with Θ̃ =

Θ̂−Θ = ϑ̂−1
3 − ϑ−1

3 , we can obtain

εεε(t) =

Θϑ̃T(t)(
1

f(s)
)www(t) + Θ̃(t)ξξξ(t)

Ξ2(t)
(41)

Then, the adaptive laws are constructed as

ϑ̇T(t) = −Saεεε(t)[(
1

f(s)
)www(t)]T (42)

Θ̇(t) = −Γεεε(t)ξξξT(t) (43)

where Γ = ΓT > 0 and Γa = ϑ−1
3 S−1

a = ΓT
a > 0.

Theorem 2. For plant (23), under the control laws
(42) and (43), all closed-loop system signals are bounded.
Moreover, for any bounded initial conditions and bounded
reference input rrr, eeey tends to zero within a finite time T >
t0.

Proof. Define the following Lyapunov function:

V =
1

2
tr[ϑ̃Γaϑ̃T] +

1

2
tr[Θ̃TΓ−1Θ̃]

Taking the derivative of V and considering (41) ∼ (43),
we can obtain

V̇ = tr[ϑ̃Γa
˙̃
ϑT] +

1

2
tr[ϑ̃

dΓa

dt
ϑ̃T] + tr[ΘTΓ−1Θ̇] =

tr[ϑ̃Γa
˙̃
ϑT] + tr[ΘTΓ−1Θ̇] =

− tr[ϑ̃ΓaSaεεε(t)[(
1

f(s)
)www(t)]T]− tr[ΘTΓ−1Γεεε(t)ξξξ(t)T] =

− (ϑ̃Kaεεε(t))
T(

1

f(s)
)www(t)− (Θ̃Tεεε(t))Tξξξ(t) =

− εεε(t)T(Θϑ̃(t)T(
1

f(s)
)www(t) + Θ̃ξξξ(t)) =

− εεε(t)Tεεε(t)Ξ2(t) ≤ 0

Hence, V ∈ L∞, which implies that ε(t)Ξ(t) ∈ L2 ∩ L∞,

and thus ϑ̇, Θ̇ ∈ L2 ∩ L∞. ¤
2.3 Multiple model switching

As shown in Fig. 1, faults may cause the plant dynam-
ics to switch abruptly from some nominal point P0 in the
parametric space to the point Pfault corresponding to the
failed plant[13]. It was shown that adaptive control using a
single model may not be adequate for achieving this task
in the presence of faults of critical control effectors. This is
due to the fact that in a particular flight regime, the fault
can be such that the corresponding parameter jumps are
large, and the time interval needed for a single adaptive
controller to adapt to the new operating regime may be
large. Over this interval, the performance can deteriorate
substantially and may be unacceptable in practice. Hence,
single model-based adaptive controller may be too slow to
bring the closed-loop system close to the new operating
regime, which may result in unacceptably large transients.
On the other hand, a well-known problem in adaptive con-
trol is the poor transient response which is observed when
adaptation is initiated. In such a case, placing several mod-
els in the parametric set, switching to the model close to
the dynamics of the failed plant, and adapting from there
can result in fast and accurate control reconfiguration.

Fig. 1 Concept of multiple model adaptive control

The proposed scheme (see Fig. 2) consists of N identifi-
cation models (observers) Mj (j = 1, 2, · · · , N), with iden-
tical structures, but different initial estimates of the plant
parameters are used in the parameter space to describe the
different fault scenarios. Corresponding to each Mj is a
controller Cj and all the identification models operate in
parallel. Only one of the controllers, which is determined
by the switching index, is connected to the plant at every
instant[14−15]. The idea behind the above scheme is, based
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on a switching index, to find a controller such that the
output error eeey(t) converges to zero asymptotically for an
arbitrary initial condition and a bounded reference control
input.

Fig. 2 Multiple model scheme

A bank of identification models (observers) are chosen as
the following form:

˙̂xxxj = Ax̂xxj +

m∑
i=1

bji[σ̂jik̂jiucji + (1− σ̂ji)ûji] + L(yyy − ŷyyj)

(44)
ŷyyj = Cx̂xxj , i = 1, 2, · · · , m, j = 1, 2, · · · , N (45)

Define the state error as êeexj = x̂xxj − xxx. Then,

˙̂eeexj = (A− LC)êeexj +

m∑
i=1

bji[φσjiφkjiucji + (1− σ̂ji)φuji]

(46)
where the definition of φσji is as same as that defined in
Subsection 1.3, and φuji = ûji − ūji, ûji is estimate of ūji,
and

˙̂uji = Proj[uim,uiM ]{−γujieee
T
xjPbji} (47)

where γuji > 0 is the weighting coefficient. P is a
symmetric positive solution of Lyapunov matrix equation
(A− LC)TP + P (A− LC) = −Q, Q > 0, and PB = C.

Switching among the controllers is based on the following
performance indices:

Jj(t) = c1‖rrrj‖2 + c2

∫ t

t0

exp(−λJ(τ − t0))‖rrrj‖2dτ (48)

where rrrj = ŷyyj − yyy, c1, c2 > 0 can be chosen to yield a
desired combination of instantaneous and long-term accu-
racy measures. The forgetting factor λJ > 0 determines
the memory of the index in rapidly switching environments
and ensures boundedness of Jj(t) for bounded êeexj . The
scheme is implemented by calculating and comparing the
above indices every ts instant to find their minimum. Once
the minimum is found, the scheme switches to (or stays at)
the corresponding controller.

In residual vectors, some are more sensitive in model
matching than others, they should be given a larger
weighted coefficient to enhance sensitivity, i.e.,

rrr∗j (t) = Wjrrrj(t) (49)

where Wj is a diagonal weighting matrix. Then, (44) be-
comes

Jj(t) = c1‖rrr∗j‖2 + c2

∫ t

t0

exp(−λJ(τ − t0))‖rrr∗j‖2dτ (50)

when the “best” model is found, limt→∞ rrrj(t) = 0, then
limt→∞ Jj(t) = 0.

Remark 4. The switching mechanism′s unique feature,
sharply distinguishing it from other logics which might be
used for the same purpose, is that: 1) The controller se-
lection is made by continuously comparing in real-time
suitably defined norm-squared output estimations errors or
“performance signals” Jj ; 2) When placing a candidate con-
troller in the feedback-loop, its corresponding performance
signal is the smallest.

Theorem 3. The above switching scheme assures the
stability of system (40) and (41), and guarantees that
limt→∞ Jj(t) = 0 and in the case of j-th fault of actua-
tor, limt→∞[ûuuj − ūuuj ] = 0.

Proof. Consider a tentative Lyapunov function of the
form:

Vj(êeexj , φuj) = −1

2
[êeeT

xjPêeexj +
φ2

uj

γj
]

The derivative of Vj(êeexj , φuj) along the trajectories of
the j-th model is

V̇j(êeexj , φuj) ≤ −1

2
λm‖ êeexj ‖2≤ 0

where the properties of adaptive algorithm with projections
were used, i.e., φuj φ̇uj ≤ −γjφuj(êeexjPbj + u̇j). The above

results imply that êeexj ∈ L∞∩L2, ˙̂eeexj ∈ L∞, limt→∞ Jj(t) =
0. Since all other observer will have forcing terms, the
scheme will switch to the j-th observer. In such a case,
êeexj will be bounded (φuj is bounded due to the use of the
projection algorithm), which implies the boundedness of x̂xxj

and, consequently, of xxx(t). The latter implies that ucj is
bounded, which in turn implies that all signals are bounded,
and that limt→∞ êeexj(t) = 0 , hence, limt→∞ êeex(t) = 0. ¤

3 Numerical simulations
As an application, the lateral dynamic model of a Boe-

ing 747 airplane[2] is used to illustrate the effectiveness of
the developed algorithm. In horizontal flight at 40 000 ft
and nominal forward speed 774 ft/s the linearized model
of the lateral dynamics of Boeing 747 with two augmented
actuation vectors can be described as

ẋxx(t) = Axxx(t) + Buuu(t)

y(t) = CCCxxx(t)

A=




−0.0558 −0.9968 0.0802 0.0415
0.598 −0.115 −0.0318 0
−3.05 0.388 −0.465 0

0 0.0805 1 0




B =




0.00729 0.01 0.005
−0.475 −0.5 −0.3
0.153 0.2 0.1

0 0 0




CCC =
[

0 1 0 0
]

where xxx(t) = [β, r, p, φ]T is the state vector with the sideslip
angle β, the yaw rate r, the roll rate p, and the roll angle
φ. y is the system output which is the yaw rate and uuu =
[δr1, δr2, δr3]

T is the control input vector with three signals
to represent three rudder servos.

The reference model is constructed as

ẋxxm(t) = Amxxxm(t) + Bmuuu(t)



No. 11 GUO Yu-Ying and JIANG Bin: Multiple Model-based Adaptive Reconfiguration Control · · · 1457

ym(t) = CCCmxxxm(t)

Am =




−0.003 0.039 0 −0.322
−0.065 −0.319 7.74 0
0.02 −0.101 −0.429 0
0 0 1 0




Bm =




0.01 1 1
−0.18 −0.04 −0.04
−1.16 0.598 0.598

0 0 0




and CCCm = CCC.
In simulation, we consider the actuator fault pattern as
LIP fault:

u2(t) = δr2 = 0.05, t ∈ [5, 10]

and the parameter is Γ = I, the reference input is r(t) =
sin(0.1t). The fault and its estimation and the tracking
error are shown in Figs. 3 and 4, respectively.

Fig. 3 Fault (solid) and its estimation (dotted)

Fig. 4 The tracking error ey(t)

LOE fault:

K = 0.8 for t = [0, 2]

r = 4sin(3t)

The simulation results are shown in Figs. 5 ∼ 8.

Fig. 5 The outputs y(t) (solid) and ym(t) (dashed) (with fault
accommodation)

Fig. 6 The tracking error ey(t) (with fault accommodation)

Fig. 7 The outputs y(t) (solid) and ym(t) (dashed) (without
fault accommodation)

Fig. 8 The tracking error ey(t) (without fault accommodation)
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From these figures, we can see that the fault can be esti-
mated accurately and when one of the actuators fails, there
is a transient response in the tracking error, which tends
to zero rapidly. All signals in the reconfiguration control
system are bounded, and the stability and convergence are
ensured.

4 Conclusion
In this paper, we considered an reconfigurable control for

linear time-invariant plants with unknown actuator fault.
The actuator model is described by second-order dynam-
ics which is in the presence of non-measurable rate. The
design is based on a multiple model adaptive control ap-
proach with appropriate switching logic. The combined
design achieves the control objective of asymptotic output
tracking while ensuring closed-loop stability. This provides
an improvement to the existing results in the fault tolerant
control literature.
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