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Non-synchronized

Observer-based Control of

Discrete-time Piecewise Affine

Systems: an LMI Approach

GAO Ya-Hui1 LIU Zhi-Yuan1 CHEN Hong2

Abstract This paper presents a novel observer-based con-
trol scheme for discrete-time piecewise affine systems based on a
piecewise-quadratic Lyapunov function. The key issue addressed
in this paper is that the currently active region of the system is
unknown, and can not be inferred from the measured outputs.
By approximating polytopic operating regions by ellipsoids and
using the singular value decomposition technique to treat the
constraint of matrix equality, the suggested control method can
be formulated as linear matrix inequalities (LMIs), and solved
much more efficiently than existing methods which could be only
cast as bilinear matrix inequalities. A numerical example is also
given to verify the proposed approach.

Key words Piecewise affine system, piecewise Lyapunov func-
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Piecewise affine (PWA) systems have been receiving in-
creasing attention by the control community in recent years
because of their wide scopes of applications. In fact, several
types of nonlinearities, such as relays, saturation, and dead
zone, are naturally written as PWA systems. In addition,
many other classes of nonlinear systems can also be approx-
imated by the PWA systems[1−2]. Furthermore, some hy-
brid systems, such as mixed logical dynamical (MLD) sys-
tems, linear hybrid automata, etc., are equivalent to PWA
systems[3−4].

One of the most important open questions in control the-
ory and applications is the output feedback stabilization
problem. During the last decade, several output feedback
controller design methods have been developed for PWA
systems based on piecewise-quadratic Lyapunov function
(PWQLF). In the continuous-time case, Rodrigues[5] dis-
cussed dynamic output feedback controller design for the
systems which may involve multiple equilibria. In [6], a
static output feedback (SOF) control law was suggested for
a special class of PWA systems, and the results were ap-
plied to the chaos stabilization. A robust dynamic output
feedback controller was designed for the systems with norm-
bounded uncertainties and external disturbance in [7]. In
the discrete-time case, an observer-based controller was de-
signed for piecewise linear (PWL) (without affine terms)
systems in [8], and the controller and observer gains can
be obtained according to the so-called weaker separation
principle. Then, the results are extended to the output
regulation problem of PWA systems in [9]. The problem
of SOF control for PWL systems is investigated in [10],
and the extension of the method is also given in order to
incorporate H∞ performance.

There is a common restriction in aforementioned pa-
pers, i.e. both the plant and the controller should always
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switch to the same region at the same time. However,
there is no guarantee for this restriction in practice, be-
cause PWA systems are mostly partitioned based on state
space and the currently active region can not be inferred
from the measured outputs[11]. In [12], Rodrigues made
a pioneering contribution to the non-synchronized output
feedback controller synthesis for continuous-time PWA sys-
tems. The issue that the plant and the controller may
stay in different regions from time to time was explicitly
considered. Recently, a non-synchronized dynamic output
feedback controller was designed for the discrete-time PWA
systems in [13]. Unfortunately, all the results in [12−13]
can only be cast as bilinear matrix inequalities (BMIs),
which are non-convex, NP-hard, and very expensive to
solve globally[14]. Motivated by this situation, this pa-
per presents a novel non-synchronized observer-based con-
trol scheme for discrete-time PWA systems whose regions
can be approximated by ellipsoids. During the synthesis
procedure, the PWQLF technique is used and the region
information is taken into account. It will be shown that
the resulting closed-loop system is piecewise-quadratically
(PWQ) stable, and the controller gains can be obtained by

solving a set of linear matrix inequalities (LMIs)[15], which
are numerically feasible with commercially available soft-
ware.

The paper is organized as follows. Section 1 provides
the problem statement. Main results are presented in
Section 2. Then, simulation results are shown in Section 3.
Finally, Section 4 concludes the paper.

Notations. Rn denotes the n dimensional Euclidean
space, Rm×n denotes the set of all m × n real matrices, a
real symmetric matrix P > 0 denotes P being a positive
definite matrix, the superscript “T” represents the trans-
pose, “∗” is used as an ellipsis for terms that are induced
by symmetry, I means an identity matrix of appropriate
dimension, ||xxx|| represents Euclidean norm of vector xxx, and
diag{·} stands for a block-diagonal matrix.

1 Problem statement
Consider the discrete-time PWA system of the form

xxx(t + 1) = Aixxx(t) + Biuuu(t) + bbbi

yyy(t) = Cxxx(t)
for xxx(t) ∈ Si, i ∈ ℘

(1)

where {Si}i∈℘ ⊆ Rn denotes a partition of the state space
into a number of closed polyhedral regions, ℘ is the index
set of these regions, xxx(t) ∈ Rn is the state, uuu(t) ∈ Rm is
the input, yyy(t) ∈ Rp is the measured output, bbbi is the affine
term, and (Ai, Bi, bbbi, Ci) is the i-th local model.

℘ is partitioned as ℘ = ℘0∪℘1, where ℘0 is the index set
of the regions that contain the origin, i.e. bbbi = 0 for i ∈ ℘0,
and ℘1 is the index set of the regions otherwise. For future
use, define a set Ω that represents all possible transitions
from one region to itself or another region, that is

Ω = {(i, j) | xxx(t) ∈ Si, xxx(t + 1) ∈ Sj}
Remark 1. The set Ω can be determined by the reach-

ability analysis for MLD systems[16−17]. If it is possible for
the transitions happen between all regions, then Ω can be
defined as Ω = {(i, j) | i, j ∈ ℘}.

There are three basic assumptions in this paper.
Assumption 1. When the system transits from the

region Si to Sj at the time t, the dynamics of the system is
governed by the dynamics of the local model of Si at that
time.
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Assumption 2. Matrix C is full row rank, i.e. rank(C)
= p. For convenience, the singular value decomposition of
C is presented as

C = U
[

S 0
]
V T

where U ∈ Rp×p and V ∈ Rn×n are unitary matrices,
and S ∈ Rp×p is a diagonal matrix with positive diagonal
elements in decreasing order.

Assumption 3. Matrix Ei and scalar fi exist such that

Si ⊆ εi where εi = {xxx(t) | ||EEEixxx(t) + fi|| ≤ 1}
There are many methods[15, 18] to compute this ellipsoidal
outer approximation. The approximation is especially use-
ful when Si is a slab, because in this case an ellipsoid can
be found to cover Si exactly. In other words, if Si =
{xxx(t) | d1

i ≤ ηηηixxx(t) ≤ d2
i }, one can take EEEi = 2ηηηi/(d2

i − d1
i )

and fi = −(d2
i + d1

i )/(d2
i − d1

i ) with the result that Si ⊆ εi

and εi ⊆ Si
[19−20]. The ellipsoid εi can also be described

in the form of
[

xxx(t)
1

]T [
EEET

i EEEi ∗
fT

i EEEi fT
i fi − 1

] [
xxx(t)
1

]
≤ 0 (2)

The following observer-based control law is proposed to
stabilize the system (1):

x̂xx(t + 1) = Akx̂xx(t) + Bkuuu(t) + bbbk + Lk (ŷyy(t)− yyy(t))
ŷyy(t) = Cx̂xx(t)
uuu(t) = Kkx̂xx(t)
for x̂xx(t) ∈ Sk, k ∈ ℘

(3)

where x̂xx(t) ∈ Rn is the estimation of xxx(t) and ŷyy(t) ∈ Rp is
the observer output. The control gain Kk and the observer
gain Lk will be determined in the framework of LMI theory.
For x̂xx(t) ∈ Sk, we have

[
x̂xx(t)
1

]T [
EEET

k EEEk ∗
fT

k EEEk fT
k fk − 1

] [
x̂xx(t)
1

]
≤ 0 (4)

We also define a set
_

Ω that represents all possible tran-
sitions of the estimated state from one region to itself or
another region, that is

_

Ω = {(k, l) | x̂xx(t) ∈ Sk, x̂xx(t + 1) ∈ Sl}
It should be noted that since the estimated state can

not be computed a priori, the set
_

Ω should be defined by
the set of all possible transitions between regions, that is
_

Ω = {(k, l) | k, l ∈ ℘}[11].
2 Main results

We consider the general case xxx(t) ∈ Si and x̂xx(t) ∈ Sk in
this section. Defining eee(t) = x̂xx(t) − xxx(t), the closed-loop
system admits the realization

ξξξ(t + 1) = Ãikξξξ(t) + b̃bbik

for xxx(t) ∈ Si, x̂xx(t) ∈ Sk
(5)

where

Ãik =

[
Ai + BiKk BiKk

∆1ik Ak + LkC + ∆2ik

]

b̃bbik =

[
bbbi

bbbk − bbbi

]
, ξξξ(t) =

[
xxx(t)

eee(t)

]

∆1ik = Ak −Ai + (Bk −Bi) Kk

∆2ik = (Bk −Bi) Kk

Consider a PWQLF V (t) = ξξξT(t)P̃ikξξξ(t) with P̃ik =

P̃T
ik > 0. Its difference along the solution of (5) is nega-

tive if

∆V (t + 1) = ξξξT(t + 1)P̃jlξξξ(t + 1)− ξξξT(t)P̃ikξξξ(t) < 0 (6)

Definition 1. The closed-loop system (5) is said to be
PWQ stable if the condition (6) is satisfied for all (i, j) ∈ Ω

and (k, l) ∈ _

Ω.
In the following, our interest is to seek conditions in the

form of LMIs for guaranteeing (6). Substituting the state
space (5) in (6) leads to

Θikjl =[
ξξξ(t)
1

]T
[

ÃT
ikP̃jlÃik − P̃ik ∗

b̃bb
T

ikP̃jlÃik b̃bb
T

ikP̃jlb̃bbik

] [
ξξξ(t)
1

]
< 0

(7)

To treat the affine term b̃bbik, the region information (4) of

the controller is taken into account. By the S-procedure[15],
(7) is satisfied if there exists λik > 0 such that

Θikjl − λik

[
x̂xx(t)
1

]T [
EEET

k EEEk ∗
fT

k EEEk fT
k fk − 1

] [
x̂xx(t)
1

]
< 0

(8)
which is equivalent to

Θikjl − λik

[
xxx(t) + eee(t)

1

]T

×
[

EEET
k EEEk ∗

fT
k EEEk fT

k fk − 1

] [
xxx(t) + eee(t)

1

]
< 0 (9)

Notice that (9) can be further written as

Θikjl − λik

[
ξξξ(t)
1

]T
[

ẼEE
T

k ẼEEk ∗
fT

k ẼEEk fT
k fk − 1

] [
ξξξ(t)
1

]
< 0

(10)

where ẼEEk =
[

EEEk EEEk

]
.

The sufficient condition of (10) is that

[
ÃT

ikP̃jlÃik − P̃ik ∗
b̃bb
T

ikP̃jlÃik b̃bb
T

ikP̃jlb̃bbik

]
−

[
λikẼEE

T

k ẼEEk ∗
λikfT

k ẼEEk λik

(
fT

k fk − 1
)

]
< 0 (11)

By substituting Q̃ik = P̃−1
ik and Q̃jl = P̃−1

jl , (11) can be
rearranged as

[
Q̃−1

ik + λikẼEE
T

k ẼEEk ∗
λikfT

k ẼEEk λik

(
fT

k fk − 1
)

]
−

[
ÃT

ik

b̃bb
T

ik

]
Q̃−1

jl

[
Ãik b̃bbik

]
> 0 (12)

Applying the Schur complement[15] to (12) results in




Q̃−1
ik + λikẼEE

T

k ẼEEk ∗ ∗
λikfT

k ẼEEk λik

(
fT

k fk − 1
) ∗

Ãik b̃bbik Q̃jl


 > 0 (13)
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By pre- and post-multiplying (13) via diag

{
I,

[
0 ∗
I 0

]}
,

we get



Q̃−1
ik + λikẼEE

T

k ẼEEk ∗ ∗
Ãik Q̃jl ∗

λikfT
k ẼEEk b̃bb

T

ik λik

(
fT

k fk − 1
)


 > 0 (14)

which is equivalent, by the Schur complement, to
[

Q̃−1
ik + λikẼEE

T

k ẼEEk ∗
Ãik Q̃jl

]
−

[
λikẼEE

T

k fk

b̃bbik

]
λ−1

ik

(
fT

k fk − 1
)−1 [

λikfT
k ẼEEk b̃bb

T

ik

]
> 0

(15)

The second term in (15) can be written as
[

λikẼEE
T

k fk

(
fT

k fk − 1
)−1

fT
k ẼEEk ∗

b̃bbik

(
fT

k fk − 1
)−1

fT
k ẼEEk λ−1

ik b̃bbik

(
fT

k fk − 1
)−1

b̃bb
T

ik

]

(16)

The matrix inversion lemma (A + BCD)−1 = A−1 −
A−1B

(
C−1 + DA−1B

)−1
DA−1[21] states that

(
I − fT

k fk

)−1
fT

k = fT
k

(
I − fkfT

k

)−1

(
I − fT

k fk

)−1
= I + fT

k

(
I − fkfT

k

)−1
fk

(17)

According to (17), (16) can be transformed into
[

λikẼEE
T

k ẼEEk ∗
0 −λ−1

ik b̃bbikb̃bb
T

ik

]
+

[
ẼEE

T

k

λ−1
ik b̃bbikfT

k

]
λik

(
fkfT

k − I
)−1 [

ẼEEk λ−1
ik fkb̃bb

T

ik

]

(18)

By replacing the second term of (15) by (18), (15) be-
comes

[
Q̃−1

ik ∗
Ãik Q̃jl + αikb̃bbikb̃bb

T

ik

]
−

[
ẼEE

T

k

αikb̃bbikfT
k

]
α−1

ik

(
fkfT

k − I
)−1 [

ẼEEk αikfkb̃bb
T

ik

]
> 0

(19)

where αik = λ−1
ik .

Applying the Schur complement to (19) leads to




Q̃−1
ik ∗ ∗

Ãik Q̃jl + αikb̃bbikb̃bb
T

ik ∗
ẼEEk αikfkb̃bb

T

ik αik

(
fkfT

k − I
)


 > 0 (20)

Suppose that R̃k = R̃T
k > 0. By pre- and post-

multiplying (20) via diag
{

R̃k I I
}
, we get




R̃kQ̃−1
ik R̃k ∗ ∗

ÃikR̃k Q̃jl + αikb̃bbikb̃bb
T

ik ∗
ẼEEkR̃k αikfkb̃bb

T

ik αik

(
fkfT

k − I
)


 > 0

(21)

Due to Q̃ik > 0, we have
(
R̃k − Q̃ik

)T

Q̃−1
ik

(
R̃k − Q̃ik

)
≥

0, which is equivalent to R̃kQ̃−1
ik R̃k ≥ 2R̃k − Q̃ik. Thus,

(21) can be guaranteed by




2R̃k − Q̃ik ∗ ∗
ÃikR̃k Q̃jl + αikb̃bbikb̃bb

T

ik ∗
ẼEEkR̃k αikfkb̃bb

T

ik αik

(
fkfT

k − I
)


 > 0

(22)

Let Q̃ik =

[
Q1ik ∗
Gik Q2ik

]
and R̃k =

[
Rk ∗
0 Rk

]
.

Then, with the substitution of W1k = KkRk, JkC = CRk,
and W2k = LkJk, the LMI (23) can be achieved from (22).

In (23), ∆̃1ik = (Ak −Ai) Rk + (Bk −Bi) W1k and

∆̃2ik = (Bk −Bi) W1k.
Remark 2. When fkfT

k − I < 0, (23) is no longer feasi-
ble, fkfT

k −I < 0 means that the origin of the controller lies

inside the ellipsoid εk, i.e. k ∈ ℘
[19]
0 . In this case, the region

information (2) of the controlled system can be taken into
account if i ∈ ℘1. Then, the condition (7) is satisfied if

Θikjl − λik

[
xxx(t)
1

]T [
EEET

i EEEi ∗
fT

i EEEi fT
i fi − 1

] [
xxx(t)
1

]
≤ 0

(24)
The inequality (24) can be further written as

Θikjl − λik

[
ξξξ(t)
1

]T [
ĒEE

T
i ĒEEi ∗

fT
i ĒEEi fT

i fi − 1

] [
ξξξ(t)
1

]
≤ 0

(25)
where ĒEEi =

[
EEEi 0

]
.

Similar to the derivation of (10) ⇐ (23), it is derived
that (25) can be guaranteed by the LMI (26).

According to Remark 2, it is seen that both the LMIs
(23) and (26) are not feasible if i ∈ ℘0 and k ∈ ℘0. In this
case, the condition (7) is equivalent to




2Rk −Q1ik ∗ ∗ ∗ ∗
−Gik 2Rk −Q2ik ∗ ∗ ∗

AiRk + BiW1k BiW1k Q1jl + αikbbbibbb
T
i ∗ ∗

∆̃1ik AkRk + W2kC + ∆̃2ik Gjl + αik (bbbk − bbbi)bbbT
i Q2jl + αik (bbbk − bbbi) (bbbk − bbbi)

T ∗
EEEkRk EEEkRk αikfkbbb

T
i αikfk (bbbk − bbbi)

T αik

(
fkfT

k − I
)




> 0

(23)




2Rk −Q1ik ∗ ∗ ∗ ∗
−Gik 2Rk −Q2ik ∗ ∗ ∗

AiRk + BiW1k BiW1k Q1jl + αikbbbibbb
T
i ∗ ∗

∆̃1ik AkRk + W2kC + ∆̃2ik Gjl − αikbbbibbb
T
i Q2jl + αikbbbibbb

T
i ∗

EEEiRk 0 αikfibbb
T
i −αikfibbb

T
i αik

(
fif

T
i − I

)




> 0 (26)
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ξξξT(t)
(
ÃT

ikP̃jlÃik − P̃ik

)
ξξξ(t) ≤ 0 (27)

Neither the region information (2) of the controlled sys-
tem nor the region information (4) of the controller is in-
corporated in (27). Then, the following sufficient condition
(28) can be derived.




2Rk −Q1ik ∗ ∗ ∗
−Gik 2Rk −Q2ik ∗ ∗

AiRk + BiW1k BiW1k Q1jl ∗
∆̃1ik AkRk + W2kC + ∆̃2ik Gjl Q2jl


> 0

(28)

The above discussion leads to the following results.

Theorem 1. For all (i, j) ∈ Ω and (k, l) ∈ _

Ω, if there
exist symmetric positive definite matrices Q1ik ∈ Rn×n,
Q1jl ∈ Rn×n, Q2ik ∈ Rn×n, Q2jl ∈ Rn×n, R1k ∈ Rp×p,

R2k ∈ R(n−p)×(n−p), matrices Gik ∈ Rn×n, Gjl ∈ Rn×n,
W1k ∈ Rm×n, W2k ∈ Rn×p, and positive scalars αik satis-
fying (23) for k ∈ ℘1, (26) for (i ∈ ℘1) ∩ (k ∈ ℘0) and (28)

for (i ∈ ℘0) ∩ (k ∈ ℘0), where Rk = V

[
R1k ∗
0 R2k

]
V T,

the discrete-time PWA system (1) is PWQ stabilizable by
the observer-based control law (3), the gains of which are
computed by Kk = W1kR−1

k and Lk = W2kUSR−1
1k S−1UT.

Proof. From Lemma A1 (see Appendix), it is seen

that the conditions Rk = V

[
R1k ∗
0 R2k

]
V T and Jk =

USR1kS−1UT imply the condition CRk = JkC. By com-
bining CRk = JkC with Lk = W2kJ−1

k and Kk = W1kR−1
k ,

the matrix inequality (22) is achieved from LMI (23). Ac-
cording to the above discussion, it is known that the con-
dition (6) for k ∈ ℘1 can be guaranteed by (22). In a
similar way, the condition (6) for (i ∈ ℘1) ∩ (k ∈ ℘0) and
(i ∈ ℘0) ∩ (k ∈ ℘0) can be guaranteed by LMIs (26) and
(28), respectively. Thus, the system (1) is PWQ stabiliz-
able by the control law (3). ¤

Remark 3. It should be pointed out that a PWQLF
has been adopted in this paper. If we consider a
global-quadratic Lyapunov function, i.e. Q̃ik = Q̃ =[

Q1 ∗
G Q2

]
, the gains of the control law (3) can be ob-

tained by solving the following LMIs:

Φ1ik > 0 for k ∈ ℘1 (29)

Φ2ik > 0 for (i ∈ ℘1) ∩ (k ∈ ℘0) (30)

Φ3ik > 0 for (i ∈ ℘0) ∩ (k ∈ ℘0) (31)

where Φ1ik, Φ2ik, and Φ3ik denote the matrices in (23),
(26), and (28) with Q1ik = Q1jl = Q1, Q2ik = Q2jl = Q2,
and Gik = Gjl = G, respectively.

Remark 4. The conditions in Theorem 1 are less con-
servative than (29) ∼ (31). In fact, if (29) ∼ (31) have
a feasible solution (Q1,f , Q2,f , Rk,f , Gf , W1k,f , W2k,f ,
αik,f ), Theorem 1 has the feasible solution (Q1ik,f , Q1jl,f ,
Q2ik,f , Q2jl,f , Rk,f , Gik,f , Gjl,f , W1k,f ,W2k,f , αik,f ) with
Q1ik,f = Q1jl,f = Q1,f , Q2ik,f = Q2jl,f = Q2,f , and
Gik,f = Gjl,f = Gf , but not vice versa.

If system (1) has no affine terms, i.e. ℘ = ℘0, it degen-
erates to the following PWL system.

xxx(t + 1) = Aixxx(t) + Biuuu(t)
yyy(t) = Cxxx(t)
for xxx(t) ∈ Si, i ∈ ℘

(32)

For this PWL system, we can design an observer-based
control law of the form

x̂xx(t + 1) = Akx̂xx(t) + Bkuuu(t) + Lk (ŷyy(t)− yyy(t))
ŷyy(t) = Cx̂xx(t)
uuu(t) = Kkx̂xx(t)
for x̂xx(t) ∈ Sk, k ∈ ℘

(33)

In addition, the synthesis results for the non-
synchronized output feedback controller (33) can be ex-
tracted from Theorem 1.

Corollary 1. For all (i, j) ∈ Ω and (k, l) ∈ _

Ω, if there
exist symmetric positive definite matrices Q1ik ∈ Rn×n,
Q1jl ∈ Rn×n, Q2ik ∈ Rn×n, Q2jl ∈ Rn×n, R1k ∈ Rp×p,

R2k ∈ R(n−p)×(n−p), and matrices Gik ∈ Rn×n, Gjl ∈
Rn×n, W1k ∈ Rm×n, W2k ∈ Rn×p satisfying (28) where

Rk = V

[
R1k ∗
0 R2k

]
V T, the discrete-time PWL system

(32) is PWQ stabilizable by the observer-based control law
(33), the gains of which are computed by Kk = W1kR−1

k

and Lk = W2kUSR−1
1k S−1UT.

Proof. The proof is the same as that for the case
(i ∈ ℘0) ∩ (k ∈ ℘0) in Theorem 1. ¤

3 Example
The proposed non-synchronized output feedback control

scheme will be applied to stabilize a piecewise affine chaotic
system in this section. The dynamical behavior of the sys-
tem is described as follows[6, 22]:

ẋ1 = −9.2156 [x1 − x2 + g(x1)] + u
ẋ2 = x1 − x2 + x3

ẋ3 = −15.9946x2

(34)

where g(x1) is a PWA function described as follows

g(x1) =





−0.75735x1 − 0.4917, 1 ≤ x1 ≤ 4
−1.24905x1, − 1 < x1 < 1
−0.75735x1 + 0.4917, − 4 ≤ x1 ≤ −1

The autonomous chaotic behavior with the initial con-
dition xxx(0) = [ −1 −0.5 0 ]T is shown in Fig. 1. Dis-
cretizing (34) with the sampling period Ts = 0.01 s leads
to

xxx(t + 1) = Aixxx(t) + Buuu(t) + bbbi

yyy(t) = Cxxx(t)
for xxx(t) ∈ Si, i = 1, 2, 3

with

A1 = A3 =




0.9776 0.0922 0
0.0100 0.9900 0.0100

0 −0.1599 1.0000




A2 =




1.0230 0.0922 0
0.0100 0.9900 0.0100

0 −0.1599 1.0000




BBB =




0.01
0
0


 , bbb1 = −bbb3 =




0.0453
0
0


 , bbb2 =




0
0
0




CCC =
[

1 1 0
]

Here, each of the three polyhedral operating regions can
be precisely represented by an ellipsoid, i.e.,

εi = {xxx(t) | ||EEEixxx(t) + fi|| ≤ 1} = Si, i = 1, 2, 3
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with EEE1 = EEE3 =
[

0.6667 0 0
]
, EEE2 =

[
1 0 0

]
,

f1 = −f3 = −1.6667, and f2 = 0.
According to theorem 1, we design an observer-based

control law (3) with the following gains.

KKK1 = KKK3 =
[ −21.7239 −12.0737 −0.5445

]

KKK2 =
[ −23.1988 −11.7606 −0.4953

]

LLL1 = LLL3 =



−0.5811
−0.5070
−0.0189


 , LLL2 =



−0.5779
−0.5169
−0.0293




Fig. 1 Chaotic attractor of the autonomous system

A number of simulation studies with this designed
controller have been carried out and the results show
that the system can be stabilized to the origin success-
fully. Two typical cases with the initial condition xxx(0) =
[ −1 −0.5 0 ]T are recorded in Figs. 2 and 3, respec-
tively. In the first case, it is tested that whether the system
can be stabilized if the system state is in chaos. During the
initial 10 s, no control input is added, so the system is in
autonomous mode and performs a chaotic behavior. At
t = 10 s, the system state stays in the region S1, and the
controller state is set to x̂xx(0) = [ 0 0 0 ]T and thus
stays in the region S2. After t ≥ 10 s, the controller es-
timates the system state and calculates the control input.
Moreover, the calculated control input is added to the sys-
tem. Though the system and the controller can not be
guaranteed to switch to the same region at the same time,
the system can be stabilized several seconds later. In the
second case, it is tested that whether the system can be sta-
bilized if the control input is directly added after t ≥ 0 s.
The initial system state stays in the region S3, and the
initial controller state is also set to x̂xx(0) = [ 0 0 0 ]T

and stays in the region S2. Though the system and the
controller can not be guaranteed to switch to the same re-
gion at the same time, the system can be stabilized several
seconds later.

4 Conclusion
In the framework of LMI theory, this paper designs an

observer-based controller for discrete-time PWA systems
based on a PWQLF. The controller does not need to know
in which region the system state is, so the transitions of
the controller and the system are not required to be syn-
chronized. The designed controller guarantees the closed-
loop system to be PWQ stable. Application to chaos stabi-
lization is presented to demonstrate the controller perfor-
mance.

Appendix
Lemma A1[23]. For a given C ∈ Rp×n with rank (C) = P ,

assume that Rk ∈ Rn×n is a symmetric matrix, then there exists

a matrix Jk ∈ Rp×p such that CRk = JkC if and only if

Rk = V

[
R1k ∗
0 R2k

]
V T

where R1k ∈ Rp×p and R2k ∈ R(n−p)×(n−p).

Fig. 2 Time responses of closed-loop control system:
the first case
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Fig. 3 Time responses of closed-loop control system:
the second case
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