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Global Optimality for Generalized Federated Filter

GU Qi-Tai'
Abstract

FANG Jing?

Based on the matrix theory and the information sharing principle, the analytic relation among centralized Kalman

filtering, decentralized filtering, and federated filtering is derived. It is proved that the global filtering of federated filters is optimal
only when the dimensions of the master filter and the local filters are totally equal. If the dimensions of the master filter and
the local filters are different, then only suboptimal solution can be obtained. The structure of a generalized federated filter is
proposed. In terms of the information sharing principle, the information matrix of the one-step prediction state error and the one-
step prediction state are reset to obtain the suboptimal solution of the global filtering. Furthermore, the suboptimal solution of the
global filtering is used as observation feedback to correct the one-step prediction state and yield the optimal solution of the global
filtering. The optimal feedback gain matrix is mathematically derived, so the filtering result is theoretically proved to be equivalent
to the centralized Kalman filtering. The result of the simulation experiments with a dual-SINS/GPS integrated navigation system

demonstrates the validity of the algorithm.
Key words

With the development of information technology, decen-
tralized filtering!' ~* and federated filtering!*~' have been
widely applied to multisensor information fusion. They
have fast computing speed due to their suitable algorithm
structure for parallel computing. Fault detection, fault iso-
lation, and system reconfiguration can be achieved with the
inherent analytic relation between the input variables and
the state variables of the subsystem, so that the reliability
of the whole system may be improved. Therefore, they are
remarkably superior to the centralized Kalman filtering in
computing efficiency and fault tolerance.

In proving the optimality of federated filters, Carlson
constructed an augmented system, where the variance up-
per bound technique was used to eliminate the correlation
among several local filters. Then, the global optimal esti-
mation was achieved with an uncorrelated fusion algorithm
and the information sharing principle. However, in the
high-dimensional situation, the computation amount of the
above approach will increase sharply. Another approach is
the minimum structure. A master filter only contains the
common state, and the information sharing is limited to the
common state between the master filter and the local fil-
ters. Considering the influence of the common state on the
bias state, the common state after the information fusion
is used to reset the common state of the local filters and
also used as the observation feedback to correct the bias
state of the local filters. Reference [7] analyzed the above
approach theoretically, and pointed out that the minimum
structure approach is based on the hypothetical condition
that the state estimated error between the local filters and
the master filter is uncorrelated. Usually this hypotheti-
cal condition is difficult to satisfy and only the suboptimal
solution can be obtained.

In this paper, based on the decentralized filtering algo-
rithm and the information sharing principle, it is proved
that the global filtering of federated filters is optimal only
when the dimensions of the master filter and the local filters
are totally equal. Meanwhile, the generalized federated fil-
ter is structured, where the dimensions of the master filter
and the local filters are different, and the feedback cor-
rection by which the generalized federated filter may re-
alize the global optimality is presented. The validity of
the approach is theoretically proved and its effectiveness is
demonstrated by its application to an integrated navigation
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1 Filter structure

1.1 Centralized Kalman filtering

The system model is
X =P p—1Xp—1+Wir_1 (1)

where Wy, is a zero-mean white Gaussian noise, whose co-
variance matrix is Qg; X is the system state; the initial
value of X, is a zero-mean Gaussian random vector which
is independent of noise and its covariance matrix is FPp.

The dimension of X is n, and X is observed by N
sensors. Its observation model is

Zy=HiXr+ Vi (2)

where Z), = (25,23, Z%]", Hie = [H, H, -,

HEUJT7 Vi = [VlTk,ng, e ,VE;JT is a zero-mean white
Gaussian noise, whose covariance matrix is Ry, and Ry =
diag { Ry, Rok, -+, Bni }-
Thus
Zix =HuXr+Vi, i=12,--- N (3)

Define that V', and W, are uncorrelated. The centralized
Kalman filtering of the above system can be expressed as

X1 = Prgo1Xr1 (4a)
Ky = PoH, R} (4b)

-1 _ T -1
Py—1 = [‘I‘k,kflpkflq)k,kfl + Qkfl] (4c)
X = PkPkTé_1Xk\k—1 + PoH{ R ' Z (5)
Py '=Pyi_y + Hi Ry Hy (6)

1.2 Decentralized Kalman filtering

Suppose the state equation and observation equation of
the subsystem are

Xit =Pipp—1Xik—1 +Wig—1, i=12,--- N (7)

Zik = AinXir + Vik, 1=1,2,--- N (8)

where W, and V;; are both zero-mean white Gaussian
noises whose covariance matrices are Q;x and R;j, respec-
tively.
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Similarly, the local Kalman filtering can be expressed as

Xi,kﬂcfl = ‘bi;k,k—1f(i,k—1 (9a)
Kir = PR AL Ry (9b)

—1 T —1
Pyt = | Pikk—1Pik-1Pip p—1 + Qik—1 (9¢)

Xir = P P, k‘k X ko1 + Pk ARy Z ok (10)

Pyl =Py + ARy A (11)

Suppose there exists a matrix M; between the sub-
system state X;r and the general system state X, and
that X, = M;X . With the above substitution into (8)
and the comparison to (3), we obtain H;, = A;xM;. Sub-
stituting (10) and (11) into (5) and (6), respectively, we
obtain

N N N
X = PkPk‘k Xippor + 2 PeMEIPL X 1~
i=1

ZPkM Pk\k 1Xik\k—1

=1

Pt P‘k1+ZMiTP 'M; — ZMT M;

(12)
Equation (12) describes the relation between the global
filtering and local filtering in decentralized filters. The
global filtering is equivalent to centralized Kalman filtering,
and local filtering is also optimal. The signal flow diagram
is shown in Fig. 1 with N = 2, where By, = PkPk‘k 1Pk k-1;
By, = Pu.P;} e—1 L1k k—1; Bag = PPy, Jelk—1 D2k k15
Kip = Pig AT Ry Kok = ParAS Ry, Fie = PoMI P
Fop = PuMs Pyl's Tie = PkM1TP1_k|k 1P1k,k-1; Tox =
PkMz P;k\k 1q)2;k,k—1-

Z,
—| K, %{
+

zk|k 1

-]

Fig. 1

Signal flow diagram of decentralized filtering

1.3 Federated filtering
1.3.1 M;=1

A special situation is ®j; -1 = Pr,r—1 and M; = I. Ac-
1

cording to the information sharing principle of Zf\;

1 and the state reset of the federated filter, we obtain

zkl ﬁlPkIUsz 1_B1le

ﬁm_l_ Zﬂ’w (13)

i,k— I—Xk 1

where the information-sharing coefficients can be se-
lected by several different strategies according to
applications[S’ 10],

The formulas of the federated filter are given as

—1

Pk\li L= [ Prk1Pea @y + Qi)
Xk\k—l = (I)k k—le—l

) ) (14)
szlk 1 = 0iP, Iclk 1 Pmk\k 1 = Bm P, k|k 1
Xz klk—1 — Xk:\k 1, X"L,k:\kfl :Xk|k71
for time update,
Pi;1 Pfk\k 1+HiTlcRi7clHik
1 1
Pmk - Pm Jklk—1
R (15)
X = szP k| k— 1X1 klk—1 + PlngcR;clzlk
ka :Xm,k\k—l
for measurement update, and
X = PePiXomi + Z PuP X (16)
i=1
N
=P+ Py (17
i=1

for fusion.

Equations (16) and (17) describe the relation between
the global filtering and the local filtering of the feder-
ated filter, whose global filtering is optimal while the
local filtering is not. If N = 2, the signal flow dia-
gram is shown in Fig 2, where By = ﬁmPkPk‘; 1¢'k7k,1;
B = BiPuP, k|k 1Prk—1; Bar = BoParP, k‘k 1Pk k—1;
Kip = PuH{ R Ko = PoHyRy's Fuo = PPl
and Fop = PkP;kl. Compared with the decentralized fil-
tering in Fig. 1, the federated filter has a simpler structure
and fewer computations.

The federated filtering is equivalent to the centralized
Kalman filtering, whose global filtering is optimal.

Usually the state vector of the local filters contains com-
mon state variables and bias variables, and the state vector
of the master filter is composed of common state variables
and all bias variables. Thus, we need expand the dimen-
sions of the local filters to meet the condition of M; = I.
In this case, the computation amount for local filters will
be increased.
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Fig.2 Signal flow diagram of federated filtering

1.3.2 M;#1

In the practical application of federated filters, not only
the dimensions of the master filter and each local filter are
different, but also the influence of the non-common state on
the common state cannot be ignored. In such a situation,
the federated filtering is not globally optimal.

If M; #1,i1=1,2,--- N, the dimensions of the master
filter and the local filters are different. Two situations will
be discussed. One is that the dimension of the master filter
is lower than that of the local filter (n, < n;), and the
other is that the dimension of the master filter is higher
(nm > ny).

When n,, < n;, the state of the master filter is the

common state Xc, and the state of the local filters is
. . . T7T
%, [ %3]

state and the bias state, respectively. The master filter
only fuses the common state, and resets the common state
and its covariance matrix to each local filter. Therefore,
only the common state is considered in time update and
measurement update of the local filtering. This situation
can only be applied when the bias state has little influence
on the common state. Neither the global filtering nor the
local filtering is optimal. Considering the influence of the

, where X ;. and X;, are the common

common state on the bias statel® , the common state X me

by fusion is used to reset the common state of the local
ot ot

filter, and X,;. = X,,. is used as the measurement value

to update the bias state of the local filter X ;. We deduce

that

B X,
B [ X+ SibeSioe (X:rc 75(“) :|

S+ — S;r‘;cc 1/2 0
v SibeS;, 15' Sivb

ce ce
where the subscripts ¢ and ic, ib denote the common state,
the common state, and the bias state of the sensor i, re-
spectively; Xic and f(ib denote the state estimation of the
one-step prediction, while Sicc, Sipe, and Sipp denote their
lower triangular metrics of the covariance matrix decom-

s >t ot . .
position; X; , X ., and S;7 denote the state estimation

and its lower triangular matrix of the covariance matrix
decomposition after feedback correction; and r; = ;" L

The above calculation is rather complex, and it is
proved!”! that if the state estimation errors of the local fil-
ters and the master filter are completely uncorrelated, the
algorithm can achieve a globally optimal estimation. How-
ever, because the local filters and the master filter of the
federated filters belong to the same reference system and
the state noise is coupled, only suboptimal solution can be
obtained.

When n,,, > n;, the state of the master filter includes not
only the common state X ¢, but also the bias state X of
partial or entire local filters. For example, in decentralized
navigation systems, more sensor-dedicated local filters feed
a larger master filter. The master filter fuses local filter
outputs and yields global estimates.

In terms of Carlson’s approach, reset

Py =BiMiPC MY, Qg = BiMiQi M,
and substitute the above into (14). We will not result in
Py = BiMiPg; M, which will induce difficulties
in the subsequent treatment. Hence, we modify the reset
structure as

i=1,2

— — T
{ R ,N,m (18)

Xinp-1 = MiX k-1,

By substituting (18) into (12), the theoretical value of the
state error information matrix of the general system is ob-
tained as

PV =P}

k\k 1 ZMTP_

N
ikje—1 M + -leiTPz'ZlMi =
=

N
MEM; + > M P M;

i=1

(19)
where matrix M M; has the upper bound unit matrix I,
i.e.,

Z BiMF M P!

k\k 1 klk—1

MEM; <1

which indicates that the matrix I is more positive-definite
than M;" M;. Substituting this result in (19) and taking the
upper bound, by which the information of the information
matrix P, " g decreased, we can obtain the conservative
estimation as

N

,1 T p—1

Py klk 1 Eﬁl Iclk 1+,21Mi P M =
i=

(1 -5 @) Pol L+ leMiTPi;lMi _

BB k|k 1 ;MiTPi?Mi

Further, by substituting M- M,, Pk“i 1MTM for Pklk 1
into the above equation, a more conservative result can be
obtained as
N,m
C=Y MIP M, (20)

i=1

Similarly, with the substitution of (18) into (12), we ob-
tain the theoretical value of the state estimation for the
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general system

X, = PP}

k|k—1

N
BiPr MM P}
=1

k|k—1

Xijph—1—

MzTMiXk\kfl“' (21)

7

N ~

Substituting M M; < I and taking the upper bound, we
can obtain the conservative estimation as

v/ * p—1
k*PkPk\kq

Xk|k71_

N -1 % N —1%

Z ﬁiPl:Pmk—le\kfl + Z PI:MiTPuc Xik =
=1 =

=1

=1

N L N .
i=1 '
N N N
BinPi P 1 X ki1 + 22 Pi MiT P Xy
i=1
Further, substitute M,}:MmPglé_lMELMm for P1;|11—1’ and
Py for P;, and the conservative estimation of the global
filtering corresponding to (20) is

N,m
Xy =Y PM P Xy (22)

i=1

where PT;; = ,BmMmPk_ULlMEL. Here, federated filtering
is not equivalent to centralized Kalman filtering and is not
globally optimal.

2 Global optimal filtering

The global filtering of the generalized federated filters
expressed by (20) and (22) is suboptimal. The reason is
that the influence of the non-common state, which is usu-
ally the bias state of sensors, is not considered completely,
and some information is lost. We propose a novel method
to achieve a globally optimal solution.

Firstly, a master filter and local filters with different di-
mensions are structured. Based on the information sharing
principle, the one-step prediction state and its state error
information matrix are reset to obtain the suboptimal solu-
tion of the global filtering. Then, the suboptimal solution
is used as the observation feedback to correct the one-step
prediction state. And the optimal solution of the global
filtering is obtained as

XZ:Xk\kfl +K<Xk—f(k|k,1> (23)

where K is the optimal gain matrix of the generalized fed-
erated filters.

Define
X, =X+ X, (24a)
)A(Mk_1 =X +Xk\k—l (24b)
X=X, + Xy, (24c)

where X is the real state vector; the vectors with “~”
are the state error vectors relative to X . With the above
substitution into (23), we obtain

X :Xk\k—l‘f'K(Xk_XMk—l) (25)

The covariance matrixes of both sides of the above equa-
tion are calculated as follows. Define E [5( ZX ZT] = Py

by - T
and E [XMk,lXMk_l} = Pk|k71~ Then,

- ~T
P; = Pyr_1 +E [Xk\kflxk] KT — Py KT+

KE [kaf;f‘k_l] + KE {ka}f] KT

KE [ijf;f\k_1] K" — KPyjp_1— 20
KE [Xyp 1 X | K™+ KPys 1 K"
where E [Xk‘k,lffﬂ = {E [ka(;ﬂk_l]}T And the

key to obtain the analytic equation of P; is to calculate
B [Xye 1 Xy ] and B [X,. X, .

From (22), we have

. N,m .
X, = Z PleTpllelk =
=1

N,m
S Py [ﬁiMiTMiP‘l
=1

b MTMX ey + M?AﬁR;clzik] -

Py (P,;‘;fl - AP,;l) X1 + PoHT Ry Zs
(27)
where
N,m
AP =Py, — Y BMIMPL MM, (28)
=1

From (20), we have

Pl=3 M'P'M; =

e

N
BiMF iPk_‘,LlM?Mi + 2 MEALR, A M;

i=1 =1

to and subtract P}

Adding P} a1

klk—1
of the equation, we have

from the right side

k|lk—1

N
Pl Zl MEAL R, AieM; =
Py + HU R He = P
while
N,m
> BMI M Py M M; — Py, = AP
1=1
Finally,
pPrl=pr " — AP (29)

Substituting (24) and Z) = Hp X + Vi into (27), we
obtain

Xk =-Xr+ PkPk_‘;71

PkAP;lek — PkAPk’le‘k,l+

X+ Pkpkji,ljfkwq—

PoHYR,"Hi X1, + PoHL R, 'V,

The sum of the second and the sixth items in the right side
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of the above equation is

PP Xy + PeHIR,"Hi Xy =

k|k—1
Py (P,;ULI + H,;FR,;IHk) X, =PP VX, =
X+ PkAPk_1Xk
After the above substitution, the equation becomes
X.=P, (P,;‘,L1 — AP) Xy + PHERC WV (30)
From (30), it follows that
S - T S T _ _
B[ Xup1Xe | = B[ Xupei X (P, — AP x
Pe+ X1V R, Hii

Since E [Xk\k_ﬂ/ﬂ =0, we have

E [XkUcle’If] = Py <P1;\11—1 - AP’Zl) P =

Py — Pklk—lpk_l*Pk + Prir—1
E [ij(rlf\k—l] =P — PkPIZI*PkUc—l + Prjr—1
Similarly,
E [kafﬂ = 2P, — PPV Pt
PuP7 Y Pyp 1 PV Pe — PoPrY Pyj1—

Pk|k71P]:1*Pk + Prjr—1
Substituting it into (26), we obtain

Py = Py—1 + PoK" + KPy—
Py PrVU PLKT — KPy P Popo1—

KPP  PuKT + KPP, Py Pyt PoKT
Let ~ .
P=KPyP;! (31)
Then, K Py, = KPkPgl*P,: = PP;. With the above sub-
stitution, the result is
P; = Pyj—1 = P (P; — Pyi—1) + (Pf — Py—1) PT—
P (P} — Pyi—1) P*
(32)
In order to obtain the optimal gain matrix K, we calculate
8 [tI‘ (P;: — Pk|k'71>:| .
dP

From (32), we have
2 (Py — Pyjp—1) — 2P (Py — Pyj—1) =0
Then, we obtain P = I. And from (31), we obtain
K =Pp;p; ! (33)

With the substitution of (33) into (23), we prove that it is
equivalent to the centralized Kalman filtering:

X, =Xppo1 + PEP (Xk —Xk\k—1> =
Xijp1 + PrP Xy — PrP X

From (27), we have

PO Xy = (Pghoy = APTY) Xy + HE R 2y =

(Pk_uiq - P+ Pk_1> Xyjp1 + HE R Z,,
With the above substitution, the result is
Xy = X1+ Pr (P,;”LI N P,;l) Xipoit
P{HIR'Z, — PEPT X1 =

Xk'lk:—l +PrP

k|k,15(k\k—1 - Xk\k-—l + P;:Pk_lffuk—l—f—

P{HIR'Z), — PEP X yjoq =

PPt

r1 Xkik—1 + PUHI R 2y,

This is just the formula of the centralized Kalman filtering.

As mentioned above, before the optimization, the struc-
ture of the generalized federated filtering is the same as the
federated filtering. The signal flow diagrams show that it
has fewer computations compared with the decentralized
filtering. To gain the global optimality for generalized fed-
erated filters, further computing is to calculate the optimal
gain matrix K = P} P, '. Since P, ' is obtained before, P}
can be obtained by (29). It just takes fewer computations in
the master filter by using efficient square root algorithms.
Besides, in generalized federated filtering the dimensions
of local filters are much fewer than the dimension of the
master filter. This design achieves major improvement in
speed for the local filters.

3 Simulation

Simulations are carried out for a dual-SINS/GPS inte-
grated navigation system. SINS and GPS are the abbrevi-
ations of strap-down inertial navigation system and global
positioning system, respectively. The system structure is
shown in Fig.3, where the symbol “(-)” denotes the one-
step prediction estimation.

M X(-), pM P (HMT

SINS 1
X, P
| GPS Z,::l Local filter 1 |#>

M), pMP M
7 :l l X,
| SINS2 | 2 Local filter 2 |;>

Fig.3 The structure of the dual-SINS/GPS integrated
navigation system

Master filter

Time update |<—

Global optimal

Both the error dimensions of SINS1 and SISN 2 are 15,
ie.,
X =[er ex eu dp O\ b 6o 6X Oh
AdE AdN AdH AaN ACLE AaH}T

where eg, en, and euy denote the error angles between the
calculating coordinates and the geographic coordinates; dy,
0A, and dh denote the error of geographic latitude, longi-
tude, and altitude; 0, 6\ and dh are the corresponding ve-



No. 10

GU Qi-Tai and FANG Jing: Global Optimality for Generalized Federated Filter

locity errors; Adg, Adn, Adg and Aag, Aan, Aan are the
dynamic bias of gyros and accelerators in the east, north,
and up coordinate frame.

Suppose SINS 1 is the reference system. The position and
velocity differences between GPS and SINS1 are taken as
the observation vector to constitute local filter 1. The posi-
tion and velocity differences between SINS 1 and SINS 2 are
taken as the observation vector to constitute local filter 2.
The precision of the two strap-down inertial navigation sys-
tems is set as follows. For SINS 1, the drift bias of the gyros
is 0.02°/h and the random drift is 0.01 ° /h; the zero bias of
the accelerators is 10~ *g and the output noise is 5 x 10~ °g.
SINS 2 is taken as measurement update, whose precision is
one order of magnitude higher than that of SINS1. For
GPS, the position error is 15m (1o)and the velocity error
is 0.05m/s (1o).

Measurement baseline is determined to provide the ref-
erence position before simulation. The baseline shape is of
an “L” pattern. The carrier runs eastward for 0.5h and
then northward for 0.5h. It stops for 1 min every 9 min.
The circulative movement characteristic is “accelerating-
uniform velocity-decelerating-stationary”. The accelera-
tion is +3 m/SQ. The accelerating time is 3 s, the uniform
velocity movement lasts 543s, and the decelerating time is
also 3s. The whole distance is about 30 km.

Firstly, the simulation is designed as the centralized
Kalman filter. The simulation result is shown in Fig. 4 (a),
where Sk, Sn, and Su indicate the position errors in the
eastern, northern, and upper directions. Secondly, the sim-
ulation is designed as the generalized federated filter. The
dimensions of the local filter 1 are 15 and that of the local
filter 2, and the master filter are 30. The information shar-
ing coefficients are 1 = 0.5, B2 = 0.3, and (,, = 0.2. The
simulation result is shown in Fig. 4 (b). Finally, the simula-
tion is designed by the globally optimal filtering approach.
The output of the generalized federated filter is used as
the observation feedback to correct the one-step prediction
state so that the optimal solution of the global filtering can
be achieved. The simulation result is shown in Fig. 4 (c).

The navigation deviations of the three filters are listed
in Table 1.

The simulation results indicate that if the dimension of
local filter 1 is 15 and the dimensions of local filter 2 and the
master filter are 30, i.e., M; # I, only suboptimal solution
can be obtained by the generalized federated filter. When
the navigation time is shorter (the simulation time is 1h),
rather high estimation precision can be still achieved. If the
feedback correction filtering algorithm is used in the gener-
alized federated filter, the globally optimal solution can be
obtained, which is completely equivalent to the centralized
Kalman filter.

Table 1 Navigation deviations with different filters

Navigation deviation (m)

Filter
East North Height
Centralized Kalman filter 3.27 1.82 0.80
Generalized federated filter 5.68 1.63 1.30
(without feedback correction)
Generalized federated filter 3.98 1.83 0.79

(with feedback correction)

1315
30F
—— 5,
%l —*— S,
VNS
1T
—-10 F
0 1000 2000 3000 4000
s
(a) Centralized Kalman filter
300
——5,
| —*— S,
E
0 1000 2000 3000 4000

t/m
(b) Generalized federated filter without feedback correction

30
—X%— S,
20 B
Sy

S/m

-10 |

0 1000 2000 3000 4000
t/s

(c) Generalized federated filter with feedback correction

Fig.4 Navigation position errors with different filters

4 Conclusion

Based on the matrix theory and the information sharing
principle, the analytic relation among centralized Kalman
filtering, decentralized filtering, and federated filtering is
delivered. It is proved that the global filtering of federated
filters is optimal only when the dimensions of the master
filter and the local filters are totally equal. Compared with
decentralized filtering, federated filtering has the simpler
structure and fewer computations, which is illustrated by
signal flow diagram visually and clearly. If the dimensions
of the master filter and the local filters are different, only
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suboptimal solution can be obtained. Hereby, the feedback
correction approach by which the generalized federated fil-
ter may realize global optimality is presented. The optimal
feedback gain matrix is mathematically derived, so the fil-
tering result is theoretically proved to be equivalent to the
centralized Kalman filtering. The result of the simulation
experiments with a dual-SINS/GPS integrated navigation
system demonstrates the validity of the algorithm.
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