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Information Theoretic Interpretation of Error Criteria
CHEN Ba-Dong1 HU Jin-Chun2 ZHU Yu1 SUN Zeng-Qi2

Abstract Error criteria (or error cost functions) play significant roles in statistical estimation problems. In this paper, we study
error criteria from the viewpoint of information theory. The relationships between error criteria and error′s entropy criterion are
investigated. It is shown that an error criterion is equivalent to the error′s entropy criterion plus a Kullback-Leibler information
divergence (KL-divergence). Based on this result, two important properties of the error criteria are proved. Particularly, the optimum
error criterion can be interpreted via the meanings of entropy and KL-divergence. Furthermore, a novel approach is proposed for
the choice of p-power error criteria, in which a KL-divergence based cost is minimized. The proposed method is verified by Monte
Carlo simulation experiments.
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Let k ∈ N, (Ω, B, P ) be a probability space, X be an
integrable random variable defined on (Ω, B, P ), YYY be a
random vector defined on (Ω, B, P ) taking values in Rk.
G denotes the collection of all Borel measurable func-
tions with respect to the σ-field σ(YYY ) generated by YYY . A
commonly encountered problem involves estimating X via
g(YYY ), g ∈ G , so as to minimize a certain error criterion

(or error cost)[1−4]:

E [φ (X − g (Y))] = Ee [φ (e)] =

∫

R

φ (e) pe (e)de (1)

where E denotes the expectation operator, e = X − g (YYY )
is the estimation error, φ denotes the Borel measurable
cost function, and pe (e) denotes the probability density
function (PDF) of e. We refer to g as an estimator of X
based on YYY . Under error criterion Ee [φ (e)], the optimum
estimator, denoted by g∗, is

g∗ = arg min
g∈G

Ee [φ (e)] = arg min
g∈G

E [φ (X − g (Y))] (2)

The optimization problem can also reduce to a param-
eter search procedure in which a suitable structure of the
estimator is assumed. Let gWWW (WWW ∈ Θ ⊂ Rd ) be a param-
eterization of g, in which WWW is the d-dimensional parameter
vector and Θ is the parameter space. Then, the optimum
parameter WWW ∗ is

WWW ∗ =arg min
WWW∈Θ

Ee [φ (e)] =

arg min
WWW∈Θ

Ee [φ (X − gWWW (YYY ))]
(3)

In most practical applications, the optimum param-
eter can be solved by the stochastic gradient (SG)

algorithm[3, 5−7]:

WWW (k + 1) =WWW (k)− η
∂φ (e)

∂WWW

∣∣∣∣
WWW=WWW (k)

=

WWW (k)− η
∂φ (e)

∂e
× ∂e

∂WWW

∣∣∣∣
WWW=WWW (k)

(4)

where WWW (k) denotes the parameter vector at iteration k,
and η > 0 is the step-size (or adaptation gain).
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In the above estimation problem, the error criterion
Ee [φ (e)] (or the cost function φ (e)) plays a central

role[2−3, 5]. Among various error criteria, the mean-square
error (MSE) (φ (e) = e2) is the most popular one due to

its mathematical tractability[3, 7−8]. With the basic finite
impulse response (FIR) filter structure, MSE yields a sim-
ple optimization problem, whose analytical solution is pro-
vided by the Wiener-Hopf equation[3, 7]. However, MSE is
not always the optimum error criterion, especially for the
non-linear or non-Gaussian situations[1−2, 8−9]. Thus many
non-MSE criteria have been studied. In an early work,
Sherman[1] showed that in the case of Gaussian processes, a
large family of non-MSE criteria yields the same predictor
as the linear minimum mean-square predictor of Wiener.
Later, Sherman′s results and several extensions were revis-
ited by Brown[10], Zakai[11], and Hall[2], et al. In order to
take into account higher-order statistics, Walach proposed
the mean fourth error (MFE) criterion, and derived the

least mean fourth (LMF) algorithm[12], while Pei investi-

gated the least mean p-power (LMP) criterion[6]. Further,
the fractional lower order moments (FLOM) of the error
have also been used in adaptive filtering in the presence of
impulse alpha-stable noises[13].

Besides the error criteria, the entropy, which is a cen-
tral notion in information theory[14], has also been used
as a cost function in estimation problems. As the en-
tropy measures the average uncertainty contained in a ran-
dom variable, its minimization forces the error to gather.
Weidemann and Stear studied the parameter estimation
problem for non-linear and non-Gaussian discrete-time sys-
tems by using the error entropy as a criterion functional,
and it was shown that the reduced error entropy is up-
per bounded by the amount of information obtained by
observation[15−16]. Minamide[17] extended Weidemann′s
results to a continuous-time estimation model. Recently,
the minimum error entropy (MEE) criterion has been used

by Erdogmus[18−21], Principe[22], Chen[23] and Han[24] et
al. in the areas of supervised learning, and the stochas-
tic information gradient (SIG) algorithms have been de-
veloped. Under MEE criterion, the optimum estimator is
given by[15, 25−26]

g# =arg min
g∈G

H (e) =

arg min
g∈G

{
−

∫

R

pe (e) log pe (e) de

} (5)

The error entropy is a functional of the error′s distri-
bution and is related to various statistical behaviors of
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it. Numerical examples indicated that compared with the
MSE criterion, the MEE criterion could be able to achieve a
better performance in the adaptive system training[19−21].

Both error criteria and error entropy criterion measure
the concentration of the error, and quantify how similar the
two random variables are. There are close relationships be-
tween the two criteria. The goal of this paper is to study
the error criteria from the viewpoint of information theory,
and investigate the connections between the error criterion
(MSE is the special case) and the MEE criterion. The paper
is organized as follows. In the next section, we show that
the error criterion is equivalent to the error′s entropy plus a
Kullback-Leibler information divergence (KL-divergence),
that is,

Ee [φ (e)] ∝ {H (e) + DKL (pe (e) ‖qφ (e) )} (6)

where qφ (e) is the worst case density related to the error
cost φ (e). Then, in Section 2, based on (6), we give the
information theoretic proofs of two important properties of
the error criteria. Further, in Section 3, we interpret the
optimum error criterion by the meanings of entropy and
KL-divergence, and in Section 4, we propose an informa-
tion theoretic approach to the choice of error criterion. For
the family of p-power error criteria, the optimum p value is
determined by

popt = arg min
p∈R+

{
min

τ∈R+
DKL (pn (x) ‖exp (−γ0 − γ1 |x|p) )

}

(7)
where pn(·) is the PDF of the interfering noise. Simulation
experiments are presented to verify the proposed method.
Finally, in Section 5, we give the concluding remarks.

1 Relationship between error criteria
and error entropy criterion

Before proceeding, we give the definition of equivalence
between two error criteria.

Definition 1. Two error criteria Ee [φ1 (e)] and
Ee [φ2 (e)] are said to be equivalent, if and only if
Ee [φ1 (e)] = γ0 + γ1Ee [φ2 (e)] (or equivalently, φ1 (e) =
γ0 + γ1φ2 (e)), where −∞ < γ0 < ∞ and 0 < γ1 < ∞.

Remark 1. If Ee [φ1 (e)] and Ee [φ2 (e)] are equiv-
alent, we denote Ee [φ1 (e)] ∝ Ee [φ2 (e)] or φ1 (e) ∝
φ2 (e). Clearly, if Ee [φ1 (e)] ∝ Ee [φ2 (e)], we have
g∗1 = g∗2 , where g∗1 = arg ming∈G Ee [φ1 (e)] and g∗2 =
arg ming∈G Ee [φ2 (e)]. Thus, Ee [φ1 (e)] and Ee [φ2 (e)]
yield the same optimum solutions (or reflect the same
fidelity demand). Similarly, for the parameteriza-
tion situation, we have WWW ∗

1 = WWW ∗
2 , where WWW ∗

1 =
arg minWWW∈Θ Ee [φ1 (e)] and WWW ∗

2 = arg minWWW∈Θ Ee [φ2 (e)].
In this case, by choosing suitable step-sizes, Ee [φ1 (e)] and
Ee [φ2 (e)] yield the same stochastic gradient algorithm. In
fact, since φ1 (e) = γ0 + γ1φ2 (e), if we choose the step-size
η2 = λ1η1, we have

WWW (k + 1) =WWW (k)− η1
∂φ1 (e)

∂WWW

∣∣∣∣
WWW=WWW (k)

=

WWW (k)− η2
∂φ2 (e)

∂WWW

∣∣∣∣
WWW=WWW (k)

(8)

Here, both gradient algorithms are identical and have
the same performance characteristics (stability, adaptation
speed, excess MSE, etc.).

The following theorem relates the error criterion with a
certain probability density function.

Theorem 1. Given any error criterion Ee [φ (e)] (or the
cost function φ (e)), there exists a probability density func-
tion qφ (e), such that qφ (e) = exp [−γ0 − γ1φ (e)], where γ0

and γ1 are determined by





exp (γ0) =

∫

R

exp [−γ1φ (e)]de

Ee [φ (e)] exp (γ0) =

∫

R

φ (e) exp [−γ1φ (e)]de
(9)

Proof. In fact, qφ (e) is just the worst case density
function according to Jaynes′ maximum entropy principle
(MEP)[27−29]. Mathematically, the problem is to pick up a
probability density qφ (e), which maximizes Shannon′s en-
tropy H (qφ) = − ∫

R
qφ (e) log qφ (e) de subject to the con-

straints
{ ∫

R
qφ (e) de = 1

∫
R

qφ (e) φ (e) de =
∫
R

pe (e) φ (e) de = Ee [φ (e)]
(10)

We create an unconstrained expression for the entropy us-
ing Lagrange multipliers:

L =−
∫

R

qφ (e) log qφ (e) de− (γ0 − 1)

{∫

R

qφ (e) de− 1

}
−

γ1

{∫

R

qφ (e) φ (e) de− Ee [φ (e)]

}

(11)

Using calculus of variations[30], we maximize L with respect
to qφ (e):

∂

∂qφ
[−qφ log qφ − (γ0 − 1) qφ − γ1qφφ] = 0 ⇒

− log qφ − 1− (γ0 − 1)− γ1φ = 0

Thus, the worst case density is

qφ (e) = exp [−γ0 − γ1φ (e)] (12)

where γ0 and γ1 are determined by





∫

R

exp [−γ0 − γ1φ (e)] de = 1
∫

R

exp [−γ0 − γ1φ (e)] φ (e) de = Ee [φ (e)]
⇔





exp (γ0) =

∫

R

exp [−γ1φ (e)]de

Ee [φ (e)] exp (γ0) =

∫

R

φ (e) exp [−γ1φ (e)]de

¤
Example 1. Consider the LMP error criterion[6]

J = Ee (|e|p) , p > 0 (13)

where the cost function φ (e) = |e|p. When p = 2, this cri-
terion reduces to the well-known MSE criterion. By Theo-
rem 1, we have

qφ (e) = exp [−γ0 − γ1 |e|p] (14)

where γ0 and γ1 are determined by




exp {γ0} =

∫ +∞

−∞
(exp {−γ1 |e|p})de

Ee (|e|p) exp {γ0} =

∫ +∞

−∞
|e|p (exp {−γ1 |e|p})de

(15)
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It is easy to derive γ0 and γ1 as follows:




γ0 = log

{
2

p
Γ

(
1

p

)}
− 1

p
log





Γ

(
p + 1

p

)

Ee (|e|p)× Γ

(
1

p

)





γ1 =

Γ

(
p + 1

p

)

Ee (|e|p)× Γ

(
1

p

)

(16)
where Γ (·) represents the gamma function defined as

Γ (α) =

∫ ∞

0

xα−1e−xdx (17)

Given probability density function pe (e), we can calcu-
late Ee (|e|p), and get the exact values of γ0 and γ1. For
different p values, the cost functions φ (e) = |e|p are shown
in Fig. 1, and the corresponding worst case densities qφ (e)
are depicted in Fig. 2 (assuming pe(e) ∼ N(0, 1)).

Fig. 1 Cost functions of p-power error criteria with
different p values

Fig. 2 Worst case densities qφ (e) for different p values

Remark 2. It is worth noting that the worst case
density qφ (e) = exp [−γ0 − γ1 |e|p] is actually the gener-

alized Gaussian density (GGD)[31−32], in which p is called
the shape parameter. The GGD model includes Laplace

(p = 1) and Gaussian (p = 2) distributions as special cases,
and can be used to approximate a large number of distri-
butions in the areas of image coding, speech recognition,
blind source separation (BSS), and so on.

Theorem 2. Any cost function φ (e), which satisfies
lim|e|→+∞ φ (e) = +∞, is equivalent to minus logarithm of
a certain density function qφ (e), i.e., φ (e) ∝ − log [qφ (e)].

Proof. By Theorem 1, for any cost function φ (e), there
exists a PDF qφ (e), such that

qφ (e) = exp [−γ0 − γ1φ (e)]

The minus logarithm of qφ (e) is

− log [qφ (e)] = γ0 + γ1φ (e) (18)

As qφ (e) ≥ 0,
∫
R

qφ (e) de = 1, we have lim|e|→+∞ qφ (e) =
0, and it follows that

lim
|e|→+∞

qφ (e) = 0 ⇒
lim

|e|→+∞
[log qφ (e)] = −∞⇒

lim
|e|→+∞

[− log qφ (e)] = +∞⇒
lim

|e|→+∞
[γ0 + γ1φ (e)] = +∞⇒

γ1 lim
|e|→+∞

[φ (e)] = +∞ (a)⇒ γ1 > 0

(19)

where (a) follows from the condition lim|e|→+∞ φ (e) =
+∞. By Definition 1, we have φ (e) ∝ − log [qφ (e)]. ¤

Remark 3. Note that the condition lim|e|→+∞ φ (e) =
+∞ is not restrictive, because for most error criteria, such
as the p-power error criterion (φ(e) = |e|p, p > 0) and

the risk sensitivity criterion[33] (φ(e) = exp (λ |e|p), λ > 0,
p > 0 ), the cost functions φ(e) increase rapidly when |e|
goes to infinity.

Now we arrive at the main theorem of this section.
Theorem 3. Given any error criterion Ee [φ (e)], which

satisfies lim|e|→+∞ φ (e) = +∞, we have Ee [φ (e)] ∝
{H (e) + DKL (pe (e) ‖qφ (e) )}, where qφ (e) is determined
by Theorem 1, H (e) and DKL (pe (e) ‖qφ (e) ) are the en-
tropy and Kullback-Leibler information divergence, respec-
tively, i.e.,





H (e) = −
∫

R

pe (e) log pe (e) de

DKL (pe (e) ‖qφ (e) ) =

∫

R

pe (e) log

(
pe (e)

qφ (e)

)
de

(20)
Proof. By Theorem 2, we have

Ee [φ (e)] ∝ E [− log qφ (e)] =∫
pe (e) [− log qφ (e)] de =

∫
pe (e) [− log qφ (e)] de +

∫
pe (e) log pe (e) de−

∫
pe (e) log pe (e) de =

∫
pe (e) log

(
pe (e)

qφ (e)

)
de−

∫
pe (e) log pe (e) de =

DKL (pe (e) ‖qφ (e) ) + H (e) ¤
Remark 4. Theorem 3 provides an interesting result.

The error criterion Ee [φ (e)] is equivalent to the error′s en-
tropy H (e) plus KL-divergence DKL (pe (e) ‖qφ (e) ). Since
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DKL (pe (e) ‖qφ (e) ) is always nonnegative, we have

DKL (pe (e) ‖qφ (e) ) + H (e) ≥ H (e) (21)

with equality if and only if pe (e) = qφ (e). Thus, minimiza-
tion of error criterion Ee [φ (e)] is equivalent to minimiza-
tion of an upper bound of the error entropy H (e).

2 Information theoretic proofs of the
properties of error criteria

In this section, we use Theorem 3 to prove two impor-
tant properties of the error criteria. Although both prop-
erties can be proved by some other methods, here we give
the information theoretic proofs. In the rest of the paper,
we suppose the error cost function φ (e) always satisfies
lim|e|→+∞ φ (e) = +∞.

Before proceeding, we give the following lemma.
Lemma 1[14]. The entropy and KL-divergence is shift

invariant, that is, for any random variables X and Y ,
and any constant c ∈ R, we have H (X + c) = H (X),
DKL (X ‖Y ) = DKL (X + c ‖Y + c).

Property 1. If g∗ minimizes the error criterion Ee [φ (e)]
over G, i.e., g∗ = arg ming∈G Ee [φ (e)], then g̃∗ = g∗ + c
minimizes Ee [φ (e + c)], where c ∈ R is any constant.

Proof. By Theorem 3, we have
{

Ee [φ (e)] ∝ {DKL (pe (e) ‖qφ (e) ) + H (e)}
Ee [φ (e + c)] ∝ {DKL (pe (e) ‖qφ (e + c)) + H (e)}

It follows that




arg min
g∈G

Ee [φ (e)] =

arg min
g∈G

{DKL (pe (e) ‖qφ (e) ) + H (e)}
arg min

g∈G
Ee [φ (e + c)] =

arg min
g∈G

{DKL (pe (e) ‖qφ (e + c)) + H (e)}

Hence,

g̃∗ = arg min
β∈G

{
Ee [φ (e + c)]|g=β

}
=

arg min
β∈G

{
DKL (pe (e |g = β ) ‖qφ (e + c)) +
H (e |g = β )

}
(a)
=

arg min
β∈G

{
DKL (pe (e |g = β − c) ‖qφ (e) )+
H (e |g = β − c)

}
=

arg min
β∈G

{
Ee [φ (e)]|g=β−c

}
=

arg min
β∈G

{
Ee [φ (e)]|g=β

}
+ c = g∗ + c

where (a) follows from the shift-invariance of entropy and
KL -divergence (as stated in Lemma 1). ¤

Property 2. Let m ∈ G , which equals a.e. [µYYY ]
to E [X |YYY = yyy ], and assume the conditional density func-
tion pe (e |YYY = yyy, g = m ) is symmetric around zero. Then,

g = m minimizes the error criterion Ee [φ (e)] over G, pro-
vided that the cost function φ (e) is even and convex.

Proof. This property is a direct consequence of the re-
sults of [2]. Here, we give an alternative proof using infor-
mation theory. By Theorem 3, we have

Ee [φ (e)] ∝ E [− log qφ (e)] = {DKL (pe (e) ‖qφ (e) ) + H (e)}
where qφ (e) = exp [−γ0 − γ1φ (e)], γ1 > 0. For any β ∈ G,
and any yyy fixed, denote ε (yyy) = β (yyy) − m (yyy). If φ (e) is
convex, we have

φ (e) ≤ 1

2
[φ (e− ε (yyy)) + φ (e + ε (yyy))] (22)

And hence (Note that qφ (e) = exp [−γ0 − γ1φ (e)])

− log [qφ (e)] ≤ − log
[√

qφ (e− ε (yyy)) qφ (e + ε (yyy))
]

(23)

Then we derive

Ee [− log qφ (e)]|YYY =yyy,g=m ≤ Ee [− log qφ (e)]|YYY =yyy,g=m+ε=β

(24)
The detailed derivation of (24)is given by (25) at the bot-
tom of the page, in which (a) follows from the symmetry
of pe (e |YYY = yyy, g = m ) and evenness of qφ, and (b) follows
from the shift-invariance of KL-divergence and entropy.
Therefore, we have

Ee [− log qφ (e)]|g=m = Eyyy

{
Ee [− log qφ (e)]|YYY =yyy,g=m

}
=∫

Rk

pyyy

(
Ee [− log qφ (e)]|YYY =yyy,g=m

)
dy ≤

∫

Rk

pyyy

(
Ee [− log qφ (e)]|YYY =yyy,g=β

)
dy =

Eyyy

{
Ee [− log qφ (e)]|YYY =yyy,g=β

}
= Ee [− log qφ (e)]|g=β

It follows that

m = arg min
g∈G

Ee [− log qφ (e)] = arg min
g∈G

Ee [φ (e)]

¤
Remark 5. It is well-known that the optimum solution

for the minimum mean-square error (MMSE) estimation
is the conditional mean m (YYY ) = E [X |YYY ]. By placing
a mild restriction on the conditional density function of
the error, Property 2 suggests that the conditional mean
m (YYY ) = E [X |YYY ], which minimizes Ee

[
e2

]
, also minimizes

Ee [φ (e)], where φ is even and convex.

3 Information theoretic interpretation
of the optimum error criterion

Consider the system identification scheme of Fig. 3, in
which the transfer functions of the plant and the adaptive

Ee [− log qφ (e)]|YYY =yyy,g=m =
∫
R

pe (e |YYY = yyy, g = m ) [− log qφ (e)]de ≤∫
R

pe (e |YYY = yyy, g = m )
{
− log

[√
qφ (e− ε(yyy)) qφ (e + ε(yyy))

]}
de =

1
2

∫
R

pe (e |YYY = yyy, g = m ) [− log qφ (e− ε(yyy))]de + 1
2

∫
R

pe (e |YYY = yyy, g = m ) [− log qφ (e + ε(yyy))]de
(a)
=

1
2

∫
R

pe (e |YYY = yyy, g = m ) [− log qφ (e− ε(yyy))] de+ 1
2

∫
R

pe (e |YYY = yyy, g = m ) [− log qφ (e− ε(yyy))]de =∫
R

pe (e |YYY = yyy, g = m ) [− log qφ (e− ε(yyy))] de =

DKL (pe (e |YYY = yyy, g = m ) ‖qφ (e− ε(yyy)) ) + H (e |YYY = yyy, g = m )
(b)
=

DKL (pe (e + ε(yyy) |YYY = yyy, g = m ) ‖qφ (e) ) + H (e− ε(yyy) |YYY = yyy, g = m ) =
DKL (pe (e |YYY = yyy, g = m + ε ) ‖qφ (e) ) + H (e |YYY = yyy, g = m + ε ) = Ee [− log qφ (e)]|YYY =yyy,g=m+ε=β

(25)
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filter are both represented in the FIR form by WWW (z) =∑m
i=1 wiz

−i+1, where we define the m-dimensional param-

eter (or weight) vector WWW = [w1, w2, · · · , wm]T such that
WWW = WWW ∗ for the unknown plant and WWW = WWW (k) for the
adaptive filter at each iteration k. Our goal is to estimate
the parameter vector WWW ∗ of the unknown plant given the
noisy observation d(k), which may be considered as the
desired response of the adaptive filter when driven by the
stochastic input x(k) and perturbed by additive noise n(k).
In this case, the error signal e (k) is formed as

e (k) = d (k)− y (k) =
WWW ∗TXXX (k) + n (k)−WWWT (k)XXX (k) =
VVV T (k) X (k) + n (k)

where y (k) is the output of the adaptive filter, XXX(k) =

[x(k), x(k − 1), · · · , x(k −m + 1)]T is the input data vec-
tor, and VVV (k) = WWW ∗ −WWW (k) is the weight error vector.

Fig. 3 Scheme of system identification with adaptive FIR filter

Given an error criterion Ee [φ (e)], the above parameter
estimation can be solved by the following stochastic gradi-
ent algorithm:

WWW (k + 1) =WWW (k)− η
∂

∂WWW
φ (e (k))

∣∣∣∣
WWW=WWW (k)

=

WWW (k)− η
∂φ (e (k))

∂e (k)

∂e (k)

∂WWW

∣∣∣∣
WWW=WWW (k)

=

WWW (k) + η
∂φ (e (k))

∂e (k)
XXX (k)

∣∣∣∣
WWW=WWW (k)

(26)

The adaptation algorithm brings the problem of how to
choose a suitable error criterion to maximize the perfor-
mance, which may be measured in terms of both adaptation
speed and minimum excess MSE. Among the literatures in
this direction, the work of Douglas[5] deserves special at-
tention. According to [5], under certain mild assumptions,
the optimum error criterion for the slow adaptation (small
η) satisfies

∂φopt (x)

∂x
= −γp′n(x)

2pn(x)
(27)

where pn(·) is the PDF of the interfering noise n (k). By
indefinite integral approach, φopt (·) is given by

φopt (x) = γ0 + γ1 {− log pn (x)} (28)

where γ1 = γ/2. As lim|x|→+∞ φopt (x) = +∞, we have
γ1 > 0, and by Definition 1, we get

φopt (e(k)) ∝ {− log pn (e(k))} (29)

It follows that

Ee [φopt (e(k))] ∝ Ee {− log pn (e(k))} =

DKL (pe (e(k)) ‖pn (e(k)) ) + H (e(k))
(30)

Thus, the optimum error criterion Ee [φopt (e(k))] is equiva-
lent to the error′s entropy plus the KL-divergence between
the PDFs of the error e (k) and interfering noise n (k).

For the identification scheme depicted in Fig. 3, the ideal
error signal (when WWW = WWW ∗) equals the disturbance noise
n (k). So the desired PDF of the error is p∗e (ek) = pn (ek).
Hence, (30) can be rewritten as

Ee [φopt (e(k))] ∝ DKL (pe (e(k)) ‖p∗e (e(k)) ) + H (e(k))
(31)

The meanings of the KL-divergence and entropy enables
us to understand that the first part (the KL-divergence) of
the right side of (31) provides a “force” to shape the error′s
PDF into the desired one, and that the second part (the
entropy) provides another “force” to decrease the disper-
sion (or uncertainty) of the error. Obviously, both “forces”
make the parameter vector WWW (k) approach the optimum
one (WWW ∗). Thus, the optimum error criterion owns abilities
of both PDF shaping and dispersion decreasing. Further,
near the convergence, we have WWW (k) ≈WWW ∗, and hence,

e (k) = (WWW ∗ −WWW (k))
T

XXX (k) + n (k) ≈ n (k) (32)

It follows immediately that pe (x) ≈ pn (x), and
DKL (pe (e(k)) ‖pn (e(k)) ) ≈ 0. Then

Ee [φopt (e(k))] ∝ DKL (pe (e(k)) ‖p∗e (e(k)) ) + H (e(k)) ≈
H (e(k))

(33)
Therefore, the optimum error criterion Ee [φopt (e(k))] is
equivalent to the error entropy criterion near the conver-
gence. This gives an interesting interpretation for why the
error entropy criteria perform well in the areas of adaptive
system training or the supervised learning.

4 Information theoretic approach for
the choice of ppp-power error criteria

We now consider the choice of error criterion as a pa-
rameter search in which a suitable structure of the crite-
rion is assumed. Among parameterized error criteria, the
family of p-power error criteria (Ee [φ (e)] = Ee [|e|p], see
also Example 1), in which p > 0 are the parameter, is
widely used due to its low computation requirement and
good performance[6, 34]. The cost functions and adaptation
algorithms under p-power error criteria for p = 1, 2, 3, 4 are
listed in Table 1.

Table 1 The cost functions and adaptation algorithms for
p = 1, 2, 3, 4

p φ(e) Adaptation algorithms

1 |e| Least absolute difference (LAD)[12]

2 e2 Least mean square (LMS)[3]

3
∣∣∣e3

∣∣∣ Least mean absolute third (LMAT)[36]

4 e4 Least mean fourth (LMF)[12]

With p-power error criteria, one is often confronted with
the problem of how to choose a suitable value of p to im-
prove the performance of the adaptation algorithm. For
cases in where p = 2K (K = 1, 2, · · · ), the problem has

been solved by Walach[12]. In his approach, the optimum
choice of K can be by minimizing a cost function α (K),
which depends on the moments of the interfering noise
n (k). Here, we give an information theoretic approach to
the choice of p, in which the number p is not limited to the
form of p = 2K. By Theorem 3, we have

Ee [|e|p] ∝ DKL (pe (e) ‖qφ (e) ) + H (e) (34)
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where qφ (e) = exp [−γ0 − γ1 |e|p]. Comparing (34) with
(30), we may easily conclude that if the probability density
functions qφ (x) and pn (x) are “close” enough, the p-power
error criterion will be approximately equivalent to the op-
timum error criterion. Since the KL-divergence expresses a
“similarity” or a “distance” of two probability measures, we
may choose number p such that the KL-divergence between
qφ (x) and pn (x) is minimized, that is,

popt = arg min
p∈R+

DKL (pn (x) ‖qφ (x) ) =

arg min
p∈R+

DKL (pn (x) ‖exp [−γ0 − γ1 |x|p] )
(35)

As constants γ0 and γ1 depend on both p and Ee (|x|p) (see
Example 1), the optimum p value will depend on Ee (|x|p),
too. In order to optimize p over all range of Ee (|x|p) , we
propose the following optimization:

popt = arg min
p∈R+

{Ψ(p)} =

arg min
p∈R+

{
min

τ∈R+
DKL (pn (x) ‖exp [−γ0 − γ1 |x|p] )

} (36)

where Ψ (p) = minτ∈R+ DKL (pn (x) ‖exp [−γ0 − γ1 |x|p] )
and τ = Ee (|x|p). Clearly, the smaller value Ψ (p), the
better p.

Consider several specific probability density functions of
n(k), which are depicted in Fig. 4. Note that the term
“MixN” denotes the mixed normal (Gaussian) distribution.
For each noise distribution, the functions Ψ (p) are plot-
ted in Fig. 5. Clearly, for the Gaussian and Laplace cases,
Ψ (p) achieves its global minima at p = 2 and p = 1, re-
spectively; for the Uniform case, the larger the p value,
the smaller the function Ψ (p); for the mixed normal dis-
tribution, Ψ (p) is in its global minimum at approximately
p = 3. Table 2 gives the exact values of Ψ (p) (p = 1, 2, 3, 4)
for each noise distribution. Therefore, if p is limited in set
{1, 2, 3, 4}, then p = 1, 2, 3, 4 will be the optimum choices
for the Laplace, Gaussian, MixN, and Uniform noise, re-
spectively.

Fig. 4 Several probability density functions (Gaussian(0,1):

p(x) =
1√
2π

exp
(−0.5x2)

; Laplace(0.5): p (x) = exp (−2 |x|);
Uniform(–1,1): p (x) = 0.5, (−1 ≤ x ≤ 1); MixN:

p(x) =
1√
2π

{
exp

(−2(x− 0.5)2
)

+ exp
(−2(x + 0.5)2

)}
)

Table 2 Ψ (p) values for p = 1, 2, 3, 4 and each distribution

p = 1 p = 2 p = 3 p = 4

n(k) ∼ Gaussian 0.0484 0 0.0163 0.0472

n(k) ∼ Laplace 0 0.0724 0.1837 0.2929

n(k) ∼ Uniform 0.3069 0.1765 0.1243 0.0962

n(k) ∼ MixN 0.0915 0.0097 0.0007 0.0113

Fig. 5 Curves of Ψ (p) for each noise distribution

We now perform Monte-Carlo simulations to verify the
above conclusion. Let us consider the system identi-
fication scheme of Fig. 3, in which we assume WWW ∗ =
[0.1, 0.3, 0.5, 0.3, 0.1]T. In the experiments, the input signal
x(k) is unity-power white Gaussian noise, and the initial
parameters of the adaptive filter are set to zero. For each
noise distribution (Laplace, Gaussian, MixN, and Uniform)
and each p value (p = 1, 2, 3, 4), 100 Monte-Carlo simula-
tions are run and the results are averaged. The average
convergence curves for each noise distribution and each p
value are shown in Fig. 6, in which the weight error vector
norm is defined as

‖WWW (k)−WWW ∗‖ =

√
(WWW (k)−WWW ∗)T (WWW (k)−WWW ∗) (37)

Note that for each noise distribution, the step-sizes for each
p are chosen so that the initial convergence rates are visu-
ally identical. From Fig. 6, it is evident that for each noise,
the smaller the Ψ (p) value (see Table 2), the better per-
formance (smaller misadjustment) the stochastic gradient
algorithm. In order to compare the statistical results of the
system training, we summarize in Table 3 the sample mean
and standard deviation of the weight w3 (w∗3 = 0.5), from
which we see that the bias and deviation of the optimum
algorithms (with the optimum p values) are both smaller.
Clearly, the simulation results agree with the previous anal-
ysis.

5 Concluding remarks

Relationships between the error criteria and information
theoretic criteria (entropy, KL-divergence, etc.) were in-
vestigated. The error criterion was shown to be equivalent
to the error′s entropy plus a KL-divergence. This basic re-
sult was used to prove two important properties of error
criteria. The optimum error criterion, which owns the abil-
ities of both PDF shaping and dispersion decreasing, can
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be understood from the meanings of the entropy and KL-
divergence. In order to choose a suitable p-power error cri-
terion , a KL-divergence based optimization was proposed,
and was verified by Monte-Carlo simulation experiments of

FIR system training. This work bridges the traditional er-
ror criteria and information theoretic criteria together, and
will help us in choosing or constructing a suitable error
criterion for a specific application.

Fig. 6 Average convergence curves for each p value and each noise distribution with 100 Monte-Carlo simulations

Table 3 The mean ± deviation results of w3 (w∗3 = 0.5) with 100 Monte-Carlo simulations

p = 1 p = 2 p = 3 p = 4

n(k) ∼ Gaussian 0.4955 ± 0.0962 0.4983 ± 0.0664 0.5119 ± 0.0746 0.4964 ± 0.0991

n(k) ∼ Laplace 0.4971 ± 0.0415 0.4945 ± 0.0445 0.4841 ± 0.0751 0.4862 ± 0.0947

n(k) ∼ Uniform 0.5168 ± 0.1118 0.4958 ± 0.0656 0.5085 ± 0.0401 0.4978 ± 0.0303

n(k) ∼ MixN 0.5130 ± 0.1160 0.4924 ± 0.0784 0.5038 ± 0.0623 0.5091 ± 0.0730
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