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Delay-dependent H∞ Control for

T-S Fuzzy Systems Based on a

Switching Fuzzy Model and

Piecewise Lyapunov Function

XIA Zhi-Le1, 2 LI Jun-Min1

Abstract This paper studies the problem of H∞ control for
discrete-time Takagi-Sugeno (T-S) fuzzy systems with time de-
lays. The T-S fuzzy system is transformed to an equivalent
switching fuzzy system. Consequently, the delay-dependent sta-
bilization criteria with H∞ performance are derived for the
switching fuzzy systems based on the piecewise Lyapunov func-
tion. The proposed conditions are given in terms of linear matrix
inequalities (LMIs). The interactions among the fuzzy subsys-
tems are considered in each subregion, and accordingly the pro-
posed conditions are less conservative than the previous results.
Finally, a design example is given to show the validity of the
proposed method.
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The well-known Takagi-Sugeno (T-S) fuzzy model[1] has
recognized as a popular and powerful tool in approximating
complex nonlinear systems. As a consequence, the study
of T-S fuzzy systems has attracted an increasing interest
in the past decades. In view of time delays frequently oc-
curring in practical dynamic systems, T-S fuzzy model was
first used to deal with the stability analysis and control
synthesis of nonlinear time delay systems in [2]. After-
wards, many people devoted a great deal of effort to both
theoretical research and implementation techniques for T-
S fuzzy systems with time delays[3−4]. These results rely
on the existence of a common positive definite matrix P
for all linear models, which in general leads to a conser-
vative result. To reduce this conservatism, the piecewise
Lyapunov function approach[5−6] and the fuzzy Lyapunov
function approach[7−8] have been proposed. However, all
the aforementioned results have not considered the interac-
tions among the fuzzy subsystems. Based on the switching
fuzzy model, the interactions among the fuzzy subsystems
in each subregion were presented in [9] for system without
time delays. However, the result in [9] does not include any
performance criteria in the design of the control law. In ad-
dition, all matrices Xjkl, 1 ≤ k < l ≤ β(j) are required to
be symmetric. In [10], for system without time delays, each
Zji was not required to be symmetric. However, [10] only
addressed the common Lyapunov function approach which
typically led to conservative results. It is well known that
the delay-dependent results are generally less conservative
than delay-independent ones, especially when the size of
the delay is small[5−8].

In this paper, two new delay-dependent stabilization cri-
teria with H∞ performance for discrete-time T-S fuzzy sys-
tems with time delays are dealt with by using a switching
fuzzy model and piecewise Lyapunov function. To obtain
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the relaxed LMI conditions, in each subregion Ωj , the inter-
actions among the fuzzy subsystems in that subregion are
presented by one matrix Zj . Furthermore, the decoupling
technique by the introduction of an auxiliary slack variable
is applied, such that there does not exist any product terms
of the Lyapunov matrix variables and system dynamic ma-
trices in the LMI constraints. Since only a set of LMIs
is involved, the controller design is quite simple and nu-
merically tractable. An example is given to illustrate the
validity of the proposed method.

Notation. For a real matrix S, He{S} denotes S + ST.
The symmetric elements of the symmetric matrix will be
denoted by ∗.

Now we introduce the following lemma that will play an
important role in our main results.

Lemma 1. For real matrices P1, P2, P3, P4, A, Ad,
B, Xj(j = 1, · · · , 5), and Di(i = 1, · · · , 10) with compat-
ible dimensions, the inequalities shown at the bottom of
the next page are equivalent, where U is an extra slack
nonsingular matrix.

Proof. As in [5–6, 11], we can rewrite the inequality (b)
as

»
Σ3

Σ1

–T »
Σ0 Σ2

ΣT
2 0

– »
Σ3

Σ1

–
< 0 (1)

where

Σ1 =
ˆ−I A Ad 0 B 0

˜
, Σ3 = diag{I, I, I, I, I, I},

Σ2 =

2
666664

UT

0
0
0
0
0

3
777775

, Σ0 =

2
666664

0 P1 P2 P3 P4 0
∗ D1 D2 D3 D4 X1

∗ ∗ D5 D6 D7 X2

∗ ∗ ∗ D8 D9 X3

∗ ∗ ∗ ∗ D10 X4

∗ ∗ ∗ ∗ ∗ X5

3
777775

Then we choose the orthogonal complement of Σ1 as

Σ1⊥ =

2
666664

A Ad 0 B 0
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

3
777775

which satisfies Σ1Σ1⊥ = 0. Moreover, [ΣT
1 , Σ1⊥] is of col-

umn full rank. Then it follows that (1) is equivalent to the
following matrix inequality:

ΣT
1⊥

»
Σ3

Σ1

–T »
Σ0 Σ2

ΣT
2 0

– »
Σ3

Σ1

–
Σ1⊥ < 0

which can be further reduced to

ΣT
1⊥Σ0Σ1⊥ < 0 (2)

Thus, we have shown that the inequality (b) is equivalent
to (2).

It is also easily seen that matrix inequality (a) can also
be rewriten as (2). ¤

1 Problem formulation
Consider the following T-S fuzzy model with state delay:
Rule i: IF θ1(t) is µi1, θ2(t) is µi2, · · · , θp(t) is µip then

xxx(t + 1) = Aixxx(t) + Adixxx(t− τ) + Biuuu(t) + B1iddd(t)

zzz(t) = Cixxx(t) + Cdixxx(t− τ) + Diuuu(t) + D1iddd(t)

xxx(t) = φφφ(t), t = −τ, · · · ,−1, 0

(3)
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where i ∈ I = {1, 2, · · · , r}, r is the number of if-then rules,
θ1(t) ∼ θp(t) are the premise variables, µij is the fuzzy set,
xxx(t) ∈ Rn, zzz(t) ∈ Rn1 , uuu(t) ∈ Rm, ddd(t) ∈ Rm1 , and φφφ(t)
are respectively the state, the controlled output, the con-
trol input, the disturbance, and the initial condition. τ > 0
is an integer denoting the known constant time delay.

As illustrated in [5−6], we will define open subregions
as Ωp(p = 1, · · · , s) in the state-space. The corresponding
close subregions are defined as Ω̄p, which satisfy

Ω̄p ∩ Ω̄q = Ω̄υ
i , p 6= q, p, q = 1, · · · , s, i ∈ I

where Ω̄υ
i = {θθθ|hi(θθθ) = 1, 0 ≤ hi(θθθ + εεε) < 1, ∀0 < |εεε| ¿ 1}.

υ is the set of face indexes of the polyhedral hull Ω̄i =
∪Ω̄υ

i , i ∈ I. hi(θθθ) = ωi(θθθ(t))/
Pr

i=1 ωi(θθθ(t)), ωi(θθθ(t)) =
Πp

j=1µij(θj(t)), and θθθ(t) = [θ1(t), · · · , θp(t)].

Then, we will follow the idea of [9] to rewrite system (3)
to be an equivalent discrete-time switching fuzzy system as
the following form:

Region rule j:
IF xxx(t) ∈ Ωj , then

Local plant rule k
IF θ1(t) is µjk1,· · · , θp(t) is µjkp, then

xxx(t + 1) = Ajkxxx(t) + Ajdkxxxτ (t) + Bjkuuu(t) + Bj1kddd(t)

zzz(t) = Cjkxxx(t) + Cjdkxxxτ (t) + Djkuuu(t) + Dj1kddd(t)

xxx(t) = φφφ(t), t = −τ, · · · ,−1, 0

k = 1, 2, · · · , β(j), j = 1, 2, · · · , s

(4)

where xxxτ (t) = xxx(t − τ), Ωj denotes the j-th subregion, s
is the number of subregions partitioned on the state space,
and β(j) is the number of rules in the subregion Ωj . The
final output of the switching fuzzy system is inferred as

xxx(t+1)=

β(j)X

k=1

hjk{Ajkxxx(t)+Ajdkxxxτ (t)+Bjkuuu(t)+Bj1kddd(t)}

zzz(t) =

β(j)X

k=1

hjk{Cjkxxx(t) + Cjdkxxxτ (t) + Djkuuu(t) + Dj1kddd(t)}

xxx(t) =φφφ(t), t = −τ, · · · ,−1, 0, (5)

where xxx(t) ∈ Ωj ,

hjk = hjk(θθθ(t)) =

pQ
l=1

µjkl(θl(t))

β(j)X

k=1

pY

l=1

µjkl(θl(t))

In this paper, two less conservative results for the con-
troller design can be obtained by considering a delayed feed-
back switching fuzzy controller of the following form:

uuu(t) = −
β(j)X

k=1

hjk

ˆ
Fjkxxx(t) + Fjdkxxxτ (t)

˜
, xxx(t) ∈ Ωj (6)

By substituting (6) into (5), the closed-loop switching
fuzzy system can be represented as

xxx(t + 1) = Âjklxxx(t) + Âjdklxxxτ (t) + B̂j1kddd(t)

zzz(t) = Ĉjklxxx(t) + Ĉjdklxxxτ (t) + D̂j1kddd(t)
(7)

where xxx(t) ∈ Ωj ,

2
4

Âjkl Âjdkl B̂j1k

Ĉjkl Ĉjdkl D̂j1k

3
5 =

β(j)X

k=1

β(j)X

l=1

hjkhjl

»
Ajk −BjkFjl Ajdk −BjkFjdl Bj1k

Cjk −DjkFjl Cjdk −DjkFjdl Dj1k

–

The objective of this paper is to design a suitable con-
troller for system (5) with a guaranteed performance in the
H∞ sense that given a constant γ > 0, find a controller (6),
such that the following two requirements are satisfied:

1) The disturbance-free system (7) is globally asymptot-
ically stable;

2) Subject to assumption of zero initial conditions, the
controlled output satisfies ‖zzz‖2 < γ‖ddd‖2 for any nonzero
ddd ∈ l2.

2 Main results

Let the subregion transition from Ωj to Ωi be denoted
by Ω = {(j, i)|xxx(t) ∈ Ωj ,xxx(t + 1) ∈ Ωi}. Here, i may be
equal to j in Ω, when xxx(t) and xxx(t + 1) are in the same
subregion. Consequently, we have the following result.

Theorem 1. Given a constant γ > 0, the closed-loop
discrete-time switching fuzzy system (7) is globally stable
with H∞ performance γ, if there exist a set of positive-
definite matrices Pj , Q1, Q2, the nonsingular matrix F ,
and matrices Xj1, Xj2, Xj3, Xj4, Nj1, Nj2, Nj3, Nj4, Mjk,
Mjdk, j = 1, · · · , s, k = 1, 2, · · · , β(j), such that the follow-
ing LMIs are satisfied:

Πijkk < 0, k = 1, · · · , β(j), (j, i) ∈ Ω (8)

Πijkl + Πijlk < 0, 0 < k < l ≤ β(j), (j, i) ∈ Ω (9)

(a)

2
66664

He{PT
1 A}+ D1 PT

1 Ad + ATP2 + D2 ATP3 + D3 ATP4 + PT
1 B + D4 X1

∗ He{PT
2 Ad}+ D5 AT

d P3 + D6 AT
d P4 + PT

2 B + D7 X2

∗ ∗ D8 PT
3 B + D9 X3

∗ ∗ ∗ He{BTP4}+ D10 X4

∗ ∗ ∗ ∗ X5

3
77775

< 0

(b)

2
666664

−He{U} P1 + UTA P2 + UTAd P3 P4 + UTB 0
∗ D1 D2 D3 D4 X1

∗ ∗ D5 D6 D7 X2

∗ ∗ ∗ D8 D9 X3

∗ ∗ ∗ ∗ D10 X4

∗ ∗ ∗ ∗ ∗ X5

3
777775

< 0
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where Πijkl =

2
66666664

−He{F} Π12 Π13 Π14 Π15 0 0
∗ D1j D2j D3j D4j Xj1 Π27

∗ ∗ D5j D6j D7j Xj2 Π37

∗ ∗ ∗ D8j D9j Xj3 0
∗ ∗ ∗ ∗ D10 Xj4 DT

j1k

∗ ∗ ∗ ∗ ∗ −τ−1Q2 0
∗ ∗ ∗ ∗ ∗ ∗ −I

3
77777775

with

Π12 = Pi + Nj1 + AjkF −BjkMjl, Π13 = Nj2 + AjdkF

−BjkMjdl, Π14 = Pi + Nj3, Π15 = Nj4 + Bj1k, Π27 =

(CjkF −DjkMjl)
T, Π37 = (CjdkF −DjkMjdl)

T, D1j =

Q1−2Pj +He{Xj1−Nj1}, D2j =−Xj1+XT
j2−Nj2, D3j =

XT
j3−NT

j1−Nj3, D4j = XT
j4−Nj4, D5j = −Q1−He{Xj2},

D6j = −NT
j2 −XT

j3, D7j = −XT
j4, D8j = τQ2 −He{Nj3},

D9j = −Nj4, D10 = −γ2I

Moreover, the control law is given by

Fjk = MjkF−1, Fjdk = MjdkF−1, k = 1, · · · , β(j)

Proof. Let
X̄ = F−TXF−1

where X stands for Pj , Q1, Q2, Nj1, Nj2, Nj3, Xj1, Xj2, Xj3,
D1j , D2j , D3j , D5j , D6j , and D8j(j = 1, · · · , s).

Choose the following piecewise Lyapunov function:

V (t) = V1(t) + V2(t) + V3(t)

V1(t) = 2xxxT(t)P̄jxxx(t), V2(t) =

t−1X
m=t−τ

xxxT(m)Q̄1xxx(m)

V3(t) =

−1X

θ=−τ

t−1X

m=t+θ

ζζζT(m)Q̄2ζζζ(m), xxx(t) ∈ Ωj

where ζζζ(t) = xxx(t+1)−xxx(t). Define ∆V (t) = V (t+1)−V (t)
then along the solution (7), we have

∆V1(t) = 2[Âjklxxx(t) + Âjdklxxxτ (t) + B̂j1kddd(t)]TP̄i×
[ζζζ(t) + xxx(t)]− 2xxxT(t)P̄jxxx(t) (10)

∆V2(t) =xxxT(t)Q̄1xxx(t)− xxxT
τ (t)Q̄1xxxτ (t) (11)

∆V3(t) = τζζζT(t)Q̄2ζζζ(t)−
t−1X

m=t−τ

ζζζT(m)Q̄2ζζζ(m) (12)

Observing the definition of ζζζ(t) and system (7), we can
get the following equations:

M1 = 2[xxxT(t)X̄j1 + xxxT
τ (t)X̄j2 + ζζζT(t)X̄j3 + dddT(t)Xj4U ]×

ˆ
xxx(t)− xxxτ (t)−

t−1X
m=t−τ

ζζζ(m)
˜

= 0 (13)

M2 = 2[xxxT(t)N̄T
j1 + xxxT

τ (t)N̄T
j2 + ζζζT(t)N̄T

j3 + dddT(t)NT
j4U ]×

[(Âjkl − I)xxx(t) + Âjdklxxxτ (t) + B̂j1kddd(t)− ζζζ(t)] = 0

(14)

Since ±2aaaTbbb ≤ aaaTMaaa + bbbTM−1bbb holds for compatible
vectors aaa and bbb, and any compatible matrix M > 0, we
have

− 2[xxxT(t)X̄j1 + xxxT
τ (t)X̄j2 + ζζζT(t)X̄j3 + dddT(t)Xj4U ]×

t−1X
m=t−τ

ζζζ(m) ≤ τξξξT(t)

2
664

X̄j1

X̄j2

X̄j3

Xj4U

3
775 Q̄−1

2

2
664

X̄j1

X̄j2

X̄j3

Xj4U

3
775

T

ξξξ(t)+

t−1X
m=t−τ

ζζζT(m)Q̄2ζζζ(m) (15)

Then, from (10) ∼ (15) and considering (7), we can ob-
tain that

∆V (t) + zzzT(t)zzz(t)− γ2dddT(t)ddd(t) ≤ ξξξT(t)Ξijklξξξ(t) (16)

where Ξijkl =

2
664

Ξ11 Ξ12 Ξ13 Ξ14

∗ Ξ22 Ξ23 Ξ24

∗ ∗ Ξ33 Ξ34

∗ ∗ ∗ Ξ44

3
775+ τ

2
664

X̄j1

X̄j2

X̄j3

Xj4U

3
775 Q̄−1

2

2
664

X̄j1

X̄j2

X̄j3

Xj4U

3
775

T

+

ˆ
Ĉjkl Ĉjdkl 0 D̂j1k

˜T ˆ
Ĉjkl Ĉjdkl 0 D̂j1k

˜

with

Ξ11 = He{(P̄i + N̄j1)
TÂjkl}+ D̄1j , Ξ12 = (P̄i + N̄j1)

T×
Âjdkl+ÂTTjklN̄j2+D̄2j , Ξ13 =ÂT

jkl(P̄i+N̄j3)+D̄3j , Ξ14

= (P̄i + N̄j1)
TB̂j1k + ÂT

jklU
TNj4 + UTD4j , Ξ22 = D̄5j+

He{N̄T
j2Âjdkl}, Ξ23 = ÂT

jdkl(P̄i + N̄j3) + D̄6j , Ξ33 = D̄8j ,

Ξ24 = ÂT
jdklU

TNj4 + N̄T
j2B̂j1k + UTD7j , Ξ34 = UTD9j+

(P̄i + N̄j3)
TB̂j1k, Ξ44 = He{B̂T

j1kUTNj4}+ D10

Then

∆V (t) + zzzT(t)zzz(t)− γ2dddT(t)ddd(t) < 0 (17)

If

Ξijkl < 0 (18)

by Schur complement, (18) is equivalent to

2
66666666664

Ξ11 Ξ12 Ξ13 Ξ14 X̄j1 ĈT
jkl

∗ Ξ22 Ξ23 Ξ24 X̄j2 ĈT
jdkl

∗ ∗ Ξ33 Ξ34 X̄j3 0

∗ ∗ ∗ Ξ44 Xj4U D̂T
j1k

∗ ∗ ∗ ∗ −τ−1Q̄2 0

∗ ∗ ∗ ∗ ∗ −I

3
77777777775

< 0 (19)

Using Lemma 1, (19) is equivalent to (20), as shown at the
bottom of the next page.

Let U = F−1, Fjl = MjlU , Fjdl = MjdlU , and G =
diag{F, F, F, F, I, F, I}. Pre- and post-multiplying the left-
hand side of (20) by GT and G, respectively, we have the
following equation

Π =

β(j)X

k=1

h2
jkΠijkk +

β(j)X

k<l

hjkhjl(Πijkl + Πijlk) (21)

If (8) and (9) hold, Π < 0, which implies that (17) holds.
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Therefore, when assuming the zero disturbance input,
from (10) ∼ (15), we can obtain that

∆V = ∆V1 + ∆V2 + ∆V3 + M1 + M2 ≤
2
4

xxx(t)
xxxτ (t)
ζζζ(t)

3
5

T8<
:

2
4

Ξ11 Ξ12 Ξ13

∗ Ξ22 Ξ23

∗ ∗ Ξ33

3
5 +

τ

2
4

X̄j1

X̄j2

X̄j3

3
5 Q̄−1

2

2
4

X̄j1

X̄j2

X̄j3

3
5

T9=
;

2
4

xxx(t)
xxxτ (t)
ζζζ(t)

3
5

By Schur complement, LMI (19) implies ∆V < 0. We
can conclude that the closed-loop system (7) with ddd(t) = 000
is asymptotically stable.

Now, to establish the H∞ performance for the closed loop
system (7), asssume zero-initial condition, and consider the
following index:

J =

∞X
t=0

[zzzT(t)zzz(t)− γ2dddT(t)ddd(t)] (22)

Under zero initial condition and (17), we have J ≤P∞
t=0[−∆V (t)] = −V (∞) + V (0) < 0, which means that

‖zzz‖2 < γ‖ddd‖2. ¤
To reduce the stabilization criterion further, the inter-

actions among the fuzzy subsystems in each subregion Ωj

will be considered. In addition, all matrices Zjkl, 1 ≤ k <
l ≤ β(j), are not required to be symmetric. Consequently,
we have the following result.

Theorem 2. Given a constant γ > 0, the closed-loop
discrete-time switching fuzzy system (7) is globally stable
with H∞ performance γ, if there exist a set of positive-
definite matrices Pj , Q1, Q2, the nonsingular matrix F , and
matrices Xj1, Xj2, Xj3, Xj4, Nj1, Nj2, Nj3, Nj4, Mjk,
Mjdk, Zjlk = ZT

jkl, j = 1, · · · , s, k, l = 1, · · · , β(j), such
that the following LMIs are satisfied:

Πijkk < Zjkk, k = 1, · · · , β(j), (j, i) ∈ Ω (23)

Πijkl + Πijlk < Zjkl + ZT
jkl, 0 < k < l ≤ β(j), (j, i) ∈ Ω

(24)

Zj =

2
6664

Zj11 Zj12 · · · Zj1β(j)

Zj21 Zj22 · · · Zj2β(j)

...
...

. . .
...

Zjβ(j)1 Zjβ(j)2 · · · Zjβ(j)β(j)

3
7775 < 0 (25)

Moreover, the control law is given by

Fjk = MjkF−1, Fjdk = MjdkF−1, k = 1, · · · , β(j)

Proof. If (23) and (24) are feasible

Π <

β(j)X

k=1

h2
jkZjkk +

β(j)X

k<l

hjkhjl(Zjkl + ZT
jkl) = HT

j ZjHj

where Hj ≡
ˆ
hj1I hj2I · · · hjβ(j)I

˜T
.

If (25) holds, Π < 0. Then, we have (17). Then, the
Theorem 2 can be proved by following the same lines as in
the proof of Theorem 1. ¤

3 Numerical example
Example 1. Consider a local communication network

system which is borrowed from [6] to show the effectiveness
and advantage of the results in this paper.

The membership functions µi1 are

µ11 =

8
<
:

1, −5 ≤ x1 < −2

0.5(1− 0.5x1), −2 ≤ x1 < 2

0, 2 ≤ x1 ≤ 5

µ21 =

8
><
>:

0, −5 ≤ x1 < −2

0.5(1 + 0.5x1), −2 ≤ x1 < 2

1− (1− exp{−5(x1 − 3.5)})−1, 2 < x1 ≤ 5

µ31 =

(
0, −5 ≤ x1 ≤ 2

(1 + exp{−5(x1 − 3.5)})−1, 2 < x1 ≤ 5

The system matrices are

A1 =

»
1 2.5
0 1

–
, A2 =

»
1 0.5
0 1

–
, A3 =

»
1 α
0 1

–

Ad1 =

»
0.015 0

1 0

–
, Ad2 =

»
0.005 0
0.33 0

–
, Ad3 =

»
0.009 0
0.6 0

–

BBB1 = BBB2 =
ˆ
1 1

˜T
,BBB3 =

ˆ
0.5 0.5

˜T
,BBB11 =

ˆ
0 0.02

˜T

BBB12 =
ˆ
0.02 0

˜T
, BBB13 =

ˆ
0.05 0.05

˜T

CCC1 = CCC2 =
ˆ
0.02 −0.03

˜
, CCC3 =

ˆ
0.01 −0.02

˜

CCCd1 = CCCd2 = CCCd3 =
ˆ
0.03 −0.01

˜
,

D1 = D2 = D3 = 0.1, D11 = D12 = D13 = 0.05

The parameter α is adjusted to compare the relaxation
of Theorems 1 and 2. For γ = 0.2, Table 1 shows the
allowable values of α. Divide the state space into three
subregions. The membership functions µji1 and parti-
tion of subregions are shown in Fig. 1. The system ma-
trices are A11 = A21 = A1, A1d1 = A2d1 = Ad1, BBB11 =
BBB21 = BBB1, BBB111 = BBB211 = BBB11, CCC11 = CCC21 = CCC1,
CCC1d1 = CCC2d1 = CCCd1, D11 = D21 = D1, D111 = D211 = D11,
for µ11 = µ111∪µ211, A22 = A31 = A2, A2d2 = A3d1 = Ad2,
BBB22 = BBB31 = BBB2, BBB212 = BBB311 = BBB12, CCC22 = CCC31 = CCC2,
CCC2d2 = CCC3d1 = CCCd2, D22 = D31 = D2, D212 = D311 = D12,
for µ21 = µ221 ∪ µ311, A32 = A3, A3d2 = Ad3, BBB32 = BBB3,
BBB312 = BBB13, CCC32 = CCC3, CCC3d2 = CCCd3, D32 = D3, D312 =
D13, for µ31 = µ321.

Table 1 Allowable values of α

Methods Theorem 1 Theorem 2

a [0.412, 2.186] [0.411, 3.172]

β(j)X

k=1

β(j)X

l=1

hjkhjl

2
666666664

−He{U} P̄i + N̄j1 + UTAjkl N̄j2 + UTAjdkl P̄i + N̄j3 UT(Nj4 + Bj1k) 0 0
∗ D̄1j D̄2j D̄3j UTD4j X̄j1 CT

jkl

∗ ∗ D̄5j D̄6j UTD7j X̄j2 CT
jdkl

∗ ∗ ∗ D̄8j UTD9j X̄j3 0
∗ ∗ ∗ ∗ D10 Xj4U DT

j1k

∗ ∗ ∗ ∗ ∗ −τ−1Q̄2 0
∗ ∗ ∗ ∗ ∗ ∗ −I

3
777777775

< 0 (20)



No. 9 XIA Zhi-Le and LI Jim-Min.: Delay-dependent H∞ Control for T-S Fuzzy Systems Based on · · · 1239

Fig. 1 Membership functions and partition of subspaces

Assume α = 3 and d(t) = e−0.2tsint. References [5] and
[6] fail to find a feasible solution. In contrast, by
Theorem 2, we obtain

P1 =

»
0.9154 −0.7736
−0.7736 1.0807

–
, P2 =

»
1.3193 −0.9962
−0.9962 1.2010

–

P3 =

»
1.3188 −0.9973
−0.9973 1.2025

–
, F =

»
2.5980 −2.0094
−1.9773 2.3448

–

F11 =
ˆ
0.4517 1.6895

˜
, F21 =

ˆ
0.4450 1.6864

˜

F22 =
ˆ
0.4463 0.7129

˜
, F31 =

ˆ
0.1074 0.2879

˜

F32 =
ˆ
1.1942 3.9106

˜
, F1d1 =

ˆ
0.5198 −0.0003

˜

F2d1 =
ˆ
0.5198 −0.0003

˜
, F2d2 =

ˆ
0.1723 −0.0003

˜

F3d1 =
ˆ
0.2146 −0.0022

˜
, F3d2 =

ˆ
0.4508 0.0015

˜

Fig. 2 shows the state responses of the closed-loop system
(7) with initial conditions φφφ(t) = [−3.5e−t/3, t + 4]T, t =
−3, · · · , 0.

Fig. 2 The state responses

4 Conclusion
Based on the switching fuzzy system, piecewise Lya-

punov function, and state transitions between all possi-

ble subregions, two new stabilization conditions with H∞
performance for discrete-time fuzzy system have been pro-
posed. The new condition has reduced the conservatism of
the previous works. If the conditions are feasible, the state
feedback controllers can be easily constructed by solving a
set of LMIs. An example was presented to demonstrate the
advantage of the proposed approach.
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