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Convergence Properties Analysis

of Gradient Neural Network for

Solving Online Linear Equations
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Abstract A gradient neural network (GNN) for solving on-
line a set of simultaneous linear equations is generalized and
investigated in this paper. Instead of the earlier-presented
asymptotical convergence, global exponential convergence could
be proved for such a class of neural networks. In addition,
superior convergence could be achieved using power-sigmoid
activation-functions, compared with using linear activation-
functions. Computer-simulation results substantiate further the
above analysis and efficacy of such neural networks.
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The efficient solution of simultaneous linear equations
is viewed as a fundamental problem widely encountered
in science and engineering. It is usually an essential
part of many online solutions, e.g., as preliminary steps
for optimization[1], signal-processing[2], electromagnetic
systems[3], and robot inverse kinematics[4]. In mathemat-
ics, the problem of simultaneous linear equations could be
generally formulated as

Axxx = bbb (1)

where coefficient matrix A ∈ Rn×n and coefficient vector
bbb ∈ Rn, while xxx ∈ Rn is the unknown vector to be solved.

There are two general types of solutions to the prob-
lem of linear equations. One is the numerical algorithms
performed on digital computers (i.e., on our today′s com-
puters). Usually, the minimal arithmetic operations for a
numerical algorithm are proportional to the cube of the
coefficient matrix dimension n, i.e., O(n3) operations. Evi-
dently, such serial-processing numerical algorithms may not
be efficient enough for large-scale online or real-time appli-
cations. Thus, some O(n2)-operation algorithms were pro-

posed in order to remedy this computational problem[5−6].
However, they may still not be fast enough. Being the
second type of solution, many parallel-processing compu-
tational methods have been developed, analyzed, and im-
plemented on specific architectures[2,4,7−12].

As a parallel-processing computational model, a gradi-
ent neural network (GNN) was proposed by Wang[13] to
solve (1) in real time. Asymptotical convergence was pre-
sented as well in [13] for such a GNN. It is worth pointing
out that a pure asymptotical convergence just implies that
the GNN states may only theoretically approach the solu-
tion (as time t → +∞), which may not be acceptable in

practice[11]. As a result, the analysis on global exponential
convergence is desirable for GNN models. In this paper,
we generalize Wang′s neural network using power-sigmoid
activation-functions and provide detailed analysis on global
exponential convergence of the GNN models.
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The remainder of this paper is organized in four sections.
Section 1 presents the problem formulation and neural-
network solver. In Section 2, global exponential conver-
gence is investigated for the neural-network solver. In Sec-
tion 3, an illustrative example is given. Conclusions are
finally drawn in Section 4. Before ending the section, we
mention the following main contributions of this paper:

1) Global exponential convergence is proved for the GNN
models solving linear equation Axxx = bbb, compared with the
earlier-presented asymptotical convergence.

2) Superior convergence is proved for the general-
ized GNN model which exploits power-sigmoid activation-
functions, compared with classic linear GNN model.

1 Problem formulation and neural solver

In order to solve (1) in parallel and in real time, a

GNN[13] could be developed as the following vector-form
differential equation:

ẋxx(t) = −γAT(Axxx(t)− bbb) (2)

where initial state xxx0 = xxx(0) ∈ Rn and AT denotes the
transpose of matrix A. In addition, being the reciprocal of
a capacitance parameter, design parameter γ > 0 should
be implemented as large as possible. The neural-network
architecture of GNN model (2) is shown in Fig. 1.

Fig. 1 Architecture and connection of GNN (2) solving Axxx = bbb

GNN (2) can be generalized using a monotonically in-
creasing odd activation-function array:

ẋxx(t) = −γATFFF (Axxx(t)− bbb) (3)

where FFF (·) : Rn → Rn denotes an activation-function vec-
tor mapping (or an activation-function vector array) of re-
current neural networks. Note that array FFF (·) is made of
n monotonically increasing odd activation-functions f(·),
e.g., the following two basic types depicted in Fig. 2:

1) Linear activation-function f(ei) = ei (with ei the i-th
element of residual-error vector eee = Axxx(t)− bbb);

2) Power-sigmoid activation-function

f(ei) =





ep
i , if |ei| > 1

1 + exp(−ξ)

1− exp(−ξ)
· 1− exp(−ξei)

1 + exp(−ξei)
, otherwise

(4)

with suitable design parameters ξ ≥ 2 and p ≥ 3.
It is worth mentioning that the power-sigmoid

activation-function, constructed as a combination of power
and sigmoid functions, could make the neural network
achieve superior convergence and robustness properties[11].
Besides, the block diagram of GNN model (3) is depicted
in Fig. 3 (in addition to Fig. 1) for a better understanding
of it.
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Fig. 2 Profiles of linear and nonlinear activation functions

Fig. 3 Block diagram of GNN model (3) solving Axxx = bbb

2 Theoretical analysis
While Section 1 presents the GNN models (including the

generalized one (3)), in this section, we will analyze their
global exponential convergence and superior convergence
properties of using different activation functions.

Theorem 1. Consider nonsingular constant matrix
A ∈ Rn×n in linear equation (1). If a linear or power-
sigmoid activation-function array FFF (·) is used, then state
vector xxx(t) of GNN model (3) starting from any initial state
xxx0 ∈ Rn will exponentially converge to the theoretical so-
lution xxx∗ = A−1bbb of linear equation Axxx(t) = bbb. In addition,
the exponential-convergence rate is at least αγ with α de-
noting the minimum eigenvalue of ATA. Moreover, the
GNN model (3) using power-sigmoid activation functions
has better convergence than the GNN model using linear
activation functions (equivalently, GNN (2)).

Proof. To analyze GNN models (2) and (3), let us define

the solution error x̃xx(t) = xxx(t) − xxx∗, and let ‖xxx‖2 =
√

xxxTxxx
denote the two norms of vector xxx. Substituting xxx(t) =
x̃xx(t) + xxx∗ and xxx∗ = A−1bbb into GNN (3), we have

˙̃xxx(t) = −γATFFF (Ax̃xx(t)) (5)

A Lyapunov function candidate can thus be defined as
v(xxx) = ‖x̃xx(t)‖22/2 = (x̃xxTx̃xx)/2 ≥ 0. Evidently, v(xxx) is posi-
tive definite in the sense that v(xxx) > 0 for any x̃xx(t) 6= 0 and
v(xxx) = 0 for x̃xx(t) = 0 only (of which the latter corresponds
to xxx(t) = xxx∗). In addition, v(xxx) → ∞ as ‖x̃xx(t)‖2 → ∞.
Moreover, the time derivative of v(xxx) along the system tra-
jectory (5) is derived as

dv

dt
= x̃xxT ˙̃xxx = x̃xxT

(
−γATFFF (Ax̃xx)

)
= −γ(Ax̃xx)TFFF (Ax̃xx) (6)

In view of processing-array FFF (·) constituted by activation
functions f(·) which are defined around (4) and shown in

Fig. 2, we know that

(Ax̃xx)TFFF (Ax̃xx) =

n∑
i=1

[Ax̃xx]if ([Ax̃xx]i) ≥
n∑

i=1

[Ax̃xx]i[Ax̃xx]i =

n∑
i=1

[Ax̃xx]2i = (Ax̃xx)T(Ax̃xx) = ‖Ax̃xx(t)‖22
(7)

Then, combining (6) and (7), we have

dv

dt
≤ −γ‖Ax̃xx‖22 ≤ 0 (8)

It follows that v̇(t) is negative definite in the sense that
v̇(t) < 0 for any x̃xx(t) 6= 0 and v̇(t) = 0 for x̃xx(t) = 0 only
(corresponding to xxx(t) = xxx∗), due to matrix A being non-
singular and design-parameter γ > 0.

By Lyapunov stability theory[14−15], we have that x̃xx(t) →
0 as time t approaches +∞; equivalently, neural state xxx(t)
of GNN (3) is globally convergent to the theoretical inverse
xxx∗. Furthermore, by assuming α > 0 to be the minimum
eigenvalue of ATA, it follows from x̃xxTATAx̃xx ≥ αx̃xxTx̃xx and
(8) that

v̇ ≤ −γ‖Ax̃xx‖22 = −γx̃xxTATAx̃xx ≤ −αγ‖x̃xx‖22 ≤ −2αγv

Thus, v(t) ≤ exp(−2αγt)v(0), which, together with v(0) =
‖x̃xx(0)‖22/2, yields

‖x̃xx(t)‖2 ≤ ‖x̃xx(0)‖2 exp(−αγt), t ∈ [0, +∞)

The proof on global exponential convergence of GNN model
(3) (including GNN (2)) is thus complete (with convergence
rate being αγ at least).

We now come to prove the additional superior con-
vergence of GNN model (3) using power-sigmoid activa-
tion functions compared with the situation of using lin-
ear activation functions. However, in the linear situation,
since FFF (eee) = eee and f(ei) = ei, GNN model (3) reduces

to Wang′s neural network (2)[13]. Equation (5) becomes
˙̃xxx(t) = −γAT(Ax̃xx(t)), and the time derivative of Lyapunov
function v(xxx) becomes

dv

dt
= −γ(Ax̃xx)T(Ax̃xx) = −γ‖Ax̃xx‖22 (9)

However, in the power-sigmoid situation, let us review (5)
through (8). In (7), simply put, [Ax̃xx]if([Ax̃xx]i) ≥ [Ax̃xx]2i ,
∀i ∈ {1, 2, · · · , n}. However, for most of the situations
except [Ax̃xx]i = ±1 = f([Ax̃xx]i),

[Ax̃xx]if([Ax̃xx]i) > [Ax̃xx]2i (for [Ax̃xx]i ∈ (−1, 1) or around ± 1)

[Ax̃xx]if([Ax̃xx]i) À [Ax̃xx]2i (for |[Ax̃xx]i| À 1)

In view of the above analysis and (8), we know by com-
paring with the linear situation (9) that the convergence
speed in the power-sigmoid situation, v̇, is at least equal to
but usually faster (or much faster) than that in the linear
situation (9). This means that the GNN model (3) using
power-sigmoid activation functions has a superior conver-
gence to the GNN model (3) using linear activation func-
tions (equivalently, GNN (2)). ¤

Remark 1. Nonlinearity always exists, which is one of
the main motivations for us to investigate power-sigmoid
or other kinds of activation functions. Even if the linear
activation function is preferred, the nonlinear phenomenon
may appear in its hardware implementation, e.g. in the
form of saturation and/or inconsistency of the linear slope
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and in digital realization due to truncation and round-off
errors[16].

Remark 2. One more advantage of using the power-
sigmoid activation function over the linear activation func-
tion lies in the extra parameters ξ and p. When there is
an upper bound on γ due to hardware implementation, the
new parameters ξ and p will be other effective factors ex-
pediting the neural-network convergence.

Remark 3. By following the reviewers′ inspiring and
constructive comments, an approach proposed in [17], being
another parallel-processing computational method for solv-
ing online linear equations, is investigated and compared as
follows. 1) The approach proposed in [17], which employs
a signum activation-function array, could be viewed as a
special case of GNN (3). However, as the signum function
is discontinuous, it may introduce extra issues of solution-
existence, uniqueness, chattering, and stability analysis[18].
2) In contrast, using linear or power-sigmoid activation-
function arrays, our GNN model (3) could be proved glob-
ally stable and has no such extra solution-issues. Moreover,
global exponential convergence of our GNN model (3) is
also proved, being evidently more efficient and desirable.

3 Illustrative examples

For illustrative purposes, let us consider the coefficient
matrix A and vector bbb in linear equation (1) as follows:

A =




1 2 0
0 −1 −1
1 1 −2


 , bbb =




1
1
2




for which we could verify that xxx∗ = [3,−1, 0]T in order to
compare the correctness of the neural-network solutions.

As seen from Figs. 4 ∼ 6, starting with any initial state
randomly selected from [−2, 2], state vector xxx(t) of GNN
model (3) always converges to the theoretical solution
xxx∗ = A−1bbb, where design parameters ξ = 5 and p = 3
are used for simulative purposes. In addition, when using
power-sigmoid activation functions, GNN model (3) could
converge roughly twice faster than the one using linear ac-
tivation functions. Furthermore, as shown in Figs. 5 and
6, the convergence of GNN models could be expedited by
increasing γ. For example, as shown in Fig. 6, the conver-
gence time is approximately 0.1ms when γ = 106, whereas
the convergence time decreases to approximately 0.01 ms
when γ increases to 107. These computer-simulation re-
sults substantiate the theoretical analysis and effectiveness
of generalized GNN model (3).

4 Conclusions

Compared with the earlier-presented linear GNN model
and its asymptotical convergence[13], a generalized GNN
model and its global exponential convergence have been
presented in this paper for linear equations solving. We
show that exponential convergence can be achieved for
the GNN model using linear activation functions, and
that the GNN model could perform much better by using
power-sigmoid activation functions than the former situa-
tion. Both theoretical analysis and simulation results have
demonstrated the efficacy of GNN models on solving linear
equation Axxx = bbb.

(a) Using linear activation functions

(b) Using power-sigmoid activation functions

Fig. 4 Solving Axxx = bbb by GNN (3) using different activation
functions with γ = 106 and starting from random initial states

xxx(0)

(a) γ = 106

(b) γ = 107

Fig. 5 Solution error ‖ xxx(t)− xxx∗ ‖2 of GNN (3) using linear
activation functions
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(a) γ = 106

(b) γ = 107

Fig. 6 Solution error ‖ xxx(t)− xxx∗ ‖2 of using power-sigmoid
functions
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