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Synthesis for Spatially Interconnected Systems with

Distributed Output Feedback Controllers
HUANG Huang1 WU Qing-He1 LI Hui1

Abstract This paper considers the design of distributed control architecture for spatially interconnected systems that are composed
of several similar interconnected sub-units. Each sub-unit is a linear continuous time system and directly interacts with its nearest
neighbors. This class of systems exists in several applications such as automated highway systems, power systems, and computer
networks. Hybrid Lyapunov criterion and the hybrid real bounded lemma are derived to determine the stability and H∞ performance
of the overall system. In order to stabilize this class of systems, distributed dynamic output feedback controllers are considered, and
tractable linear matrix inequality (LMI)-based algorithms for the derivation of distributed controllers are presented. The change
variable approach is introduced in the LMI-based algorithms due to its higher efficiency and numerically stable implementation
than the elimination algorithm as introduced in previous works. It is shown through a numerical example that the distributed H∞
controllers developed in this article are superior to decentralized controllers in several aspects.
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Spatially interconnected systems (SISs) are a special set
of multidimensional (n-D) systems characterized by sev-
eral variables, which are indexed by spatial coordinates in
addition to time. The SISs consist of nonhomogeneous or
homogeneous interacting components and each component
is a continuous time subsystem. SISs arise from many en-
gineering applications, such as power systems, computer
networks, web-transport systems, and automated highway
systems. One common feature of such physical systems
is that their components are geographically isolated. To
deal with this kind of large-scale systems, up till now, most
published works have been focused on decentralized control
strategy[1−3] and only in recent years some scholars began
to explore distributed control strategy over SISs[4−9]. In
[6], a frequency domain criterion for optimal distributed
controllers was established; in [4− 5], a distributed control
architecture was implemented in robot formation control;
and in [7−8], a systemic approach of distributed controllers
design for SISs was developed via linear matrix inequality
(LMI) theory[10].

As we all know, decentralized control schemes present a
practical method for controller design. The decentralized
controllers utilize only the states of the local subsystems
without any information exchange with other subsystems.
The no–information–exchange restriction of decentralized
controllers makes it flexible and simple during controller
design and implementation, and thus decentralized control
has been studied widely and deeply over the last decade.

However, there is a negative side of this seemingly ad-
vantageous decentralized control: the information injected
into the controllers is completely localized and thus is lim-
ited. It is natural that the more information we get from
the local subsystem, the better control effects the con-
troller will have. In order to overcome this shortcoming
of the decentralized schemes, distributed control problem
for the distributed parameter systems was originally pro-
posed by Bamieh[9]. Later, D′Andrea[7] developed a more
generated method for distributed control synthesis for the
SISs, which was successfully applied to a team of aerial
vehicles to perform close formation flight. With the infor-
mation exchange between the neighboring subsystems, the
distributed controllers can behave more optimistically both

Received July 14, 2008; in revised form December 22, 2008
Supported by the Funds for Creative Graduate Groups of Beijing

Institute of Technology (GA200803)
1. Department of Automation, Beijing Institute of Technology, Bei-

jing 100081, P.R.China
DOI: 10.3724/SP.J.1004.2009.01128

in response time and system gain in comparison with de-
centralized controllers. One thing to be aware of is that
the distributed controllers we are going to design are only
relevant to its related subsystems, and thus when other
subsystems′ models or the number of subsystems changes,
the invariant subsystems′ controllers still work.

In this paper, we present a more in-depth and compre-
hensive stability analysis of SISs and we adopt dynamic
output feedback H∞ control scheme, which is similar to
[7], to generate a distributed close-loop interconnected sys-
tem. In this distributed system, every subsystem is treated
as a hybrid Roesser model (RM) whose stability criterion

can be recast into linear matrix inequalities[11].
Furthermore, based on real bounded lemma, we extend

this criterion matrix to the form which embraces the H∞
property of the subsystems. This extended criterion can be
considered as a hybrid real bounded lemma.

It is well-known that the real bounded lemma, which
is theoretical foundation of the H∞ dynamic output de-
sign, provides a LMI to determine the stability and the
H∞ gain property of a system. However, for the H∞ dy-
namic output design, the inequality in the bounded real
lemma becomes a bilinear matrix inequality (BMI), which

is an NP hard problem[1, 12−15]. In [13], the Lyapunov ma-
trix in the BMIs was set as block diagonal form, and the
BMIs were rewritten as LMIs. Reference [15] used the idea
of the homotopy method to solve the BMIs. However, the
more generally used approach dealing with this BMIs is
called elimination algorithm, which was originally intro-
duced by Gahinet[14] and Iwasaki[16]. In [14, 16], necessary
and sufficient conditions of the existence of γ−suboptimal
controller was given based on LMIs. Moreover, this algo-
rithm was applied to distributed output feedback controller
design of spatially interconnected systems[7]. In contrast to
[7], we applied another algorithm called change variable al-
gorithm during distributed controllers design, which was
originally proposed by Gahinet[12]. Based on the controller
development method of [7], some improvements are made
for the design approach, which is more efficient and nu-
merically stably implemented. To verify the effectiveness
of the proposed algorithm, simulation results are included
for applications on a spatially interconnected system.

This paper is organized as follows. In Section 1, we es-
tablish the state-space description of the SISs. In Section2,
we define the performance requirements and the hybrid cri-
terions in the form of LMIs for the SISs. In Section 3, we
present the controller design process based on change vari-
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able algorithm. Section 4 shows how distributed control
architecture works in a spring-mass system. The perfor-
mance of the overall system under distributed controllers
is compared with the performance under decentralized con-
trollers at the end of the paper.

1 Problem statement

Throughout this paper, we consider spatially invariant
continuous systems and restrict ourselves to infinite spatial
extent system for the reason that if the infinite extent sys-
tem is well-posed, stable, and contractive, these properties
are inherited by all periodic interconnections[7].

In parallel to [7], we consider vector valued signals,
which are functions of L + 1 independent variables, u =
u(t, s1, s2, · · · , sL), where t is a time-based variable that
belongs to non-negative real value, i.e., t ∈ {R+, 0}, si

is an integer, i.e., si ∈ Z or si ∈ Zi = {1, 2, · · · , Ni},
which represents periodicity of period Ni in spatial dimen-
sion i, and L is the dimension of the spatial coordinates.
For simplification, the L-tuple (s1, s2, · · · , sL) is denoted
by sss. Particularly, when L = 1, we get the one spatial
dimension interconnected systems.

We consider signals u(t, s), where t denotes the tempo-
ral variable and sss denotes the spatial variables both in
continuous time domain and discrete spatial domain. The
norm definitions of these two domains are

‖u‖2l2 = 〈u, u〉l2 =
∑

s1∈Z1

· · ·
∑

sL∈ZL

|u(sss)|2 (1)

‖u‖2L2 = 〈u, u〉L2 =

∫ 0

∞
|u(t)|2dt (2)

Comparing with the Laplace operator which acts on time
domain, we define the spatial shift operator si

[7] , acting
on signals in l2 , as follows

(Siu(t))(sss) = u(t, s1, · · · , si + 1, · · · , sL), i = 1, 2, · · · , L

(S−1
i u(t))(sss) = u(t, s1, · · · , si − 1, · · · , sL), i = 1, 2, · · · , L

(3)

where Si is a shift operator, which acts on i-th spatial di-
mension.

With those definitions shown above, we are ready to in-
troduce the state-space models of SISs, which stem from the
Roesser model. The Roesser model was originally proposed
for image processing and was used to depict n-D discrete
systems[17]. If we denote xc(·) and xd(·) as the continu-
ous states and the discrete states, respectively, the hybrid
version of Roesser model takes the following form[18]

[
∂
∂t

xc(ttt, jjj)

Sxd(ttt, jjj)

]
=

[
A11 A12

A21 A22

] [
xc(ttt, jjj)

xd(ttt, jjj)

]
+

[
B1

B2

]
u(ttt, jjj)

(4)

y(ttt, jjj) =
[

C1 C2

]
[
xc(ttt, jjj)

xd(ttt, jjj)

]
+ Du(ttt, jjj) (5)

where

ttt = (t1, · · · , tr), jjj = (jr+1, · · · , jk)

xc(ttt, jjj) =




x1(t1, · · · , tr, jr+1, · · · , jk)
...

xr(t1, · · · , tr, jr+1, · · · , jk)




xd(ttt, jjj) =




xr+1(t1, · · · , tr, jr+1 + 1, · · · , jk)
...

xk(t1, · · · , tr, jr+1, · · · , jk + 1)




Sxd(ttt, jjj) =




xr+1(t1, · · · , tr, jr+1 + 1, · · · , jk)
...

xk(t1, · · · , tr, jr+1, · · · , jk + 1)




S = diag{Sr+1,Sr+2, · · · ,Sk}
and Si is defined in (3).

The feature of this model is that the state vector is par-
titioned into horizontal and vertical components, and the
systems represented by the above model have continuous
dynamics along r dimensions and discrete dynamics along
(k − r) dimensions.

We adopt the hybrid Roesser model (4) and (5) to de-
scribe the subsystems of the SISs considered in this paper.
The structure of one spatial dimension SISs is shown in
Fig. 1. By considering r in the Roesser model as the di-
mension of the subsystem′s states and (k − r) as the di-
mension of the interconnected signals, it is straightforward
to rewrite the hybrid Roesser model into the form that rep-
resents the i-th subsystem of the SISs as

[ .
x(t, sss)
w(t, sss)

]
=

[
A11 A12

A21 A22

] [
x(t, sss)
v(t, sss)

]
+

[
B1

B2

] [
x(t, sss)
v(t, sss)

]
(6)

z(t, sss) =
[

C1 C2

] [
x(t, sss)
v(t, sss)

]
+ Dd(t, sss) (7)

where x(t, sss) is the continuous time state, v(t, sss) and
w(t, sss) are the interconnection variables expressed as

v(t, sss) =

[
v+(t, sss)
v−(t, sss)

]
, w(t, sss) =

[
w+(t, sss)
w−(t, sss)

]

d(t, sss) denotes the disturbance acting on the i-th subsystem
and z(t, sss) is its consequent output.

Fig. 1 Basic building blocks (one spatial dimension)

Particularly, for one spatial dimension SISs as shown in
Fig. 1, vector sss is simplified into one tuple vector, that is, a
scale s, s ∈ Z. s represents the index of a subsystems. The
information between two neighboring subsystems propa-
gates along one independent direction and is a two way
signal marked by “+” and “−”. Thus, (s + 1) represents
the next subsystem of s-th subsystem along the “+” direc-
tion and (s−1) the next subsystem along the “−” direction.
Fig. 1 depicts the relations of the interconnected signals as:
v+(t, s + 1) = w+(t, s), v−(t, s− 1) = w−(t, s).

The relationship between w(t, sss) is

w(t, sss) =

[
w+(t, sss)
w−(t, sss)

]
=

[
SIm+ 0

0 S−1Im−

] [
v+(t, sss)
v−(t, sss)

]
(8)

, ∆Sv(t, sss) (9)

where m+ and m− are the sizes of interconnection variables
v+(t, sss) and v−(t, sss), respectively.
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We may thus write the interconnected system in (6) and
(7) as follows:




.
x(t, sss)

(∆Sv(t))(sss)

z(t, sss)


 =




ATT ATS

AST ASS

BT

BS

CT CS D







x(t, sss)

v(t, sss)

d(t, sss)




,
[
A B
C D

] [
χ(t, sss)
d(t, sss)

]

x(0, sss) = x0(sss)
(10)

where

χ(t, sss) =

[
x(t, sss)
v(t, sss)

]
(11)

and ∆S is defined in (9).
In this paper, we focus on spatially interconnected sys-

tem and all of our analysis will be based on the system
model (10). We use the notation M = {A, B, C, D} to
denote the interconnected systems, which was generated
from {A, B, C, D}.

Expression (10) is similar to the interconnected models
described in [7].

We have the following theorem which can be used to test
the well-posedness, stability, and H∞ performance of the
SISs.

Theorem 1[7]. A systemM = {A, B, C, D} is said to be
well-posed, stable, and satisfy ‖Tzd‖∞ < γ, where γ ∈ R+,
if there exist scaling matrices XT = XT

T > 0, and XS = XT
S

such that
1) I −ASS is invertible;
2) The following inequality is satisfied:




ĀTX + XĀ XB̄ C̄T

B̄TX −γI D̄T

C̄ D̄ −γI


 < 0 (12)

where X = diag{XT , XS}, M̄ = {Ā, B̄, C̄, D̄, m̄mm} =
fD2C(M) and Ā, B̄, C̄, D̄ are the modified bilinear trans-
formation as introduced in [7].

Theorem 1 was obtained by treating the spatially invari-
ant systems as interconnection in the robust control/linear
fractional transformation (LFT) framework and the LMI
(12) was derived based on µ analysis. In this article, we
discuss the SISs from the multidimensional point of view.
The hybrid version of Lyapunov criterion of the SISs is pro-
posed and the criterion is further extended into the form
that includes H∞ performance of the SISs. The stability
of the overall SISs is proved by Lyapunov theory. The ex-
tended criterion can be considered as a hybrid version of
the real bounded lemma.

2 Performance analysis of SISs

We evaluate the spatially interconnected system on the
following three performances[7]: well-posedness, exponen-
tial stability, and ‖Tzd‖∞ < γ.

The standard interpretation of well-posedness can be
found in [19]: there must exist unique solutions to the sys-
tem equations when signals are injected anywhere in the
loop. For the class of systems considered in this paper, we
should guarantee that the interconnection signals v(t, sss)
and w(t, sss) are bounded.

We can extend this definition to the systems considered
in this paper as follows.

Proposition 1. A system is well-posed if and only if
(∆S −ASS) is invertible on l2.

Proof. The solution to the system described in (10) is

x(t) =

∫ t

0

exp(Φ(t− τ))Γdτ (13)

where

Φ = ATT + ATS(∆S −ASS)−1AST (14)

and
Γ = [BT 0] + ATS(∆S −ASS)−1[BS I] (15)

Thus, the result follows since exp(Φt) is bounded on the
compact interval [0, T ]. Another direction of the proof can
be found in the appendix of [7]. ¤

Definitions of the exponential stability and the H∞ per-
formance are similar to the standard one, and thus are
omitted. The reader can refer to [7] for an in-depth dis-
cussion of the problem.

Based on those performance indicators, criterion for the
interconnected systems can be derived from the discrete
version of the Kalman-Yakubovich-Popov lemma.

2.1 Stability analysis

As shown in (10), the state of each subsystem is com-
posed of two parts: continuous-time part and discrete spa-
tial part. Thus, the stability analysis should be on consider-
ation of both parts. A remainder of the stability conditions
for linear continuous and discrete 1-D/n-D systems can be
found in [11, 18].

Theorem 2. The subsystem of SISs described in (11) is
stable if there exist symmetric matrices Xt ∈ Rnt×nt and
symmetric matrix Xs ∈ Rns×ns , where nt is the size of
x(t, sss) and ns is the size of v(t, sss), such that the following
two conditions are satisfied.

1) Xt > 0

2)




AT
TT Xt + XtATT XtATS AT

ST Xs

∗ −Xs AT
SSXs

∗ ∗ −Xs


 < 0 (16)

Proof. The stability of the subsystem is a combina-
tion of two parts: continuous time Lyapunov criterion and
discrete Lyapunov criterion. Thus, the hybrid Lyapunov
criterion for the subsystems takes the following form:

ATX̂1 + X̂1A + ATX̂2A− X̂2 < 0 (17)

where

A=

[
ATT ATS

AST ASS

]
, X̂1 =

[
Xt 0
0 0

]
, X̂2 =

[
0 0
0 Xs

]
(18)

and Xt > 0. (17) is an extension of the Lyapunov inequality

for the 2-D continuous-discrete linear systems[20]. Based on
(18), (17) is equivalent to

[
AT

TT Xt + XtATT XtATS

∗ 0

]
+

[
AT

ST XsAST AT
ST XsASS

∗ AT
SSXsASS

]
+

[
0 0
0 −Xs

]
< 0 (19)

Assume that S11, S12, and S22 in Schur complement argu-
ments satisfy

S11 =

[
AT

TT Xt + XtATT XtATS

∗ 0

]
+

[
0 0
0 −Xs

]
(20)
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and

S12S
−1
22 ST

12 = −
[
AT

ST XsAST AT
ST XsASS

∗ AT
SSXsASS

]
(21)

If we set

S12 =

[
0 AT

ST Xs

0 AT
SSXs

]
(22)

then, S22 takes the following form:

S22 =

[−X0 0
0 −Xs

]
(23)

where X0 > 0 is an arbitrary symmetric matrix.
Let us consider (20), (22) and (23) as the matrices in

Schur complement arguments; then we get the sufficient
condition of (17) as




AT
TT Xt + XtATT XtATS 0 AT

ST Xs

∗ −Xs 0 AT
SSXs

∗ ∗ −X0 0
∗ ∗ ∗ −Xs


 < 0 (24)

where “∗” follows symmetry of matrix. (24) is equivalent
to (17). Note that the third row and the third column
of (24) can be omitted without affecting the existence of
the inequality. This operation results in (16), which is the
sufficient stability condition for the subsystems in Theo-
rem 2. ¤

It is well-known that the stability of every subsystem
cannot ensure the overall system′s stability. For the decen-
tralized control synthesis, we consider a Lyapunov func-
tion for each subsystem which contains the information of
all other interconnected subsystems[21]. By doing this, we
can find the decentralized controller for the overall system
through n LMIs (where n is the number of subsystems). In
this paper, the overall system′s stability is transformed into
a discussion of the decoupled subsystem′s stability. Recall-
ing the state-space model of subsystems as defined in (10),
we know that the interconnected signals are considered as
states of the subsystem. Note that the stability criterion
in (16) ensures all states in the subsystem, including the
interconnected variables, to converge to zero as t → ∞.
Thus, we have the following theorem that can be used to
testify the overall system′s stability.

Theorem 3. An SIS that is composed of N subsystems
is stable if for all i ∈ [1, N ] ∈ Z, there exist symmetric
block diagonal matrices XTT = diag{X1t, · · · , XNt}, Xit ∈
Rnit×nit , XSS = diag{X1s, · · · , XNs}, and Xis ∈
Rnis×nis , where nit and nis are the dimensions of the con-
tinuous time state and the spatially discrete stat of the i-th
subsystem, respectively, such that

(i)Xit > 0

(ii)




AT
iTT Xit + XitAiTT XitAiTS AT

iST Xis

∗ −Xis AT
iSSXis

∗ ∗ −Xis


 < 0

(25)

Proof. The hybrid Lyapunov criterion of the i-th sub-
system is defined as

fi = AT
i X̂i1 + X̂i1Ai + AT

i X̂i2Ai − X̂i2 < 0 (26)

where Ai, Xi1, and Xi2 are the relevant matrices of the i-th
subsystem as defined in (18). Thus, the overall subsystem
is stable and the hybrid Lyapunov inequality has solutions:

f = diag{f1, · · · , fN} < 0 (27)

where the states that go with the overall system′s Lyapunov
function are

χ = [χT
1 , · · · , χT

N ]T (28)

As proved in Theorem 2, (25) is the sufficient condition
of (26). Thus, if (25) is satisfied for all i ∈ [1, N ], then,
the Lyapunov inequality of the overall system (27) is sat-
isfied, which means that the stability of every subsystem′s
Lyapunov function leads to the stability of the overall sys-
tem. ¤
2.2 Criteria for the stability and HHH∞ performance

Now, we are in a position to give the criterion with which
we can test stability and H∞ performance of the intercon-
nected systems. The real bounded lemma is a crucial basis
for our study during H∞ performance of the system, and in
the following context, we extend the real bounded lemma
to the field of multidimensional systems.

Theorem 4. The subsystem of SISs described in (10) is
said to be stable and satisfy ‖Tzd‖∞ < γ where γ ∈ R+, if
there exist scaling matrices Xt = XT

t > 0, Xs = XT
s such

that




ATX̂1+X̂1A+ATX̂2A−X̂2 X̂1B+ATX̂2B CT

∗ BTX̂2A−γ2I DT

∗ ∗ −I


 < 0

(29)

where X̂1and X̂2 are defined in (18).
Proof. If there exist Xt = XT

t > 0 and Xs = XT
s

such that (29), then the inequality in (17) is satisfied. This
ensures the stability of the subsystem.

We define the Lyapunov function of subsystem (10) as

V (χ) = χT(t, sss)

[
Xt 0
0 Xs

]
χ(t, sss) =

χT(t, sss)X̂1χ(t, sss) + χT(t, sss)X̂2χ(t, sss)

, VT (χ) + VS(χ)

(30)

where χ is defined in (11). The derivation of the Lyapunov
function DV (χ) should be divided into two parts: contin-
uous differential part and discrete differential part.

DV (χ) =
d

dt
VT (χ) + ∆VS(χ) (31)

where

d

dt
VT (χ) = χTX̂1(Aχ + Bd) + χTAT + dTBT)X̂1χ (32)

∆VS(χ) = (Aχ + Bd)TX̂2(Aχ + Bd)− χTX̂2χ (33)

A, B, C, and D are defined in (10).
Consider the following function

JTS = ‖z(t, sss)‖2 − γ2‖d(t, sss)‖2 (34)
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we have

JTS = [‖z‖2 − γ2‖d‖2 +DV (χ)]−DV (χ) =
[
χ(t, sss)
d(t, sss)

]T ([
CT

DT

]
[C D]+

[
0 0
0 −γ2I

]) [
χ(t, sss)
d(t, sss)

]
+

[
χ(t, sss)
d(t, sss)

]T [
ATX̂1+X̂1A X̂1B

∗ 0

] [
χ(t, sss)
d(t, sss)

]
+

[
χ(t, sss)
d(t, sss)

]T [
ATX̂2A− X̂2 ATX̂2B

∗ BTX̂2A

] [
χ(t, sss)
d(t, sss)

]
−

DV (χ) =

[
χ(t, sss)
d(t, sss)

]T
( [

CT

DT

]
[C D]+

[
ATX̂1+X̂1A+ATX̂2A−X̂2 X̂1B+ATX̂2B

∗ BTX̂2A−γ2I

] )
×

[
χ(t, sss)
d(t, sss)

]
−DV (χ) (35)

Applying Schur complement arguments to (29), we get
JTS < −DV (χ). Thus,

∫ T

0

‖z‖2dt−γ2

∫ T

0

‖d‖2dt+

∫ T

0

d

dt
VT (χ)+

Sn∑
S0

∆VS(χ) < 0

(36)
Let us assume d ∈ L2[0,∞) and the zero initial condition,
and then, when T → +∞, n → +∞, (36) is congruent to

‖z‖22 − γ2‖d‖22 + V (χ) < 0

So, ‖z‖22 < γ2‖d‖22, and (29) is the sufficient condition for
the H∞ performance. ¤

The LMI derived in (29) can be considered as a hybrid
real bounded lemma. As our goal is to design distributed
output feedback controllers, we should transform the hy-
brid LMI into standard form so that the existing controller
synthesis method can be applied. This work has been
solved by D′Andrea[7] through a modified bilinear trans-
formation and the result is given in Theorem 1 in this ar-
ticle. Note that in Theorem 1, well-posedness performance
is included.

3 Control implementation

Suppose that the open-loop plant we considered in Fig.2
has the following form




.
χ

G
(t, sss)

z(t, sss)
y(t, sss)


 =




AG BG
d BG

u

CG
z DG

zd DG
zu

CG
y DG

yd DG
yu







χG(t, sss)
d(t, sss)
u(t, sss)




,
[
AG BG

CG DG

] 


χG(t, sss)
d(t, sss)
u(t, sss)


 , G

(37)

The distributed controller for each open-loop subsystem
has the same structure as its related subsystems as depicted
in Fig. 2, and we can express the state-space equation for
the controllers as




.
x

K
(t, sss)

wK(t, sss)
u(t, sss)


 =




AK
TT AK

TS BK
T

AK
ST AK

SS BK
S

CK
T CK

S DK







xK(t, sss)
vK(t, sss)
y(t, sss)




,
[
AK BK

CK DK

] 


xK(t, sss)
vK(t, sss)
y(t, sss)


 , K

(38)

Fig. 2 Basic building block with its controller
(one spatial dimension)

By canceling the interconnected signals y and u, the
close-loop state space equation can be written as




[ ·
x

G
(t, sss)

·
x

K
(t, sss)

]

[
wC

+(t, sss)
wC
−(t, sss)

]

z(t, sss)




=




AC
TT AC

TS BC
T

AC
ST AC

SS BC
S

CC
T CC

S DC







[
xG(t, sss)
xK(t, sss)

]

[
vC
+(t, sss)

vC
−(t, sss)

]

d(t, sss)




,
[
AC BC

CC DC

] [
χ(t, sss)
d(t, sss)

]
, C

(39)

Denote the modified bilinear transformations of G and K
as G and K, and denote the relevant close-loop system as
C. Thus, we can express the inequality in (12) as




(ĀC)TX̄ + X̄ĀC X̄B̄C (C̄C)T

(B̄C)TX̄ −I (D̄C)T

C̄C D̄C −I


 < 0 (40)

where fD2C(Mc) = M̄C = {ĀC , B̄C , C̄C , D̄C}. Note that
ĀC , B̄C , C̄C , and D̄C are affine transforms of K̄. Hence, the
matrix inequality (40) is a biaffine matrix inequality on the
variables K̄ and X̄. The biaffine matrix inequality problem
is non-convex and known to be NP-hard to solve[22].

To solve this problem, we have two methods known
as elimination algorithm[7, 14] and change variable algo-
rithm[12]. In the following, we discuss the change variable
algorithm, by which we can translate the nonlinear inequal-
ity into linear inequality and thus get the H∞γ-suboptimal
distributed controller for each subsystem.

Theorem 5. For a given γ, a close-loop subsystem
fD2C(Mc) = M̄C = {ĀC , B̄C , C̄C , D̄C} is said to be well-
posed, stable, and satisfying ‖Tzd‖∞ < γ if there exist

Â, B̂, Ĉ, and D̂ with suitable dimensions and scaling ma-

trixes X̂ and Ŷ such that the following two conditions are
satisfied

1)
[
Ψ11 ΨT

21

Ψ21 Ψ22

]
< 0 (41)

with the shorthand notation

Ψ11(:, 1) =

[
ĀGXG + XG(ĀG)T + B̄G

u Ĉ + (B̄G
u C̄)T

(ÂT + (ĀG + B̄G
u D̂C̄G

y ))T

]
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Ψ11(:, 2) =

[
ÂT + (ĀG + B̄G

u D̂C̄G
y )

(ĀG)TY G + Y GĀG + B̂C̄G
y + (B̂C̄G

y )T

]

Ψ21 =

[
(B̄G

d + B̄G
u D̂D̄G

yd)T (Y GB̄d + B̂D̄G
yd)T

C̄G
z XG + D̄G

zuĈ C̄G
z + D̄G

zuD̂C̄y

]

Ψ22 =

[
−γI (D̄G

zd + D̄G
zdD̂D̄yd)T

∗ −γI

]

where “∗” follows the symmetry of the matrix.
2) [

XG
T I
I Y G

T

]
≥ 0 (42)

where

XG = (XG)T = diag {XG
T , XG

X}
Y G = (Y G)T = diag {Y G

T , Y G
sss }

X̂ =

[
Y G N
NT W

]
, X̂−1 =

[
XG M
MT Z

]
(43)

and

Â = Y G(ĀG + B̄G
u D̄KC̄G

y )XG + NB̄KC̄yXG+ (44)

Y GB̄G
u C̄KMT + NĀKMT

B̂ = Y GB̄G
u D̄K + NB̄K (45)

Ĉ = D̄KC̄yXG + C̄KMT (46)

D̂ = D̄K (47)

And the controller for each subsystem can be obtained by
inverse substitution of (44) ∼ (47).

Proof. From X̂ × X̂−1 = I and (43), we have

X̂

[
XG I
MT 0

]
=

[
I Y G

0 NT

]
(48)

If we define F1 =

[
XG I
MT 0

]
and F2 =

[
I Y G

0 NT

]
, we can

calculate the following equalities

FT
1 X̂ĀCF1 = FT

2 ĀCF1 =
[
Θ1 Θ2

]
(49)

where

Θ1=




ĀGX + B̄G
u (D̄KC̄G

y XG + C̄KMT)

Y G(ĀG + B̄G
u D̄KC̄G

y )XG + NB̄KC̄yXG+

Y GB̄G
u C̄KMT + NĀKMT




Θ2=

[
ĀG + B̄G

u D̄KC̄G
y

Y GĀG + (Y GB̄G
u D̄K + NB̄K)C̄G

y

]

and

FT
1 X̄B̄C =

[
B̄G

u D̄KD̄G
yd + B̄G

d

(Y GB̄G
u D̄K + NB̄K)D̄G

yd + Y GB̄G
d

]
(50)

C̄CF1(1, 1) = C̄zXG + D̄G
zu(D̄KC̄yXG + C̄KMT) (51)

C̄CF1(1, 2) = C̄z + D̄G
zuD̄KC̄y (52)

FT
1 X̄F1 = FT

2 F1 =

[
XG I
I Y G

]
(53)

Note that for given XG, Y G and their associated full rank
matrixes M and N , AK , BK , CK , and DK can uniquely

be determined by Â, B̂, Ĉ, and D̂.
If we pre- and post-multiply (40) pre- and post-by

diag {FT
1 , I, I} and diag{F1, I, I}, respectively, then, we

can get the result in (41) through equalities (44) ∼ (48).¤
Furthermore, we can get the H∞ optimal controller by

minimizing γ in (41). This can easily be implemented by

the LMI-toolbox[23].
The elimination algorithm introduced in [7] and [14] re-

quires to discuss feasibility of three LMIs firstly and one
LMI secondly, which have numerical shortcomings and may
sometimes lead to infeasible results (An example given in
Section 4 demonstrates this property ). In contrast to the
elimination algorithm, the change variable algorithm con-
tains only one LMI, and this LMI gives a sufficient and
necessary condition for the existence of distributed output
feedback controllers. Furthermore, the controllers can be
obtained directly from the feasible solutions of the LMI.
Another advantage of this simple and convenient method
is that more restrictions can be combined together to deal
with multi-objects design[12].

4 Numerical example

In this section, we apply the distributed control design
method to a spring-mass system using the change variable
algorithm. The framework of the system is depicted in
Fig. 3.

Fig. 3 Distributed control architecture of the spring-mass
system with pulse disturbance on block 2

The kinematic equation of the i-th block is

Mẍi =

3∑

j=1,j 6=i

δij [K(xj − xi) + D(ẋj − ẋi)]

δij =

{
1, |i− j| = 1

0, else
, i, j = 1, 2, 3 (54)

where xi is the bias position of the i-th block, ui is the
control signal, K and D are the coefficients of the spring
and the damper, respectively, and M is the mass of each
block. Let us set the state variable in the time domain as
ri1 = xi, ri2 = ẋi, and ATT ∈ R2×2, ASS ∈ R2×2. We then
get the three blocks′ models (55) ∼ (57).

Sub 1:

[
A1 B1

C1 D1

]
=




0 1 1 0 1 0

− k

m
− d

m
0 1 0

1

m
k

m

d

m
0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0




(55)
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Sub 2:

[
A2 B2

C2 D2

]
=




0 1 0 0 1 0

−2k

m
−2d

m
1 1 0

1

m
k

m

d

m
0 0 0 0

k

m

d

m
0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0




(56)

Sub 3:

[
A3 B3

C3 D3

]
=




0 1 0 1 1 0

− k

m
− d

m
1 0 0

1

m
1 0 0 0 0 0
k

m

d

m
0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0




(57)

The equilibrium state of this system is when the distances
between Sub 1 and Sub 2, Sub 2 and Sub 3 are equal to the
natural length of the spring. But this equilibrium can eas-
ily be destroyed with a tiny disturbance. Thus, we design
both decentralized controller and distributed controller for
every subsystem so that the overall system could be sta-
bilized under disturbance. Set K = 2, D = 1, and M = 4.
The decentralized control strategy is

[
ui1

ui2

]
= Ci

[
ri1

ri2

]
, i = 1, 2, 3

where Ci are the controllers that are designed using the
methods introduced in [21]. The controller realization re-
sults are shown in (58) ∼ (60). The distributed controllers
are designed using the algorithm we presented in Section 3
and the results are shown in (61) ∼ (63).

C1 : [−1.997 − 0.157] (58)

C2 : [−3.958 − 0.714] (59)

C3 : [−1.997 − 0.157] (60)

D1:




−3.182 −6.277 −0.023 0.044 0.042

14.543 −13.167 0.057 0.033 9.446

−2.384 −0.245 −0.003 −0.891 −0.787

−8.844 2.436 −1.256 −0.007 −3.088

−91.033 −119.178 −0.503 0.647 −25.672




(61)

D2:




−0.673 −5.347 0.004 −0.004 −0.010

10.115 −10.147 0.002 −0.002 6.704

8.791 −0.239 0.001 0.844 3.109

−8.794 0.239 0.845 0.001 −3.110

−12.948 −135.715 −0.108 0.117 −0.215




(62)

D3:




−1.972 −3.553 0.012 −0.011 −1.303

12.695 −16.71 0.02 −0.503 11.011

−0.288 0.533 0.009 0.385 4.085

−1.984 −0.993 −0.187 0.046 −1.166

−14.344 −43.523 −0.834 −0.344 −9.335




(63)

The control effects are shown in Figs. 4 and 5, where x-
axis stands for the time sequence and y-axis the equilibrium
displacement. From Figs. 4 and 5, we can see clearly that
with the distributed controllers, the second block can be
driven back to the equivalence point at 20 s with an error
0.00017m, in comparison with the decentralized controller
which made the block still oscillate at time 50 s. Actually,
it takes approximately 75 s for the decentralized system to
get to the equivalence point with an error 0.00066m.

Fig. 4 Three blocks responses under pulse disturbance
(amplitude=1, width=1 s) on Sub 2 (decentralized control)

Fig. 5 Three blocks responses under pulse disturbance
(amplitude=1, width=1 s) on Sub 2 (distributed control)

With distributed controllers, the maximum equilibrium
only amounts to 0.31 m in response to a pulse amplitude of
1m, in comparison with 0.79m under decentralized control.

From the experimental results shown above, we can
see that compared with decentralized controllers, the dis-
tributed control architecture performs more optimistically
both in response time and system gain.
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One thing should be pointed out is that during dis-
tributed controller synthesis, the elimination algorithm will
lead to an infeasible solution in LMI-toolbox, while the
change variable algorithm introduced in this paper can suc-
cessfully solve this problem.

5 Concluding remarks

This paper has discussed the distributed control design
problem and applied the control implementation algorithm
to a spring-mass system. Hybrid version of Lyapunov equa-
tion and the real bounded lemma for the SISs were derived,
and the stability of the overall system was proved by Lya-
punov criterion. It has been shown through the spring-
mass system that the distributed control architecture per-
forms more optimistically both in response time and sys-
tems gain than decentralized controllers. The introduction
of the change variable algorithm successfully solved the dis-
tributed controllers design problem, while the elimination
algorithm introduced in [7] leads to an infeasible solution.
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