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A Granular Computing Approach to Knowledge

Discovery in Relational Databases
QIU Tao-Rong1, 2 LIU Qing2 HUANG Hou-Kuan1

Abstract The main objective of this paper is to present granular computing algorithms of finding association rules with different
levels of granularity from relational databases or information tables. Firstly, based on the partition model of granular computing, a
framework for knowledge discovery in relational databases was introduced. Secondly, referring to granular computing, the algorithms
for generating frequent k-itemsets were proposed. Finally, the proposed algorithms were illustrated with a real example and tested
on two data sets under different supports. Experiment results show that the algorithms are effective and feasible. Moreover, the
meanings of mining association rules based on granular computing are clearly understandable.
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Knowledge discovery in databases has become a research
hot spot nowadays. The problem of mining association
rules over basket data was introduced in [1]. Based on
the concept of frequent itemsets, several mining algorithms
to find association rules in transaction database, such as
Apriori, AprioriTid, and so on, were proposed by Agrawal
and his coworkers[2].

There have been many proposed algorithms that are vari-
ants of Apriori. These algorithms mainly differ in how they
check “candidate” itemsets against the database. Apriori
checks itemsets of length l for frequency during database
pass l. AprioriTid algorithm does not use the database to
count support. Instead, it uses a special encoding method
for candidates from the previous pass and has better per-
formance in later pass when the size of candidate item-
sets becomes smaller compared to the size of the database.
Apriori and AprioriTid can be combined into a hybrid al-
gorithm, called AprioriHybrid that scales linearly with the
number of transactions[2]. Partitioning algorithm[3] pro-
posed by Savasere in 1995 might improve the performance
of finding frequent itemsets. It identifies all frequent item-
sets in memory-sized partitions of the database and then
checks these against the entire database during the final
pass. Sampling algorithm[4] was attributed to Toivonen
in 1996. It can reduce the number of scanning databases
to one in the best case and two in the worst case. In
recent years, some effective new methods used for orga-
nizing, storing, analyzing, and processing data have been
presented[5−12].

In general, association rules mined from relational
databases are generalized. However, if some basic algo-
rithms like Apriori, Apriori-like, and FP-tree are used to
find association rules with different levels of granularity
from relational databases, we have to extend relational
databases. Thus, although we obtain available multilevel
association rules, some disadvantages like redundant rules
are generated.

Granular computing (GrC)[13−14] is a new concept and
computational model, and may be regarded as a label
of family of theories, methodologies, and techniques that
make use of granules. A granule is a basic ingredient of
GrC. It may be a subset, class, object, a group of concepts,
or cluster of a universe[13−20].
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Currently, many models and methods of GrC have been
proposed and studied. Zadeh proposed a general framework
of GrC based on fuzzy set theory[20]. In 1982, Pawlak put
forward the theory of rough sets[14, 19, 21], namely a concrete
example of GrC. Hobbs set up a theory of granularity[22],
which is similar to the theory of rough sets in terms of
formulation. Zhang developed a quotient space theory of
problem solving based on hierarchical description and rep-
resentation of a problem[23]. Lin proposed to use neighbor-
hood systems for the formulation of GrC[14, 24−25]. Yao
proposed a unified framework of GrC[14−18]. The new
framework extends results obtained in the set-theoretic
setting and extracts high-level common principles from a
wide range of scientific disciplines; and many other re-
searchers also proposed some available models and methods
of GrC[14, 26−27].

Nowadays, the principles of GrC have been applied to
many fields, such as medicine, economics, finance, busi-
ness, environment, electrical engineering, and computer en-
gineering. In the domain of data mining, GrC provides a
conceptual framework for studying many issues. Yao ap-
plied the GrC model to the study of the consistent classifi-
cation problems with respect to partitions of a universe[18].
In [28], he put forward an idea that one of the fundamental
tasks of data mining is to search for the right level of granu-
larity in data and knowledge representation. Lin presented
a fast association rule algorithm (Bit-AssoRule) based on

GrC[29−30]. But in his work, generating different levels
of association rules were not considered. Furthermore,
how to store bit maps was not very clear. Pedrycz and
Park discussed development of the structure of the granular
classifier[31]. Chen presented a novel model called the in-
formation granulation based data mining approach, which
imitated the human ability to process information and ac-
quired knowledge from information granules rather than
from numerical data[32]. To get a true hybrid framework
for taking operational decisions from data, [33] extended
the algorithmic inference approach to the GrC paradigm.

In this paper, by applying the GrC technique, we define
a granule as a set of entities that have the same properties
in relational databases. So, a granule could be considered
as an equivalent class of attribute values. By discussing the
representation, storage, and operation of granules, we pro-
pose an approach (named G-Approach) to mining associa-
tion rules from relational databases based on GrC and the
taxonomy trees of attributes. G-Approach views granules
as its basic processing elements to find association rules,
and the meaning of granules is clear. Compared with Apri-
ori, G-Approach can effectively reduce the number of can-
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didate itemsets, save computing time, and find association
rules of different levels by using granules with different lev-
els of granularity according to a real example and experi-
ment results.

The rest of this paper is organized as follows. A data
model and related definitions are described in Section 1.
Algorithms of generating frequent itemsets based on GrC
are proposed in Section 2. A example in practice is illus-
trated in Section 3, and the performances of G-Approach
and other algorithms are compared experimentally in Sec-
tion 4, followed by some conclusions and avenues for future
work in Section 5.

1 Data model and related definitions

For a given problem, if the solution is adopted by using
GrC, then the following basic questions should be answered
first: 1) How to define relevant information granules for a
given problem? 2) How to define relevant operations on
granules for a given problem? 3) How to construct from
given granules the information granules satisfying given soft
constrains[30]?

In this section, the first two questions will be discussed.
Suppose in a relational database, the sum of data records
is N, and that of attributes is M.

Definition 1 (Information table). Let 4-tuple
S = 〈U, A, V, f〉 be an information table or a relational
database table, where U = {u1, · · · , uN} is a non-empty fi-
nite set, and each element in U is called an individual, A =
{a1, · · · , aM} is a finite attribute set, V = {Va1 , · · · , VaM }
is a set of attribute values, where Vai = {Vai,1, · · · , Vai,k}
is the domain of attribute ai, Vai,j is a categorical value
and f is a mapping, f(u, ai) : U × A → Vai , such that
f(u, ai) ∈ Vai , for all u ∈ U and ai ∈ A.

Definition 2 (Concept hierarchy). Let Vai =
{Vai,1, · · · , Vai,k} be the domain of attribute ai, and each
Vai,j may be viewed as a concept. An attribute value hi-
erarchy or concept hierarchy of attribute ai is defined as a
rooted tree Tai such that Vai is a set of the leaves of Tai .

The rooted tree Taican be established by applying the
generalization process to these values. In general, there are
two ways of constructing the concept hierarchy: human
predefines it and machine learns it.

The concept hierarchy is a rooted tree with the height
Q or Q levels (1 ≤ Q ≤‖ Vai ‖), where ‖ Vai ‖ denotes
the cardinality of Vai . The level of a vertex v in the rooted
tree is the length of the path from the root to v. Thus,
the level of the root is 0. The attribute values in different
levels support a partial order. If X and Y are two different
levels in the given concept hierarchy and level X is lower
than level Y , then we say that the concept at level X is
more abstract than that at level Y .

According to Definitions 1 and 2, the domain of attribute
ai at level p in its concept hierarchy, denoted by V p

ai
, is a

set of both internal vertices where their levels are equal to
p and some leaves where their levels are not greater than
p.

Definition 3 (Information granule). An information
granule is defined as the tuple IG = (ϕ, m(ϕ)), where ϕ
refers to the intension of information granule IG, and m(ϕ)
represents the extension of information granule IG.

Let S = 〈U, A, V, f〉 be an information table or a re-
lational database table. Let B = {a1, a2, · · · , ak} ⊆ A
be a subset of attributes and ϕ = {I1, I2, · · · , Ik} such
that Ii ∈ Vai be a set of attribute values corresponding
to B. Then, the intension of an information granule can
be defined as: ϕ = {I1, I2, · · · , Ik}, and the extension

can be defined as m(ϕ) = {u|f(u, a1) = I1 ∧ f(u, a2) =
I2 ∧ · · · ∧ f(u, ak) = Ik, u ∈ U, ai ∈ B, i = 1, 2, · · · , k}.
Here, m(ϕ) describes the internal structure of the informa-
tion granule. The collection of the extensions of all granules
is denoted GK. The map U → GK is called the granulation
of the information table or the relational database table.

Definition 4 (Size of information granule). Let
IG = (ϕ, m(ϕ)) be an information granule, and its size can
be defined as the cardinality of the extension of the infor-
mation granule, namely, ‖ m(ϕ) ‖. Intuitively, the size may
be interpreted as the degree of abstraction or concreteness.

Definition 5 (Elementary granule). Let IG =
(ϕ, m(ϕ)) be an information granule. If ϕ = {Vai,j},
then IG is called an elementary information granule of
attribute ai, or an elementary granule for short, where
Vai,j is the j-th attribute value of attribute ai. Namely,
m(ϕ) = {u|f(u, ai) = Vai,j , u ∈ U, ai ∈ A}.

Definition 6 (Elementary granule at level ppppppppp). Let
Tai be the concept hierarchy of attribute ai, and V p

ai,j be
the j-th attribute value of attribute ai at level p in Tai .
Then, a granule ({V p

ai,j}, m({V p
ai,j})) can be called an el-

ementary information granule of attribute ai at level p.
There is m({V p

ai,j}) =
⋃q

h=1 m(Vai,h), where q is the num-

ber of the leaves of sub-tree with the root V p
ai,j , Vai,h is

one of leaves, i.e., an attribute value of attribute ai, and
({Vai,h}, m({Vai,h})) is an elementary granule of attribute
ai.

Definition 7 (kkk-itemset). Let I = {I1, · · · , Ik} be a
k-itemset, where Ii ∈ Vai(i = 1, 2, · · · , k) is an attribute
value of attribute ai. The k-itemset I is listed in order
according to the sequence of attributes, namely, pri(a1) >
pri(a2) > · · · > pri(ak), where pri(ai) refers to the order
of attribute ai.

Definition 8 (kkk-itemset granule). Let I =
{I1, · · · , Ik} be a k-itemset, and B = {a1, a2, · · · , ak} ⊆
A be a subset of attributes. Then, information gran-
ule IG = (I, m(I)) is called a k-itemset granule, where
m(I) = {u|f(u, a1) = I1∧f(u, a2) = I2∧f(u, ak) = Ik, u ∈
U, ai ∈ B, i = 1, · · · , k}.

It should be ensured that a 1-itemset granule is an ele-
mentary granule satisfying the given conditions.

According to Definition 8, conclusions can be drawn as
follows:

1) m(I) = m({I1}) ∩m({I2}) ∩ · · · ∩m({Ik}).
2) If I ⊆ V, J ⊆ V , and I ⊆ J , then m(I) ⊇ m(J).

Namely, the size of information granular (I, m(I)) is greater
or equal to that of information granule (J, m(J)), or
(I, m(I)) is more abstract than (J, m(J)) as far as their
concepts are concerned.

Definition 9 (Multi-dimension granular hierar-
chy). Let (I, m(I)) be a k1-itemset granule and (J, m(J))
be a k2-itemset granule. According to Definition 8, if
I ⊆ V, J ⊆ V , and I ⊆ J , then m(I) ⊇ m(J), i.e., the inten-
sion of (J, m(J)) is more concrete than that of (I, m(I)),
denoted by m(I) ≺ m(J). Then, all these granules lead
to a hierarchical structure by using the ≺ order, called a
multi-dimensional granular hierarchy.

Definition 10 (⊗⊗⊗ operation). Specialization of in-
formation granules, namely, the operation of informa-
tion granules with respect to intersect ⊗: Let I =
{I1, · · · , Ik1}, I ⊆ V , and J = {J1, · · · , Jk2}, J ⊆ V .
Then, IG1 = (I, m(I)) be a k1-itemset granule and IG2 =
(J, m(J)) be a k2-itemset granule. The operation of in-
tersect between them is defined as: IG = IG1 ⊗ IG2 =
(I ∪ J, m(I) ∩m(J)).

According to the definition, there comes a conclusion as
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follows:
m(I) ∩ m(J) = m(I ∪ J) = m({I1}) ∩ m({I2}) ∩ · · · ∩

m({Ik1}) ∩m({J1}) ∩m({J2}) ∩ · · · ∩m({Jk2})
Definition 11 (⊕ operation). Generalization of in-

formation granules, namely the operation of information
granules with respect to ⊕: Let IG1 = (I, m(I)) and
IG2 = (J, m(J)) be two arbitrary granules. Then, the op-
eration of ⊕ between them is defined as IG = IG1⊕IG2 =
(I ∩ J, m(I ∩ J)).

Definition 12 (Association relationship). Let X be
a k1-itemset, where X = {x1, · · · , xk1} ⊆ V . Let Y be a k2-
itemset, where Y = {y1, · · · , yk2} ⊆ V , and satisfy X∩Y =
∅. Let (X, m(X)) and (Y, m(Y )) be two arbitrary granules
corresponding to X and Y , respectively. If there exists
m(X)∩m(Y ) 6= ∅, then there is an association relationship
between granule (X, m(X)) and granule (Y, m(Y )).

Definition 13 (Association rules based on gran-
ules). If there is an association relationship between arbi-
trary granules (X, m(X)) and (Y, m(Y )), then an implica-
tion of form (X, m(X)) ⇒ (Y, m(Y )) is called an associa-
tion rule based on granules.

Definition 14 (Support of kkk-itemset granules). Let
(I, m(I)) be a k-itemset granule. The support of the k-
itemset granule is defined as support=‖ m(I) ‖ / ‖ U ‖.

Definition 15 (Support of association rules). Let
(X, m(X)) and (Y, m(Y )) be two arbitrary granules, and
there is an association relationship between them. Then,
the support of association rule (X, m(X)) ⇒ (Y, m(Y )) is
defined as support = ‖ m(X) ∩m(Y ) ‖ / ‖ U ‖.

Definition 16 (Confidence of association rules).
Let (X, m(X)) and (Y, m(Y )) be two arbitrary granules,
and there is an association relationship between them.
Then, the confidence of association rule (X, m(X)) ⇒
(Y, m(Y )) is defined as confidence = ‖ m(X) ∩ m(Y ) ‖
/ ‖ m(X) ‖.

2 Generating frequent kkk-itemsets based
on GrC

2.1 Framework for finding association rules based
on GrC

In this section, we investigate another related question
of finding association rules from relational databases based
on GrC. In other words, we use information granules that
satisfy the given conditions to solve a given problem. A
framework for finding association rules based on GrC is
shown in Fig. 1.

Firstly, through data pre-processing, all quantitative at-
tributes will be changed into categorical attributes. A
discretization is required for continuous quantitative at-
tributes. There are two possible approaches to the dis-
cretization problem. One can optimize coding by tak-
ing into account merely the similarities of objects in the
attributes′ space or one can maximize the predictive prop-
erties of the information system in the stage of coding. In
this paper, the first approach is adopted. Secondly, accord-
ing to Definition 2, every concept hierarchy of attributes is
created with respect to the domain of interest by the way of
human predefining or machine learning. In this paper, the
way of human predefining is used to construct the corre-
sponding concept hierarchy for a given attribute. Thirdly,
elementary granules are generated by scanning the given
relational database table or information table once based
on the given concept hierarchies of attributes. The number
of elementary granules is equal to the number of the leaves
in concept hierarchies. Fourthly, on the basis of the elemen-

tary granules and the given different levels of attributes and
by following algorithms (G-Approach), frequent k-itemsets
can be obtained. Finally, according to the minimum confi-
dence provided, all association rules are mined.

In an actual relational database table or an information
table, some attributes are useful and significant and others
may be useless or insignificant for finding association rules,
such as memo and name attributes. The former ones, called
effective attributes, are determined by the user first and
kept in a certain sequence.

Fig. 1 Framework for finding association rules based on GrC

2.2 Generating elementary granules and frequent
1-itemsets

For simplicity, an information granule (elementary gran-
ule or arbitrary k-itemset granule) is identified by us-
ing its forming conditions, namely, its intension. In
other words, the intension of the information granule is
viewed as its meaningful name. For example, a set of at-
tribute values {Vai,j} can stand for the elementary granule
({Vai,j}, m({Vai,j})) with regard to attribute value Vai,j .
In this paper, a data structure for representing the ele-
mentary granule in memory space is defined as the 3-tuple
〈count, item, pointer〉, where the notation count denotes
the number of individual objects included in the elemen-
tary granule. The notation item denotes the forming con-
ditions of the elementary granule, and the notation pointer
is used to link into a storing position of the individual ob-
jects. In the following algorithms, the notation UIDSet
denotes the storing position. An individual object is iden-
tified by its ID or a bit representation, and stored in an
array or a linked list. The notation Nodei denotes a set of
elementary granules generated with respect to attribute ai,
called the granule table of attribute ai, and the notation
Nodei,j stands for the j-th elementary granule or the j-th
element in Nodei .

In the following, the algorithm of generating elementary
granules is discussed first, then the algorithm generating
elementary granules at level p is described.

Algorithm 1. Generating elementary granules from a
relational database table or an information table.

Given data: The sequence of attributes and their cor-
responding concept hierarchies.

Input: A relational database table or an information
table.

Output: Elementary granule table.
Algorithm description:
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For k = 1 to N //N is the number of database records
For i = 1 to m //m is the number of effective attributes
{[to get the j-th attribute value Vai,j of attribute ai in

record uk]
If Vai,j exists in Nodei then
{Nodei,j .count + +;
Nodei,j .pointer− > UIDSet = Nodei,j .pointer− >

UIDSet ∪ {uk}; }
else {

new(p); //generating a node
p− > UIDSet = {uk} ;
Nodei,j .count = 1;
Nodei,j .item = {Vai,j};
Nodei,j .pointer = p; }};

Every elementary granule {Vai,j} is generated by run-
ning the algorithm, and all elementary granules of attribute
ai are organized into the granule table of attribute ai.
Thus, all granule tables of attributes form an elementary
granule table.

Algorithm 2. Generating elementary granules with dif-
ferent levels.

Input: Corresponding levels (p1, p2, · · · , pm), where pi

is a given level corresponding to the concept hierarchy of
attribute ai.

Output: Multi-level elementary granule table.
Algorithm description:
For i = 1 to m
Step 1. Get the domain of attribute ai at the given

level pi from corresponding concept hierarchy. Let V pi
ai

=
{V pi

ai,1, V
pi

ai,2, · · · , V pi
ai,q} be the domain of level pi, where q

is a cardinality of the set.
Step 2.
For h = 1 to q
Step 2.1. If V pi

ai,h ∈ V pi
ai

is not a leaf, then in order
to construct an elementary granule at level pi, we need
to obtain all leaves of a subtree whose root is node V pi

ai,h.

Let V pi
ai,h = {vai,1, vai,2, · · · , vai,t} be a set of these leaves,

where t is the number of the leaves.
Step 2.2. By scanning the given elementary granule

table, an elementary granule ({vai,j}, m({vai,j})) can be
taken, where 1 ≤ j ≤ t. According to union operation
of a set, an elementary granule at level pi is generated as
follows:

({V pi
ai,h}, m({V pi

ai,h})) = ({V pi
ai,h},

t⋃
j=1

m({vai,j}))

If V pi
ai,h is a leaf, then an elementary granule

({V pi
ai,h}, m({V pi

ai,h})) at level pi can be taken directly from
the elementary granule table.

Step 2.3. Modify the granule table of attribute ai.
In the following step, the elementary granule table at

level p can also be viewed as an elementary granule table.
On the basis of the elementary granule table, frequent

1-itemsets can be generated easily. As noted, each fre-
quent 1-itemset is the elementary granule satisfying min-
imum support. All frequent 1-itemsets also are organized
into a table, called the granule table of frequent 1-itemsets.
An algorithm for generating frequent 1-itemsets from the
elementary granule table is described as follows.

Algorithm 3. Generating frequent 1-itemsets.
Input: Elementary granule table, minimum support:

min sup.
Output: Granule table of frequent 1-itemsets.
Algorithm description:
For i = 1 to m

For j = 1 to ‖ Nodei ‖;
{ If Nodei,j .count < min sup then
{ q = Nodei,j .pointer;
delete(q); delete(Nodei,j); } }

2.3 Generating frequent kkk-itemsets

In order to facilitate the description of the algorithm of
generating k-itemsets, several functions are first introduced
as follows.

1) Function getitem(s, i, n) is to get n elements from the
i-th element in a sorted set s, including the i-th element.

2) Function location(x, k) is to get a position of an el-
ementary granule x in the elementary granule table of at-
tribute ak.

3) Function getcount(p) is to get counts of nodes in a
linked list p.

We use adjacency list to represent k-itemset granules like
the representation of graphs. Vertex structure is the data
structure of the elementary granule. But the pointer field
is used as a link to a list. For each vertex, we keep a linked
list of all k-itemset granules generated in order with regard
to the vertex.

A node in the linked list is defined as the 5-tuple
〈count, no, item, UIDpointer, next〉, where the notation
count denotes the number of individual elements of a k-
itemset granule. The notation no is an index, which stands
for the order of the attribute corresponding to the first el-
ement in the item field of the node. The notation item
indicates all the elements except the first element in the
k-itemset. The notation UIDpointer is used as a link to
a list storing k-itemset granules. The next field links the
next node together.

Attribute ai corresponds to a k-itemset adjacency list,
generally referred to as a k-itemset granule table of at-
tribute ai, denoted by notation Lk Nodei. The notation
Lk Nodei,j stands for the j-th elementary granule or el-
ement of the vertex table in Lk Nodei. In this paper, a
k-itemset is formed by two (k − 1)-itemsets, its forming
regular is shown as Table 1.

Table 1 Forming regular of k-itemsets

First frequent (k − 1)-itemset Second frequent (k − 1)-itemset

Lk−1 Node1 From Lk−1 Node2 to Lk−1 Nodem

Lk−1 Node2 From Lk−1 Node3 to Lk−1 Nodem

.

.

.
.
.
.

Lk−1 Nodem−1 Lk−1 Nodem

After generating frequent 1-itemsets, a frequent k-
itemset (k ≥ 2) can be generated. It corresponds to a k-
itemset granule that satisfies the minimum support. By us-
ing granule tables, some advantages can be used, and some
heuristics can be provided to judge whether k-itemsets are
frequent k-itemsets or not.

Suppose a 5-itemset {v1, v2, v3, v4, v5} is a candidate 5-
itemset, and it consists of the combination of frequent 4-
itemset {v1, v2, v3, v4} in L4 Node1 with frequent 4-itemset
{v2, v3, v4, v5} in L4 Node2. Some details can be used
to judge whether or not the 5-itemset is a frequent 5-
itemset. First, if the number of the nodes in the linked
list corresponding to item = v1 is lower than 4, it is
not a frequent 5-itemset. Second, if one of frequent 4-
itemsets {v1, v2, v3, v4}, {v1, v2, v3, v5}, {v1, v2, v4, v5}, and
{v1, v3, v4, v5} does not exist in L4 Node1, then it is not
a frequent 5-itemset. Therefore, in order to reduce the
number of candidate itemsets and save computing time in
generating frequent k-itemsets, the above method can be
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used, especially when k is greater than 2.
Now we can describe algorithms of generating frequent

k-itemsets based on GrC. First, the algorithm of generating
frequent 2-itemsets is described as follows.

Algorithm 4. Generating frequent 2-itemsets.
Input: Granule table of frequent 1-itemsets, minimum

support: min sup.
Output: Granule table of frequent 2-itemsets.
Algorithm description:
For i = 1 to m− 1
Copy (L1 Nodei); //copy frequent 1-itemsets
For j = 1 to ‖ L1 Nodei ‖
For r = i+1 to m
For k = 1 to ‖ L1 Noder ‖ {

NewIG = L1 Nodei,j ⊗ L1 Noder,k //generating a
2-itemset granule

if ‖ NewIG ‖≥ min sup then{
new(p); //generating a node
p− > no = r;
p− > count =‖ NewIG ‖;
p− > item = L1 Noder,k.item;
p− > UIDSet = L1 Nodei,j− > UIDSet ∩

L1 Noder,k− > UIDSet;
If L2 Nodei,j .pointer <> Null then rear− > next =

p;
else Nodei,j .pointer = p;
rear = p;}}

Second, on the basis of frequent 2-itemsets, we can obtain
frequent k-itemsets (k ≥ 3) based on GrC.

Algorithm 5. Generating frequent k-itemsets (k ≥ 3).
Input: Granule table of frequent 2-itemsets, minimum

support: min sup.
Output: Granule tables of frequent k-itemsets.
Algorithm description:
For k = 3 to m
Copy (Lk−1 Nodei);
For i = 1 to m− k+1
For j = 1 to ‖ Lk−1 Nodei ‖{
p = Lk−1 Nodei,j .pointer;
num = getcount(p); //getting the counts of nodes in a

linked list p
If num < k − 1 then
continue;//does not generate candidate k-itemset
While p <>Null do{
h = p.no;
If m− h + 2 ≤ k then break;
item1 = Lk−1 Nodei,j .item∪ p.item; //getting the first

frequent (k − 1)-itemset
first− element = getitem(p.item, 1, 1);
r = location(first− element, h);
q = Lk−1 Nodeh,r.pointer;
While q <>Null do{
item2 = q.item ∪ Lk−1 Nodeh,r.item;//getting the sec-

ond frequent (k-1)-itemset
If getitem(item1, 2, k − 2) == getitem(item2, 1, k − 2)

then{
//getting a candidate k-itemset
NewIG item = item1 ∪ item2;
NewIG UIDSet = p− > UIDSet ∩ q− > UIDSet;
If ‖ NewIG UIDSet ‖≥ min sup then {
new(NewIG); //generating a node
NewIG− > no = h;
NewIG− > count =‖ NewIG UIDSet ‖;
NewIG− > item = getitem(NewIG item, 2, k − 1);
NewIG− > UIDSet = NewIG UIDSet;
If Lk Nodei,j .pointer <> NULL then
rear− > next = p;

else { Nodei,j .pointer = NewIG;}
rear = NewIG;}}
q = q− > next; }
p = p− > next; }}

2.4 Analysis of time complexity

The time complexity of algorithms mainly depends on
three parameters: support, the number of attributes, and
the number of records of a relational database table or an
information table. For the Algorithms 1 and 3, the number
of loops costs O(mN) clearly, where m is the number of
effective attributes and N is the number of records of the
database. For Algorithm 2, it also costs O(mN) at the
worst case. For the algorithms of generating frequent k-
itemsets (i.e., Algorithms 4 and 5), they cost variably with
different k (the number of items) and supports. For the
given support, when k value becomes greater, because of
the number of candidate itemsets decreases, the running
time of the algorithms becomes short. For the given k
value, when the support becomes greater, the running time
of the algorithms becomes shorter. So, for a given k value
and the support, Algorithm 4 takes the most time. It costs
O(m2N2) in the worst case. The overall running time of
the algorithms is dominated by Algorithm 4.

3 Example

Table 2 is the information table of students′ circula-
tion records that has been pre-processed. We simply
take five attributes from the data structure of the in-
formation table in order to illustrate the proposed algo-
rithms for finding association rules. In Table 2, U =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} is a universe. Let
min sup be s = 20%.

Table 2 Students′ circulation records

RID Student-type Gender Degree Book-type

1 A M BS T1

2 C F PhD T2

3 A M BS T3

4 B F MS T1

5 C F PhD T3

6 A M BS T5

7 B M BS T4

8 D F PhD T5

9 C F MS T4

10 B M MS T2

11 A F BS T5

12 D M MS T1

13 D F BS T2

14 C M MS T1

15 B M PhD T5

Fig. 2 Concept hierarchy
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Suppose that the order of effective attributes is student-
type, book-type, degree, and gender. Their hierarchies
are given and shown in Fig. 2. In addition, suppose that
the levels corresponding to each hierarchy are L2, L1, L1,
and L1, respectively. Namely, V 2

student−type = {A, B, E},
V 1

book−type = {H1, H2}, V 1
degree = {BS, G}, V 1

gender =
{M, F}.
3.1 Generating elementary granules

According to Algorithm 1, by scanning the data set
once, the elementary granule table is generated. By
the attribute of the student-type, four elementary gran-
ules are generated: ({A},{1,3,6,11}), ({B},{4,7,10,15}),
({C},{2,5,9,14}), and ({D},{8,12,13}), respectively. Ac-
cording to the attribute of book-type, elementary gran-
ules ({T1},{1,4,12,14}), ({T2},{2,10,13}), ({T3},{3,5}),
({T4},{7,9}), and ({T5},{6,8,11,15}) are generated.
With regard to the attribute degree, we can ob-
tain three elementary granules: ({BS},{1,3,6,7,11,13}),
({MS},{4,9,10,12,14}), and ({PhD},{2,5,8,15}). And
up to the attribute gender, two elementary granules
({M},{1,3,6,7,10,12,14,15}) and ({F}, {2,4,5,8,9,11,13})
are constructed.

3.2 Generating frequent 1-itemsets

Frequent 1-itemsets can be generated by using Al-
gorithm 3, and shown in Fig. 3, among them ({E},
m({E})) = ({E}, m({C}) ∪m({D})), ({H1}, m({H1})) =
({H1}, m({T1}) ∪m({T2})), ({H2}, m({H2})) = ({H2},
m({T3}) ∪m({T4}) ∪m({T5})), ({G}, m({G})) = ({G},
m({MS})∪m({PhD})). In this example, all 1-itemsets are
frequent 1-itemsets.

Fig. 3 Granule table of frequent 1-itemsets

3.3 Generating frequent 2-itemsets

Based on the granule table of frequent 1-itemsets, we can
obtain frequent 2-itemsets by using Algorithm 4. The re-
sults are shown in Fig. 4. In order to generate a frequent
2-itemset, a candidate 2-itemset is formed in order, there-
after generating a 2-itemset granule by intersection oper-
ation between two corresponding elementary granules. If
the support of the 2-itemset granule satisfies the minimum
support, the candidate 2-itemset is a frequent 2-itemset.
In the example, candidate 2-itemset {A, H1} is generated
by intersection operation between the two 1-itemsets gran-
ules {A} and {H1}. Because of the support of the gran-
ule being less than the minimum support, the candidate
2-itemset {A, H1} is not a frequent 2-itemset. Other can-

didate 2-itemsets, such as {A, H2}, {B, H1}, {B, H2}, · · · ,
{G, F}, are formed one by one in order. Among them, can-
didate, 2-itemsets, such as {A, H2}, {A, BS}, · · · , {G, M},
and {G, F}, are frequent 2-itemsets.

Fig. 4 Granule table of frequent 2-itemsets

3.4 Generating frequent kkk-itemsets

Based on the granule table of frequent 2-itemsets, we can
generate frequent k-itemsets (k ≥ 3) by using Algorithm 5.
The results are shown in Fig. 5. According to Algorithm 5,
the first frequent 2-itemset {A, H2} can be obtained easily
in L2 Node1. With the help of the field no, we can get an-
other frequent 2-itemset {H2, BS} in L2 Node2. Since they
can form candidate 3-itemset {A, H2, BS}, a corresponding
3-itemset granule is generated by using intersection opera-
tion between two 2-itemsets granules. By computing, the
support of the 3-itemset granule satisfies the minimum sup-
port, so the candidate 3-itemset {A, H2, BS} is a frequent
3-itemset. But, for frequent 2-itemset {A, M} in L2 Node1,
since the value of the field no (equal to 4) is the last at-
tribute in order, a candidate 3-itemset can not be formed
by combining frequent 2-itemset {A, M} with any other fre-
quent 2-itemset from L2 Node2 and L2 Node3. By using
the heuristics provided, some candidate 3-itemsets, such
as {A, H2, G}, {A, H2, M}, {A, H2, F}, and so on, can not
be formed. And other candidate 3-itemsets like {H1, G, M}
can be formed. Finally, all frequent 3-itemsets are obtained.

After all frequent k-itemsets (k ≥ 3) are generated, fre-
quent (k+1)-itemsets can be generated. In this example,
since the supports of all candidate 4-itemsets do not satisfy
the minimum support, none of the frequent 4-itemsets can
be generated.

So far, all frequent itemsets have been generated. Sup-
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pose that the minimum confidence is 80 %, and an implica-
tion of association rules is X ⇒ Y , where only one item in
Y set exists, we can find association rules as follows:

A ⇒ BS, E ⇒ G
A ∧ H2 ⇒ BS, A ∧ M ⇒ BS, E ∧ H2 ⇒ G, E ∧ F ⇒

G, G ∧ F ⇒ E

Fig. 5 Granule table of frequent 3-itemsets

4 Experiment

The aim of this experiment mainly includes two as-
pects. One is to evaluate feasibility and effectiveness of
G-Approach. The other is to examine the ability of gen-
erating multi-dimensional generalized association rules by
using the taxonomy information on attributes.

Two kinds of datasets are considered in our experiment.
One is dense data, including mushroom and chess, which
are taken from the Irvine Machine Learning Database
Repository. The other is sparse data taken from a real-
life data set, called circulation data set. These data sets
and their features are described in Table 3.

Table 3 Data sets and their characteristics

Data sets Records Items Attributes

Mushroom 8 124 120 23

Chess 3 196 76 37

Circulation 57 600 36 4

The circulation data set containing the information of
students′ circulation records is produced from one medium
sized library. The library has accumulated 57 600 entries of
records with 4 kinds of attributes and 36 different values.
And it averagely has 9 attribute values at every attribute
in this database after pretreatment

In order to compare with G-Approach, we select another
two popular algorithms, which are Apriori and FP-tree,
respectively. The two algorithms are taken from the web
site http://fimi.cs.helsink.fi/.

All experiments are performed on a lightly loaded P4 2.4
GHz CPU, 256M of RAM, Windows 2000 (professional),
and VC++6.0. The software developed is based on C++.

4.1 Testing 1: mining association rules without
considering concept hierarchies of attributes

In order to validate the effectiveness and feasibility of this
G-approach, we compare the performance of G-Approach
and the other two algorithms on two kinds of data sets un-
der different supports without considering taxonomy trees
of attributes in each data set. First, we mainly examine
how G-Approach scales up with different kinds of data
sets and the number of attributes. Next, we investigate
the scale-up as we increase the number of records (namely,
transaction volume) from 8 000 to 16 000 on mushroom.

Experiment results are shown in Tables 4 ∼ 7.

Tables 4 CPU time for generating frequent itemsets on
mushroom (records= 8 000) (s)

Support (%) G-Approach FP-tree Apriori

70 0.197 0.13 2.343

60 0.205 0.151 2.39

50 0.296 0.168 2.578

40 0.86 0.57 3.98

30 2.41 1.603 9.04

Table 5 CPU time for generating frequent itemsets on
mushroom (records= 16 000) (s)

Support (%) G-Approach FP-tree Apriori

70 0.351 0.24 4.617

60 0.43 0.27 4.734

50 0.583 0.301 5.156

40 1.69 0.81 7.89

30 5.953 2.03 18.01

Tables 6 CPU time for generating frequent itemsets on
circulation (records= 57 600) (s)

Support (%) G-Approach FP-tree Apriori

10 0.51 0.19 2.14

9 0.51 0.20 2.14

8 0.68 0.201 3.82

7 0.71 0.212 3.826

6 2.45 0.212 80.01

5 3.57 0.28 155.04

Tables 7 CPU time for generating frequent itemsets on
chess (records= 3 196) (s)

Support (%) G-Approach FP-tree Apriori

90 0.39 0.64 4.291

85 1.375 1.75 10.218

80 4.062 4.82 28.343

75 25.687 14.798 74.296

70 120.468 49.937 203.09

4.2 Testing 2: finding association rules at different
levels of granularity

Since the basic algorithms such as FP-tree and Apriori
for finding association rules do not take the presence of
taxonomies into consideration, the association rules are re-
stricted to the leaf-level values in the taxonomy. In order to
get different levels of granularity from relational databases,
an obvious solution to the problem is to replace each record
with an “extended record”. The extended record contains
all the values of attributes in the original record as well
as all the ancestors of each value of the attribute in the
original record. Thus, two algorithms FP-tree and Apri-
ori can be run on these extended records to get association
rules at any level of the taxonomy (or different levels of
granularity).

The way to extend records can be illustrated as follows.
Let a record in an original data set be n-tuple

(v1, v2, · · · , vn), and suppose there are h internal nodes
in the taxonomy tree of attribute ai. If the attribute
ai is considered, then n-tuple is extended into (n + h)-
tuple (v1, v2, · · · , vi−1, vi1, vi2, · · · , vih, vi, · · · , vn), where
(vi1, vi2, · · · , vih) is the list of internal nodes of the taxon-
omy tree of attribute ai, and is organized in order. Value
vij is the root of the taxonomy tree. If value vij is not the
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ancestor, then it is denoted by symbol “∗”.
For example, in Fig. 2, the taxonomy tree of attribute 1

has 3 internal nodes. Let a record of the circulation data set
be 4-tuple ( B, T3, MS, F). If we want to extend attribute
1, then the tuple (B, T3, MS, F) is replaced by (Root-1,
F, ∗, B, T3, MS, F), where only two internal nodes Root-1
and F are the ancestors of the node B, and the symbol ∗
stands for a special sign in the record. If we want to extend
all attributes, then the mentioned tuple (B, T3, MS, F) is
substituted with (Root-1, F, ∗, B, Root-2, ∗, H2, T3, Root-
3, G, MS, Root-4, F) with 13 attributes values.

Obviously, we can generate different levels of association
rules on these extended records. But many redundant rules
are generated along with the available rules. We call the
frequent itemsets including special sign “∗” as redundant
frequent itemsets. In order to measure the size of redun-
dant frequent itemsets, we calculate the ratio of redundant
frequent itemsets to total frequent itemsets under the given
different minimum support.

In our testing, the taxonomy trees of attributes in the
circulation data set are similar to Fig. 2. We only extend
the circulation data set in attributes 1 and 2. Thus, we
obtain the extended circulation data set with 9 attributes.
FP-tree and Apriori run on the extended circulation data
set, and G-Approach runs on the original circulation data
set. Table 8 shows the CPU time taken by the three al-
gorithms as the minimum support decreases from 60 % to
10%. Table 9 shows the ratio of redundant frequent item-
sets to total frequent itemsets under the given different min-
imum support in mining association rules with the given
levels of granularity by using FP-tree and Apriori on the
circulation data set.

Table 8 CPU time for generating frequent itemsets at the
given levels of granularity on circulation (s)

Support (%) G-Approach FP-tree Apriori

60 0.156 0.153 2.486

50 0.171 0.168 2.562

40 0.187 0.191 2.765

30 0.203 0.218 2.921

20 0.343 0.31 7.968

10 0.515 0.678 16.046

Table 9 The size of redundant frequent itemsets

Support (%) Redundant frequent itemsets rate (%)

60 26.3

50 21.05

40 25.53

30 25.31

20 63.01

10 62.8

4.3 Discussion of experiment results

In Subsection 4.1, empirical evaluation shows that G-
Approach is effective and flexible on two different kinds of
data sets. The strategy to generate association rules for
G-Approach and Apriori is to find frequent itemsets. But
because of potentially large number of database scans and
candidate itemsets, Apriori does not perform very well for
each data set. From Tables 4∼ 7, G-Approach functions
better than Apriori in all cases. Compared with Apriori,
the superior performance of G-Approach on these data sets
arises from generating fewer candidate itemsets by using
optimized search space and some heuristics in generating
frequent itemsets based on GrC.

FP-tree is an optimal approach to mining frequent pat-

terns without candidate generation. It mainly takes time
in generating frequent patterns tree and discovering the
frequent patterns by using the FP-growth approach. Com-
pared with G-Approach, FP-tree performs somewhat bet-
ter than G-Approach on two different kinds of data sets.
However, experiment results show that the proposed G-
Approach is basically equal to FP-tree in the performance
with respect to run-time when support is above some
threshold. From Tables 4∼ 7, it is shown that the perfor-
mance of G-Approach relative to FP-tree has little differ-
ence for three data sets of mushroom with support being
greater than 40%, students′ circulation with support be-
ing greater than 7 %, and chess with support being greater
than 75%. Both G-Approach and FP-tree exhibit similar
scale-up with the number of records.

In Subsection 4.2, as far as mining association rules with
different levels of granularity are concerned, G-Approach is
more convenient and effective than both FP-tree and Apri-
ori. Table 8 shows that the performance of G-Approach
relative to FP-tree and Apriori for the students′ circula-
tion data set. G-Approach performs better than Apriori
in all different support cases. And G-Approach does bet-
ter than FP-tree in three cases with 10%, 30%, and 40%
supports, respectively.

Based on multiple taxonomies over attributes and op-
erations between elementary information granules of at-
tributes, multi-dimensional granular hierarchies are gener-
ated. So G-Approach can mine association rules with differ-
ent levels of granularity from original relational databases
without redundant rules.

FP-tree and Apriori can find associations between at-
tributes at any level of the taxonomy, but they have to run
on extended data sets. For each extended data set, many
redundant frequent itemsets and corresponding redundant
association rules are generated as the number of attributes
increases. Table 9 shows that the number of frequent item-
sets generally increases when the given minimum support
decreases. Otherwise, applying basic algorithms for min-
ing association rules with different levels of granularity, we
must transform original data sets into extended data sets,
which results in some disadvantages such as sparse data
turning into dense data, the number of attributes increas-
ing, larger itemsets, and so on. Thus, it probably takes
more CPU time for FP-tree and Apriori running on ex-
tended data sets.

5 Conclusion and future work

This paper discusses the basic concepts of information
granules and application of GrC in mining association rules
from relational databases. Based on the GrC, algorithms
of generating frequent itemsets are proposed for finding as-
sociation rules with different levels of granularity from a
relational database table or an information table. The pro-
posed algorithms use granules as basic processing elements
to find association rules, and the meaning of granules is
clear. Compared with FP-tree and Apriori, the proposed
G-Approach is effective, flexible and more convenient for
finding association rules with different levels of granularity
and makes problem solving feasible. Experiment results
show that the theory of GrC is effective and feasible and
with high applicability. In addition, with slight changes of
the algorithms, it is also convenient to find the maximal
frequent itemsets.

Further work involves such aspects as optimizing the al-
gorithm, testing further in a large relational database ta-
ble or an information table, making comparison with other
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methods in all aspects, and modifying the algorithm so as
to find association rules for a dynamic database.
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