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Robust H∞H∞H∞ Control of Uncertain Switched Systems:

a Sliding Mode Control Design
LIAN Jie1, 2 ZHAO Jun2

Abstract This paper develops a new method to the robust H∞ control problem for a class of uncertain switched systems by
constructing a single robust H∞ sliding surface. The method consists of two phases. One is to construct a single sliding surface
such that the reduced-order equivalent sliding motion restricted to the sliding surface is robustly stabilizable with H∞ disturbance
attenuation level γ under a hysteresis switching law; the other phase is to design variable structure controllers of subsystems to drive
the state of the switched system to reach the single sliding surface in finite time and remain on it thereafter. A numerical example
is given to illustrate the effectiveness of the proposed method.
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Switched systems consist of a family of continuous-time
or discrete-time systems and certain rules of logic speci-
fying at each instant of time, by which subsystem is acti-
vated along the system trajectory. Switched systems have
recently gained a great deal of attention[1−10], mainly be-
cause many real-world systems, such as chemical processes
and transportation systems, can be modeled as switched
systems. In the published works, switched linear systems
without uncertainties have been extensively investigated,
for instance, see [5−7] and references therein. Since uncer-
tainties are ubiquitous in system models due to the com-
plexity of the system itself, exogenous disturbance, and so
on, from a practical point of view, it is much more impor-
tant to study switched systems with uncertainties.

Among the existing results of switched systems with
uncertainties, [8] considered quadratic stabilization of
switched systems with norm-bounded time varying uncer-
tainties. In [9], L2 induced norm of switched systems
with external disturbances was considered under the con-
dition of large dwell time. Robust H∞ control and sta-
bilization of uncertain switched linear systems were ad-
dressed in [10] based on the multiple Lyapunov functions
approach.

On the other hand, the sliding mode control (SMC) is
one of the most important methods in the robust con-
trol area, since it possesses various attractive features
such as good robustness, fast response, and good tran-
sient response[11]. Many results have been reported about
SMC[11−13]. However, very few results of SMC applied to
switched systems have appeared by now. Reference [14]
proposed an SMC method to make a class of switched sys-
tems exponentially stable. Reference [15] addressed SMC
for planar switched systems under an arbitrary switching
sequence. In [16], the sliding motion of switched systems
without control input was analyzed and an approach was
proposed to estimate the domain, in which the sliding mo-
tion might occur. A variable structure controller with slid-
ing mode sector for a hybrid system was presented in [17].
For the robust H∞ control problem with the SMC tech-
nique, to the best of our knowledge, there are no results in
the existing literature, which motivates our present study.

In this paper, we investigate the robust H∞ sliding mode
variable structure control problem for a class of uncertain
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switched systems. This paper is organized as follows. Sec-
tion 1 presents the problem formulation and the preliminar-
ies. In Section 2, the design method is developed. Section
3 gives a numerical example and simulation results to illus-
trate the effectiveness of the proposed design, followed by
conclusion in Section 4.

Throughout this paper, ‖ · ‖ denotes the Euclidean norm
for a vector or the matrix induced norm for a matrix.

1 Problem formulation and preliminar-
ies

Consider the following uncertain switched system

ẋxx(t) = (Aσ + ∆Aσ)xxx(t) + B(uuuσ + fffσ(xxx, t)) + B1ωωω(t)

zzz(t) = Cxxx(t)
(1)

where xxx(t) ∈ Rn is the system state, σ : [0,∞) → Ξ =
{1, 2, · · · , l} is the piecewise constant switching signal that
may depend on either time t or state xxx, uuui ∈ Rm is the con-
trol input of the i-th subsystem, zzz(t) is the controlled out-
put, ωωω(t) ∈ L2[0,∞) is the external disturbance input, B,
B1, C, and Ai are constant matrices of appropriate dimen-
sions, 4Ai denote the uncertainties, and fff i(xxx, t) represent
nonlinear uncertainties of the system. For convenience, we
adopt the following notation from [18]. A switching se-
quence is expressed by

Ψ = {xxx0; (i0, t0), (i1, t1), · · · , (ij , tj), · · · | ij ∈ Ξ , j ∈ N}
(2)

where t0 is the initial time, xxx0 is the initial state, and
(ik, tk) means that the ik-th subsystem is activated for
[tk, tk+1). Therefore, when t ∈ [tk, tk+1), the trajectory
of the switched system (1) is produced by the ik-th subsys-
tem.

The following assumptions are introduced.
Assumption 1. The uncertainties can be represented

and emulated as

∆Ai = EΣi(t)F, i ∈ Ξ

where E and F are known constant matrices of appropriate
dimensions, and Σi(t) are unknown time-varying uncertain-
ties satisfying ΣT

i (t)Σi(t) ≤ I.
Assumption 2. There exist known nonnegative scalar-

valued functions φi(xxx, t), i ∈ Ξ such that ‖fff i(xxx, t)‖ ≤
φi(xxx, t) for all t.

Assumption 3. There exists a known nonnegative con-
stant $ such that ‖ωωω(t)‖ ≤ $ for all t.

Assumption 4. The input matrix B has full rank m
and m < n.
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Remark 1. Assumptions 1∼ 4 are standard assump-
tions in the study of variable structure control.

In order to develop the main design method, we need the
following lemmas.

Lemma 1[19]. Given real matrices R1 and R2 of ap-
propriate dimensions and an unknown matrix Σ(t) with
Σ(t)TΣ(t) ≤ I, we have

R1Σ(t)R2 + RT
1 ΣT(t)RT

2 ≤ βR1R
T
1 + β−1RT

2 R2 (3)

where β > 0.
Now, we introduce a convex combination of system (1)

without the matched uncertainties fff i(xxx, t) as

ẋxx(t) = (Ā + ∆Ā)xxx(t) + Buuu + B1ωωω(t)

zzz(t) = Cxxx(t)
(4)

where Ā =
∑l

i=1 αiAi, ∆Ā =
∑l

i=1 αi∆Ai, αi ≥ 0 with∑l
i=1 αi = 1.
Lemma 2. Given a constant γ > 0 , if there exist matrix

P > 0, state feedback gain K, constant λ > 0, and scalars
αi > 0 with

∑l
i=1 αi = 1 satisfying

(Ā−BK)TP + P (Ā−BK) + P (λ2EET+

γ−2B1B
T
1 )P +

1

λ2
FTF + CTC < 0

(5)

then system (4) is robustly stabilizable with H∞ distur-
bance attenuation level γ.

Proof. Let

Q = (Ā + ∆Ā−BK)TP + P (Ā + ∆Ā−BK) + γ−2P×
B1B

T
1 P + CTC = (Ā−BK)TP + P (Ā−BK)+

γ−2PB1B
T
1 P + CTC + ∆ĀTP + P∆Ā

Using Lemma 1, one obtains

∆ĀTP + P∆Ā = (

l∑
i=1

αi∆Ai)
TP + P (

l∑
i=1

αi∆Ai) =

[E(

l∑
i=1

αiΣi(t))F ]TP + P [E(

l∑
i=1

αiΣi(t))F ] ≤

λ2PEETP + λ−2FTF

Hence, we have

Q ≤ (Ā−BK)TP + P (Ā−BK) + P (λ2EET+

γ−2B1B
T
1 )P +

1

λ2
FTF + CTC < 0

which implies that system (4) is robustly stabilizable with
H∞ disturbance attenuation level γ. ¤

Remark 2. The inequality (5) can be converted into a
linear matrix inequality (LMI) by Schur complement and

the change of variable K̂ = KP−1. Hence, the feasible so-
lutions can be globally found by the LMI method[13].

To have a regular form of system (1), we define a non-
singular matrix

T =

[
B̃T

BT

]
(6)

where B̃ is an orthogonal complement of matrix B, and a
vector

ξξξ(t) =

[
ξξξ1(t)
ξξξ2(t)

]
= Txxx(t) =

[
B̃T

BT

]
xxx(t) (7)

with ξξξ1(t) ∈ Rn−m and ξξξ2(t) ∈ Rm. We can easily show

T−1 =
[

B̃(B̃TB̃)−1 B(BTB)−1
]

(8)

By means of the state transformation ξξξ(t) = Txxx(t), system
(1) is transformed into the following regular form

ξ̇ξξ(t) = (
_

Aσ + ∆
_

Aσ)ξξξ(t) +
_

B(uuuσ + fffσ(xxx, t)) +
_

B1ωωω(t)

zzz(t) =
_

Cξξξ(t)

(9)

where
_

Aσ = TAσT−1, ∆
_

Aσ = T∆AσT−1,
_

B = TB,
_

B1 =

TB1, and
_

C = CT−1. System (9) is equivalent to the
following form

[
ξ̇ξξ1(t)

ξ̇ξξ2(t)

]
=




_

Aσ11

_

Aσ12

_

Aσ21

_

Aσ22




[
ξξξ1(t)
ξξξ2(t)

]
+

[
0

BTB

]
×

(uuuσ + fffσ(xxx, t)) +

[
B̃TB1

BTB1

]
ωωω(t)

zzz(t) = C
[

B̃(B̃TB̃)−1 B(BTB)−1
] [

ξξξ1(t)
ξξξ2(t)

]

(10)

where
_

Aσ11 = B̃TAσB̃(B̃TB̃)−1 + B̃TEΣσ(t)FB̃(B̃TB̃)−1,
_

Aσ12 = B̃TAσB(BTB)−1+B̃TEΣσ(t)FB(BTB)−1,
_

Aσ21=

BTAσB̃(B̃TB̃)−1 + BTEΣσ(t)FB̃(B̃TB̃)−1, and
_

Aσ22 =
BTAσB(BTB)−1 + BTEΣσ(t)FB(BTB)−1.

Without loss of generality, we assume that the single
robust H∞ sliding surface is given by

ζζζ(t) = Mξξξ1(t) + ξξξ2(t) = 0 (11)

where M ∈ Rm×(n−m) is a matrix to be chosen. Then, it
follows that ζζζ(t) = Sxxx(t) = (MB̃T +BT)xxx(t). Substituting
ξξξ2(t) = −Mξξξ1(t) into (10) yields the sliding motion

ξ̇ξξ1(t) = (
_

Aσ11 −
_

Aσ12M)ξξξ1(t) + B̃TB1ωωω(t)

zzz(t) = CB̃(B̃TB̃)−1ξξξ1(t)− CB(BTB)−1Mξξξ1(t)
(12)

Definition 1. Given a constant γ > 0, the sliding mo-
tion (12) is said to be robustly stabilizable with H∞ dis-
turbance attenuation level γ via switching if there exists
a Lyapunov function V (xxx) and a switching law σ(t) such
that:

1) Derivative of V along the trajectory of system (12)
with ω(t) = 0 satisfies

L(t) = V̇ (t) < 0

for all t ∈ R+;
2) With zero-initial condition xxx(t) = 0, ‖zzz(t)‖2 <

γ‖ωωω(t)‖2 holds for all nonzero ωωω(t) ∈ L2[0,∞).
The objective of this paper is to determine the matrix

M , the switching law σ(t), and the variable structure con-
trollers uuui, i ∈ Ξ such that:

1) The sliding motion (12) restricted to the single sliding
surface (11) is robustly stabilizable with H∞ disturbance
attenuation level γ under the switching law σ(t);

2) The state of system (1) can reach the single sliding
surface (11) in finite time and subsequently remains on it.

Remark 3. The single sliding surface ζζζ(t) = Sxxx(t) = 0
is designed such that the switched system (1) is robustly
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stabilizable with H∞ disturbance attenuation level γ based
on the single Lyapunov function approach in the sliding
surface. The purpose of designing the single sliding surface
for the switched system is to reduce the reaching phase in
which systems are sensitive to uncertainties and perturba-
tions, and improve the transient performance and robust-
ness.

Remark 4. We can see that the matched uncertainties
fff i(xxx, t) disappear in the sliding motion (12) and the order
of the switched system (1) is reduced in the sliding sur-
face (11). Therefore, we only need to study the robust H∞
control problem of the n−m dimensional switched system
(12).

2 Main results

In this section, we introduce the variable structure
control technique. In general, the design comprises two
steps. Firstly, construct the sliding surface so that the
controlled system yields the desired dynamic performance.
Secondly, design the variable structure controllers such
that the trajectory of system (1) reaches the sliding surface
and remains on it for all subsequent time.

The following theorem shows that system (1) in the
sliding surface (11) is robustly stabilizable with H∞
disturbance attenuation level γ via switching.

Theorem 1. Suppose that (5) is solv-
able. Then, the sliding motion (12) with M =

[(BTB)−1BTPB(BTB)−1]−1(BTB)−1BTPB̃(B̃TB̃)−1 is
robustly stabilizable with H∞ disturbance attenuation
level γ via switching. In this case, the single robust H∞
sliding surface is

ζζζ(t) = Sxxx(t) =

{[(BTB)−1BTPB(BTB)−1]−1(BTB)−1×
BTPB̃(B̃TB̃)−1B̃T + BT}xxx(t) = 0

(13)

where P satisfies (5) in Lemma 2.
Proof. Since (5) is solvable, by Lemma 2, system (4) is

robustly stabilizable with H∞ disturbance attenuation level
γ. The sliding motion (12) can be rewritten equivalently
as

ξ̇ξξ1(t) = (Âσ11 − Âσ12M + ÊΣσ(t)F̂ )ξξξ1(t) + B̂1ωωω(t)

zzz(t) = Csξξξ1(t)
(14)

where Âσ11 = B̃TAσB̃(B̃TB̃)−1, Âσ12 = B̃TAσB (BTB)−1,

Ê = B̃TE, F̂ = FB̃(B̃TB̃)−1 − FB(BTB)−1M , B̂1 =

B̃TB1, and Cs = CB̃(B̃TB̃)−1 − CB(BTB)−1M .
Denote

Āc = T (Ā−BK)T−1 =[
Ā11 Ā12

Ā21 −BTBKB̃(B̃TB̃)−1 Ā22 −BTBKB(BTB)−1

]

(15)

with Ā11 = B̃TĀB̃(B̃TB̃)−1, Ā12 = B̃TĀB(BTB)−1, and
calculate

P̄ = T−TPT−1 =
[
(B̃TB̃)−1B̃TPB̃(B̃TB̃)−1 (B̃TB̃)−1B̃TPB(BTB)−1

(BTB)−1BTPB̃(B̃TB̃)−1 (BTB)−1BTPB(BTB)−1

]
=

[
P̄11 P̄12

P̄T
12 P̄22

]

(16)

Then, the inequality (5) can be rewritten as

ĀT
c P̄ + P̄ Āc + P̄ T (λ2EET + γ−2B1B

T
1 )TTP̄+

T−T(
1

λ2
FTF + CTC)T−1 < 0

(17)

Pre- and post-multiplying (17) by [In−m,−P̄12P̄
−1
22 ] and

[In−m,−P̄12P̄
−1
22 ]T, respectively, we have

(Ā11 − Ā12P̄
−1
22 P̄T

12)
TP̄r + P̄r(Ā11 − Ā12P̄

−1
22 P̄T

12) +

P̄rB̃
T(λ2EET + γ−2B1B

T
1 )B̃P̄r + [B̃(B̃TB̃)−1−

B(BTB)−1P̄−1
22 P̄T

12]
T(

1

λ2
FTF + CTC)×

[B̃(B̃TB̃)−1 −B(BTB)−1P̄−1
22 P̄T

12] < 0

(18)

where P̄r = P̄11 − P̄12P̄
−1
22 P̄T

12. Obviously, P̄r > 0
since P̄ > 0. Therefore, by setting M = P̄−1

22 P̄T
12 =

[(BTB)−1BTPB(BTB)−1]−1(BT B)−1 BT PB̃ (B̃T B̃)−1,
(18) becomes

(Ā11 − Ā12M)TP̄r + P̄r(Ā11 − Ā12M) + P̄r(λ
2ÊÊT+

γ−2B̂1B̂
T
1 )P̄r +

1

λ2
F̂TF̂ + CT

s Cs < 0

(19)

Furthermore, substituting Ā =
∑l

i=1 αiAi into the inequal-
ity (19) and denoting

Qi = (Âi11 − Âi12M)TP̄r + P̄r(Âi11 − Âi12M)+

P̄r(λ
2ÊÊT + γ−2B̂1B̂

T
1 )P̄r +

1

λ2
F̂TF̂ + CT

s Cs, i ∈ Ξ

we have
α1Q1 + α2Q2 + · · ·+ αlQl < 0

We define the regions

Ωi = {ξξξ1|ξξξT
1 Qiξξξ1 < 0}, i ∈ Ξ (20)

Obviously, ∪
i∈Ξ

Ωi = R(n−m)\{0}.
The hysteresis switching law for the sliding motion (12)

is designed as

σ(0) = min arg{Ωi|ξξξ1(0) ∈ Ωi}

σ(t) =





i, if ξξξ1(t) ∈ Ωi and σ(t−) = i

min arg{Ωk|ξξξ1ξξξ1ξξξ1(t) ∈ Ωk},
if ξξξ1(t) /∈ Ωi and σ(t−) = i

(21)
We first verify the stabilization of the sliding motion (12)
with ωωω(t) = 0. To this end, choose the Lyapunov function
candidate as

V (t) = ξξξT
1 (t)P̄rξξξ1(t) (22)

Then, by (19) the derivative of the Lyapunov function (22)
along the trajectory of system (14) with ωωω(t) = 0 and under
the switching law (21) satisfies

V̇ < 0

By the single Lyapunov function method, the sliding mo-
tion (12) with ωωω(t) = 0 is robustly stabilizable under the
switching law (21).

In the following, we show that the overall L2-gain from
ωωω to zzz is less than or equal to γ in the single sliding surface
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(13). We suppose xxx(0) = 0 and without loss of generality,
for ∀ T ≥ t0 = 0, assume T ∈ [tk, tk+1) for some k.

Now, we introduce

J =

∫ T

0

(‖zzz‖2 − γ2 ‖ωωω‖2)dt

According to the switching sequence (2), when T ∈
[tk, tk+1), we have

J =

k−1∑
j=0

( ∫ tj+1

tj

(‖zzz‖2 − γ2 ‖ωωω‖2 + V̇ (t))dt− (V (tj+1)−

V (tj))

)
+

∫ T

tk

(‖zzz‖2 − γ2 ‖ωωω‖2 + V̇ (t))dt− (V (T )−

V (tk)) =

k−1∑
j=0

( ∫ tj+1

tj

(‖zzz‖2 − γ2 ‖ωωω‖2 + V̇ (t))dt

)
+

∫ T

tk

(‖zzz‖2 − γ2 ‖ωωω‖2 + V̇ (t))dt− V (T )

Note that

‖zzz‖2 − γ2 ‖ωωω‖2 + V̇ (t) ≤ ξξξT
1 Qijξξξ1−

(γ−1B̂T
1 P̄rξξξ1 − γωωω)T(γ−1B̂T

1 P̄rξ1ξ1ξ1 − γωωω) < 0

Therefore, J < 0 for ∀ωωω ∈ L2[0,∞). That is ‖zzz(t)‖2 <
γ ‖ωωω(t)‖2. ¤

Remark 5. The classical state-depended switching laws
appeared in many references[8−10] may result in sliding
motions in subsystems switching surfaces. We referred
to [1, 20] to design the hysteresis switching law to avoid
Zeno phenomenon. The value of the hysteresis switching
signal is not determined by the current value of state alone,
but depends also on the previous value of switching signal.

Next, we design controllers for subsystems to reach the
sliding surface in finite time.

Theorem 2. Assume that the conditions of Theorem 1
are satisfied and the sliding surface of system (1) is given
by (13). Then, under the controllers

uuui =−(SB)−1SAixxx−(SB)−1(‖SE‖ ‖Fxxx‖+‖SB‖φi(xxx, t)+

$ ‖SB1‖+ µ)sgn(ζζζ), i ∈ Ξ
(23)

the state of system (1) can reach in finite time and subse-
quently remains on the sliding surface, where µ is a positive
scalar to adjust the convergent rate.

Proof. The derivative of the sliding function ζζζ(t) =
Sxxx(t) along the trajectory of system (1) is

ζ̇ζζ(t) = S(Ai + ∆Ai)xxx(t)+

SBuuui + SBfff i(xxx, t) + SB1ωωω(t)
(24)

By Assumptions 1∼ 3, substituting the controllers (23)

into (24) yields ζζζT(t)ζ̇ζζ(t) ≤ −µ ‖ζζζ(t)‖, which implies that
the state of system (1) reaches the sliding surface (13) in
finite time and remains on it thereafter. ¤

3 Example

In this section, we present a numerical example to
demonstrate the effectiveness of the proposed design
method.

Consider the following uncertain switched system

ẋxx(t) = (Aσ + ∆Aσ)xxx(t) + BBB(uσ + fσ(xxx, t)) + BBB1ω(t)

z(t) = CCCxxx(t)
(25)

where σ(t) ∈ Ξ = {1, 2}, A1 =



−3 −0.5 1
1 −0.5 1
0 1 −2


, A2 =



−1 −1 1
2 1 −1
1 0 −2


, BBB =




0
−0.5

1


, BBB1 =




0
−0.1
0.1


,

CCC =
[

1 0 0
]
, the uncertainties ∆Ai = EEEΣi(t)FFF , with

EEE =
[

1 −1 0
]T

, FFF =
[

1 1 0
]
, Σ1 = η1 = −1 ∈

[−1, 1], Σ2 = η2 = 0.8 ∈ [−1, 1], and f1 = f2 = 0.
We choose the convex combination coefficients α1 =

α2 = 0.5 and the constant λ = 1/
√

2. The disturbance

attenuation level is given by γ = 1/
√

2.

Let KKK = BBBTP . Solving inequality (5) leads to the
solution

P =




9.2006 7.8894 3.7381
7.8894 8.1363 3.6193
3.7381 3.6193 3.2078




Then, we obtain MMM = [0.0831, 0.2195]. The single robust
H∞ sliding function is given as

ζ(t) = SSSxxx(t) = [−0.1591,−0.3458, 1.0771]xxx(t) (26)

Taking µ = 1, according to (23), one has the controllers for
subsystems given as

u1 = −0.1054x1 − 1.0637x2 + 2.1273x3−
0.8(0.1867 ‖x1 + x2‖+ 1)sgn(ζ)

u2 = −0.4358x1 + 0.1493x2 + 1.5741x3−
0.8(0.1867 ‖x1 + x2‖+ 1)sgn(ζ)

(27)

The state responses of the two subsystems with ini-
tial state xxx0 = [1, 2,−1]T are shown in Figs. 1 and 2, re-
spectively. We can easily see that both subsystems are
unstable.

Fig. 1 The state responses of subsystem 1

It is easy to verify that the conditions of Theorems 1
and 2 are satisfied. According to the hysteresis switching
law (21), for system (25), we design the switching law as
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Fig. 2 The state responses of subsystem 2

σ(t) =





1, if(xxx(0) ∈ Ω1) or (xxx(t) ∈ Ω1 and σ(t−) = 1)

or (xxx(t) /∈ Ω2 and σ(t−) = 2)

2, if(xxx(0) /∈ Ω1) or (xxx(t) ∈ Ω2 and σ(t−) = 2)

or (xxx(t) /∈ Ω1 and σ(t−) = 1)
(28)

where Ω1 = {xxx|xxxT



−32.5006,−13.8465,−6.9232

−13.8465,−0.5939, − 0.2969

−6.9232, − 0.2969, − 0.1485


×

xxx < 0}, Ω2 = {xxx|xxxT




23.2917, 9.9988, 4.9994

9.9988,−2.3998,−1.1999

4.9994,−1.1999,−0.5999


xxx < 0}

The simulation results are depicted in Figs 3 ∼ 6.
The simulation results for the system state responses in

the closed-loop with the same initial state xxx0 = [1, 2,−1]T

are shown in Fig. 3. It is clearly seen that the closed-loop
system of the switched system (25) with the designed con-
trollers (27) and the switching law (28) is asymptotically
stable. Fig. 4 gives the input signal of the switched system
(25). The trajectory of the sliding function (26) is shown
in Fig. 5. The switching signal is given in Fig. 6.

Fig. 3 The system state responses of the switched system (25)

4 Conclusion

This paper has developed a new approach to the robust
H∞ control problem for a class of uncertain switched sys-
tems by constructing the single robust H∞ sliding surface.

Fig. 4 The input signal of the switched system (25)

Fig. 5 The trajectory of the sliding function (26)

Fig. 6 The switching signal (28)

The sufficient condition for the existence of the single ro-
bust H∞ sliding surface has been derived in terms of Riccati
inequality associated with the convex combination of the
switched system. The switching law has been constructed
such that the n−m dimensional sliding motion is robustly
stabilizable with H∞ disturbance attenuation level γ. Vari-
able structure controllers have been designed to drive the
state of the switched system to reach the single robust H∞
sliding surface in a finite time.
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