
Vol. 35, No. 7 ACTA AUTOMATICA SINICA July, 2009

Decentralized Excitation Control of Multi-machine

Multi-load Power Systems Using

Hamiltonian Function Method
LIU Yan-Hong1 LI Chun-Wen2,3 WANG Yu-Zhen4

Abstract Using the Hamiltonian function method, we investigate the excitation control of multi-machine multi-load power systems
presented by nonlinear differential algebraic equations. First, the power system is reformulated as a novel Hamiltonian realization
structure via pre-feedback state control. Then, based on the dissipative Hamiltonian realization of the system, a decentralized
nonlinear excitation control scheme is constructed. The stability of the closed loop system is analyzed as well. The proposed strategy
takes advantage of the intrinsic properties especially including the internal power balance of the power system. Simulation illustrates
the effectiveness of the control strategy.
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Generally, multi-machine multi-load power systems can
be modelled as a set of nonlinear differential algebraic equa-
tions in the form of ẋxx = fff(xxx,zzz,uuu) and 000 = σσσ(xxx,zzz), where
the differential equations describe the dynamics of dynamic
components (e.g. generators, control devices, dynamic
loads, and power electronics equipments) and the algebraic
equations express the characteristics of static components
and the network structure[1−4]. This kind of nonlinear dif-
ferential algebraic system model has been widely adopted
in numerical simulation, stability analysis, and stability re-
gion estimation of power systems because it can represent
more realistic components and facilitate the utility of the
sparse matrix techniques in numerical calculation[3, 5−10].
However, as for the stability and dynamic performance en-
hancement control, the undergoing power systems are gen-
erally simplified to the differential equation system model
obtained from the differential algebraic power system model
under the constant impedance load assumption[11−15]. This
will definitely put stringent limitations on the control effect
because almost all the real loads are nonlinear.

Recently, many state feedback linearization techniques
were extended to nonlinear differential algebraic sys-
tems (NDAS) and gained some applications to the ex-
citation control of differential algebraic power systems
immediately[16−18]. In [16], some algorithms were provided
to regularize, linearize, and stabilize NDAS via coordi-
nate transformation and state feedback. In [17], Wang ap-
plied the ideas from differential geometric control theory to
NDAS and proposed a systematic state feedback lineariza-
tion strategy to produce stabilization and adaptive stabi-
lization control laws for structure preserving power systems
with nonlinear loads. Reference [18] used the same tech-
nique to design a nonlinear static var compensator con-
troller for a single-machine infinite bus system with nonlin-
ear loads.

It is well-known that the central idea of linearization
is to obtain a feedback equivalent linear system by can-
celling the internal nonlinearities of the considered systems,
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which may destruct the original structural properties of
the system that are useful in the controller design proce-
dure. The Hamiltonian function method employs a differ-
ent design principle that can effectively utilize the internal
structural characteristics of the systems in the procedure
of controller design, hence it has attracted great attention
in nonlinear system synthesis and has gained great achieve-
ments in the power system stabilization and performance
enhancement[19−25].

One of the key steps in the Hamiltonian function method
is to draw an equivalent representation of the system
under consideration as a dissipative Hamiltonian system
that interacts with external environments through port
power conjugated variables and satisfies the energy balance
equation[26−27]. For multi-machine multi-load power sys-
tems, the algebraic equations describe the internal energy
balance in the systems and do not affect the energy balance
between the system and external world. Motivated by this
intuition, we discuss the excitation control problem of dif-
ferential algebraic power systems via Hamiltonian function
method in this paper. First, we express the power system
under consideration as a dissipative Hamiltonian system,
which can effectively use the internal energy balance prop-
erty of the power system. Then, based on the achieved
dissipative Hamiltonian realization, we investigate the ex-
citation control of the power systems and propose a de-
centralized nonlinear excitation controller. Simulation on
a six-machine eight-load power system shows the effective-
ness of the control scheme.

The rest of the paper is organized as follows. In Sec-
tion 1, the differential algebraic power system model is
presented as a dissipative Hamiltonian system. In Section
2, a nonlinear excitation controller is constructed based
on Hamiltonian function method. In Section 3, we sim-
ulate a six-machine eight-load power system to illustrate
the effectiveness of the proposed control scheme. Finally,
in Section 4, the results obtained in this paper are summa-
rized and the conclusion is drawn.

1 Dissipative Hamiltonian realization
of multi-machine multi-load power
systems

1.1 Dynamics of multi-machine multi-load power
systems

Consider a power system with n machines and m loads
connected by lossless transmission lines. Each generator
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is represented by an internal bus and a terminal bus. Let
JI = 1, 2, · · · , n and JT = 1, 2, · · · , n be the generator in-
ternal and terminal buses, respectively. JI = n + 1 refers
to the reference bus with the voltage and phase assumed
to be Vn+1∠θn+1 = 1∠0. The load buses are denoted by
JL = n + 2, n + 3, · · · , n + m + 1. Suppose that all the
load buses are PQ buses, i.e., each load corresponds to a
constant active Pd and reactive Qd power demand. The dy-
namics of the multi-machine multi-load power system can
be represented by the following nonlinear differential alge-
braic equations:





δ̇i = ω0(ωi − 1)

ω̇i = −Di

Mi
(ωi − 1) +

1

Mi
(Pmi − Pei)

Ė′
qi = φi +

Efdi

T ′d0i

(1)

for generator i = 1, · · · , n, where

Pei =
E′

qiVi sin(δi − θi)

x′di

φi =
xdi

x′diT
′
d0i

E′
qi +

xdi − x′di

x′diT
′
d0i

Vi cos(δi − θi)

At the i-th terminal generator bus, i = 1, · · · , n,

0 = PTi(δδδ,EEE
′
q, θθθ,VVV ,ϕϕϕ) =

E′
qiVi sin(θi − δi)

x′di

+

n+1∑

j=1,j 6=i

BijViVj sin(θi − θj)+

n+m+1∑

k=n+2

BikViVk sin(θi − ϕk) (2)

0 = QTi(δδδ,EEE
′
q, θθθ,VVV ,ϕϕϕ) =

V 2
i

x′di

− E′
qiVi cos(θi − δi)

x′di

−

BiiV
2

i −
n+1∑

j=1,j 6=i

BijViVj cos(θi − θj)−

n+m+1∑

k=n+2

BikViVk cos(θi − ϕk) (3)

At the k-th load bus, k = n + 2, · · · , n + m + 1,

0 = − Pdk + PLk(δδδ,EEE′
q, θθθ,VVV ,ϕϕϕ) = −Pdk+

n+1∑
i=1

BkiVkVi sin(ϕk − θi)+

n+m+1∑

l=n+2,l6=k

BklVkVl sin(ϕk − ϕl) (4)

0 = −Qdk + QLk(δδδ,EEE′
q, θθθ,VVV ,ϕϕϕ) = −Qdk−

BkkV 2
k −

n+1∑
i=1

BkiVkVi cos(ϕk − θi)−

n+m+1∑

l=n+2,l6=k

BklVkVl cos(ϕk − ϕl) (5)

where δδδ = (δ1, · · · , δn)T, ωωω = (ω1, · · · , ωn)T, EEE′
q = (E′

q1,

· · · , E′
qn)T, θθθ = (θ1, · · · , θn)T, VVV = (V1, V2, · · · , Vn, Vn+1,

· · · , Vn+m+1)
T, and ϕϕϕ = (ϕn+2, · · · , ϕn+m+1)

T. δi is the
power angle of the i-th generator, in radian; ωi is the rotor
speed of the i-th generator, ω0 = 2πf0, in rad/s; E′

qi is
the q-axis internal transient voltage of the i-th generator,
in per unit; Efdi is the voltage of the field circuit of the
i-th generator, the control input, in per unit; Pmi is the
mechanical power, assumed to be constant, in per unit; Pei

is the active electrical power, in per unit; Vi is the terminal
voltage of the i-th generator, in per unit; θi is the terminal
voltage angle of the i-th generator, in radian; Vk is the volt-
age of the k-th load bus, in per unit; ϕk is the voltage angle
of the k-th load bus, in radian; x′di is the d-axis transient
reactance of the i-th generator, in per unit; xdi is the d-axis
reactance, in per unit; Mi is the inertia coefficient of the
i-th generator, in seconds; Di is the damping constant, in
per unit; T ′d0i is the d-axis transient open-circuit time con-
stant, in seconds; and Bij is the susceptance of the linear
connecting bus i and j, in per unit.

Equations (1)∼ (5) constitute the nonlinear differen-
tial algebraic equation model of multi-machine multi-load
power systems.

Choose the state variables xxx = (xxxT
1 ,xxxT

2 , · · · ,xxxT
n )T with

xxxi = (δi, ωi, E
′
qi), and algebraic variables zzz = (zzzT

g1, · · · , zzzT
gn,

zzzT
l1, · · · , zzzT

l,n+m+1) with zzzgi = (θi, vi) and zzzlk = (ϕk, vk),
where vi = ln Vi, vk = ln Vk (note that Vi > 0 and Vk > 0).
Denote control parameters by ui = Efdi. Then, the multi-
machine multi-load power system can be written in the
following NDAS

{
ẋxx = fff(xxx,zzz) + g(xxx,zzz)uuu
0 = σσσ(xxx,zzz)

(6)

where the smooth vector functions of state and algebraic

variables fff = [fffT
1 , · · · , fffT

n ]T with fi =

[
ω0(ωi − 1),

−Di

Mi
(ωi− 1)− 1

Mi
(Pei−Pmi), φi

]T

; g = diag{ggg1, · · · , gggn}

with gggi =

[
0, 0,

1

T ′d0i

]T

; and σσσ = [σσσT
i ,σσσT

k ]T with σσσi = [PTi,

QTi]
T and σσσk = [−Pdk + PLk,−Qdk + QLk]T.

In order to guarantee that the above NDAS has a unique
solution without impulses (or jumps), we assume that
system (6) is of index one in a neighborhood Ω of the

equilibrium point (xxxe, zzze), i.e., rank
σσσ(xxx,zzz)

zzz
= 2(n + m),

∀(xxx,zzz) ∈ Ω and the initial condition (xxx(0), zzz(0)) satisfies
σσσ(xxx(0), zzz(0)) = 0.

1.2 Dissipative Hamiltonian realization of multi-
machine multi-load power systems

To employ the Hamiltonian function method, it is essen-
tial to express the system under consideration as a dissipa-
tive Hamiltonian system. First, for NDAS in the form of
(6), its Hamiltonian realization is defined as[28]:

Definition 1. Suppose there exists a continuous dif-
ferentiable function H(xxx,zzz) such that NDAS (6) can be
represented as

{
ẋxx = (J(xxx,zzz)−R(xxx,zzz))∇xxxH(xxx,zzz) + g(xxx,zzz)uuu
0 = ∇zzzH(xxx,zzz)

(7)

where ∇xxxH(xxx,zzz) and ∇zzzH(xxx,zzz) are gradient vectors of
H(xxx,zzz) with respect to xxx and zzz, respectively. If, point-
wisely, J(xxx,zzz) is skew-symmetric and R(xxx,zzz) is positive
semi-definite, then (7) is called a dissipative Hamiltonian
realization of NDAS (6) and H(xxx,zzz) is the corresponding
Hamiltonian function.
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According to Definition 1, if there exists a dissipative
Hamiltonian realization of NDAS (6), the Hamiltonian
function H(xxx,zzz) must satisfy

0 = ∇zzzH(xxx,zzz) = σσσ(xxx,zzz) (8)

along the system trajectories. This equation implies that
the system energy does not depend on the algebraic vari-
ables along the system trajectories constrained by the al-
gebraic equation although the Hamiltonian function may
explicitly contain the algebraic variables.

Now, consider the dissipative Hamiltonian realization of
the multi-machine multi-load power systems. We have the
following result.

Theorem 1. The multi-machine multi-load power sys-
tem has a dissipative Hamiltonian realization under the
following pre-feedback control

ui = µi + ūi, i = 1, · · · , n (9)

where µi is the new reference input and ūi is a constant
control input defined by

ūi = −xdi

x′di

E′
qie − xdi − x′di

x′di

Vie cos(δie − θie) (10)

in which (Vie, θie) is implicitly determined by the alge-
braic equations (2)∼ (5) and generator dynamic variables
(δie, 1, E′

qie).
Proof. Note that the feedback control is inserted to

operate the power system at a desired equilibrium point.
Substituting (9) into the differential algebraic power system
(1)∼ (5), we have





δ̇i = ω0(ωi − 1)

ω̇i = −Di

Mi
(ωi − 1)− 1

Mi
(Pei − Pmi)

Ė′
qi = φi +

ūi

T ′d0i

+
µi

T ′d0i

(11)

where the power flow equations of the system under the
pre-feedback control are the same as (2)∼ (5). Define

H(δδδ,EEE′
q, θθθ,VVV ,ϕϕϕ) =

n∑
i=1

1

2
Miω0(ωi − 1)2 + P (δδδ,EEE′

q, θθθ,VVV ,ϕϕϕ)

(12)
where P (·) is the potential energy and H(·) is the total
energy for the structure preserving multi-machine power
system. And

P (δδδ,EEE′
q, θθθ,VVV ,ϕϕϕ) = −

n∑
i=1

Pmiδi −
n+m+1∑

k=n+2

(Pdjϕj + Qdjvj)−

n∑
i=1

E′
qie

vi cos(δi − θi)

x′di

−
n∑

i=1

E
′2
qixdi

2x′di(xdi − x′di)
+

n∑
i=1

e2vi

2
(

1

x′di

−Bii)−
n+1∑
i<j

Bije
vi+vj cos(θi − θj)−

n+1∑
i=1

n+m+1∑

k=n+2

Bikevi+vk cos(θi − ϕk)−

n+m+1∑

k<l

Bkle
vk+vl cos(ϕk − ϕl)−

n+m+1∑

k=n+2

1

2
Bkke2vk −

n∑
i=1

E′
qiūi

xdi − x′di

(13)

Under the pre-feedback control (9), the gradient of H(·)
becomes

∇xxxiH =




−Pmi + Pei

Miω0(ωi − 1)

− T ′d0i

xdi − x′di

(
φi +

ūi

T ′d0i

)




∇zzziH =

[
PTi

QTi

]
, ∇zzzkH =

[ −Pdk + PLk

−Qdk + QLk

]

Therefore, the multi-machine multi-load power system
(2)∼ (5) can be expressed as

{
ẋxx = (J −R)∇xxxH + gµµµ
0 = ∇zzzH

(14)

where J = diag{J1, · · · , Jn}, R = diag{R1, · · · , Rn}, µµµ =
(µ1, µ2, · · · , µn)T, and

Ji =




0
1

Mi
0

− 1

Mi
0 0

0 0 0


 , Ri =




0 0 0

0
Di

M2
i

0

0 0
xdi − x′di

T ′d0i




Obviously, J is skew symmetric as well as Ji. Noticing
that xd = xl + xa and x′d = xl + xf/xa, we can directly
get that xd > x′d and Ri ≥ 0 as well as R. Here, xl is
the armature leakage reactance, xa is the armature reac-
tion reactance, and xf is the reactance corresponding to
the flue path around the field winding. So (14) is a dissi-
pative Hamiltonian realization of the multi-machine multi-
load power system. ¤

2 Nonlinear excitation design of multi-
machine multi-load power systems

In this section, we will adopt the following excitation
control law

µi = −Kiggg
T
i ∇xxxiH(xxx,zzz) =

Ki

xdi − x′di

(
φi +

ūi

T ′d0

)
, Ki > 0

(15)
to stabilize the power systems around the desired operating
point (xxxe, zzze). The resulting closed-loop system of (14) then
becomes {

ẋxx = (J −R− gKgT)∇xxxH
0 = ∇zzzH

(16)

where K = diag{K1, · · · , Kn}. Obviously, the closed loop
system is still a dissipative Hamiltonian system.

To show that (15) is a stabilization control law, it is suf-
ficient to demonstrate that the close-loop system is stable.
As is well known in the energy-based approach, the Hamil-
tonian function is a natural candidate of Lyapunov function
in stability analysis. Since the derivative of Hamiltonian
function is always semi-negative definite, we need the fol-
lowing LaSalle′s invariance principle for NDAS[29] to assist
the stability analysis.

Lemma 1. Consider the following NDAS

{
ẋxx = fff1(xxx,zzz)
0 = fff2(xxx,zzz)

(17)

where fff1 and fff2 are continuous differentiable vector fields.
Suppose (xxxe, zzze) is an isolated equilibrium point. Let
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V (xxx,zzz) : D → R+ be a smooth function that is positive def-

inite in a neighborhood D of (xxxe, zzze), such that V̇ (xxx,zzz) ≤ 0.

Let S = {(xxx,zzz) ∈ D|V̇ (xxx,zzz) = 0}. Then, (xxxe, zzze) is locally
asymptotically stable if no solution can stay forever in S
except the trivial solution xxx(t) ≡ xxxe and zzz(t) ≡ zzze.

Based on Lemma 1, a stability criterion for a dissipative
Hamiltonian realizable NDAS can be given as follows.

Theorem 2. Suppose (17) has a Hamiltonian as
{

ẋxx = (J(xxx,zzz)−R(xxx,zzz))∇xxxH(xxx,zzz)
0 = ∇zzzH(xxx,zzz)

(18)

The equilibrium (xxxe, zzze) is locally asymptotically stable
if

1) (xxxe, zzze) is a strict local minimum of Hamiltonian func-
tion H(xxx,zzz);

2) Ḣ(xxx,zzz) ≤ 0 holds in some neighborhood of (xxxe, zzze);
3) No trajectory stays forever in the set S = {(xxx,zzz) ∈

D|Ḣ(xxx,zzz) = 0} except the trivial one xxx(t) ≡ xxxe and zzz(t) ≡
zzze.

Proof. Let H̄ = H(xxx,zzz) − H(xxxe, zzze). Obviously, it
is a proper Lyapunov function because H̄(xxx,zzz) > 0 and

its time derivative ˙̄H(xxx,zzz) ≤ 0. Combined with condition
3) and Lemma 1, the equilibrium is locally asymptotically
stable. ¤

According to Theorem 2, in order to show the asymp-
totically stability of the closed-loop system (16), we need
first to verify if H(xxx,zzz) achieves a strict local minimum
at the desired equilibrium point. This property is actu-
ally an extreme value problem constrained by algebraic
equation σσσ(xxx,zzz) = 0 because each trajectory of the dif-
ferential algebraic power system must meet this equation.
By taking into consideration of the dissipative Hamiltonian
realization formulation of power system, the strict mini-
mum property is determined by the Hamiltonian function
(12) without algebraic equation constraints[28, 30]. Unfor-
tunately, having tried many means, we find it almost im-
possible to examine the definiteness of the Hessian matrix
directly because of the high complexity of the Hamiltonian
function (12). Representation of the Hamiltonian function
seems necessary. Noting that the potential energy stored in
a lossless transmission line is equal to half of the reactive
power loss in the line[4], we can rewrite the Hamiltonian
function (12) as

H(xxx,zzz) =

n∑
i=1

1

2
Miω0(ωi − 1)2 −

n∑
i=1

Pmiδi−

n+m+1∑
j=n+2

Pdjϕj −
n+m+1∑
j=n+2

Qdjvj+

n∑
i=1

e2vi

2x′di

−
n∑

i=1

ViE
′
qi cos(δi − θi)

x′di

+

n∑
i<j

Bij

[
V 2

i + V 2
j

2
− ViVj cos(θi − θj)

]
+

n∑
i=1

Bi,n+1

[
V 2

i

2
− Vi cos θi

]
+

n∑
i=1

n+m+1∑

k=n+2

Bik

[
V 2

i + V 2
k

2
− ViVk cos(θi − ϕk)

]
+

n+m+1∑

k=n+2

Bk,n+1

[
V 2

k

2
− Vk cos ϕk

]
+

n+m+1∑

k<l

Bkl

[
V 2

k + V 2
l

2
− VkVl cos(ϕk − ϕl)

]
+

n∑
i=1

[
xdiE

′2
qi

2x′di(xdi − x′di)
− E′

qiūi

xdi − x′di

]
(19)

It is easy to verify that

Hα(xxx,zzz) + c ≤ H(xxx,zzz) ≤ Hβ(xxx,zzz) + c (20)

where

Hα(xxx,zzz) =

n∑
i=1

1

2
Miω0(ωi − 1)2 −

n∑
i=1

Pmiδi−

n+m+1∑
j=n+2

Pdjϕj −
n+m+1∑
j=n+2

Qdjvj+

n∑
i<j

1

2
Bij(Vi − Vj)

2 +

n∑
i=1

1

2
Bi,n+1(Vi − 1)2+

n∑
i=1

n+m+1∑

k=n+2

1

2
Bik(Vi − Vk)2+

n+m+1∑

k=n+2

1

2
Bk,n+1(Vk − 1)2+

n+m+1∑

k<l

1

2
Bkl(Vk − Vl)

2 +

n∑
i=1

1

x′di

(Vi − E′
qi)

2+

n∑
i=1

1

2(xdi − x′di)
(E′

qi − ūi)
2 (21)

Hβ(xxx,zzz) =

n∑
i=1

1

2
Miω0(ωi − 1)2 −

n∑
i=1

Pmiδi−

n+m+1∑
j=n+2

Pdjϕj −
n+m+1∑
j=n+2

Qdjvj+

n∑
i<j

1

2
Bij(Vi + Vj)

2 +

n∑
i=1

1

2
Bi,n+1(Vi + 1)2+

n∑
i=1

n+m+1∑

k=n+2

1

2
Bik(Vi + Vk)2+

n+m+1∑

k=n+2

1

2
Bk,n+1(Vk + 1)2+

n+m+1∑

k<l

1

2
Bkl(Vk + Vl)

2 +

n∑
i=1

1

x′di

(Vi + E′
qi)

2+

n∑
i=1

1

2(xdi − x′di)
(E′

qi − ūi)
2 (22)

c = −
n∑

i=1

1

2
Bi,n+1 −

n+m+1∑

k=n+2

1

2
Bk,n+1 −

n∑
i=1

ū2
i

2(xdi − x′di)

(23)
Because δi ∈ [−π, π] and ϕk ∈ [−π, π], Hα(xxx,zzz) is
bounded from below. From (20), the Hamiltonian func-
tion H(xxx,zzz) is also bounded from below and for l > 0, the
set {(xxx,zzz)|H(xxx,zzz) ≤ l} is compact. Noticing that every
equilibrium point of the power system is also an extremum
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point of H(xxx,zzz) and for a real power system, there exists
only one desired operating point in the interested region,
similar to [22], where we can know that H(xxx,zzz) has a strict
local minimum at the desired operating point.

Integrating the above discussions, we arrive at the fol-
lowing result.

Theorem 3. The differential algebraic power system
(1)∼ (5) can be stabilized around the prescribed operating
point (xxxe, zzze) by the following nonlinear feedback excitation
control law

ui = ūi +
Ki

xdi − x′di

(
φi +

ūi

T ′d0i

)
(24)

Proof. It has been shown that the Hamiltonian function
(12) has a strict local minimum at the desired equilibrium
point. Furthermore, the derivative of H(xxx,zzz) along the
trajectories of closed loop system (16) satisfies

Ḣ =(∇xxxH)T(J −R− gKgT)∇xxxH =

−
n∑

i=1

[
Diω

2
0(ωi − 1)2 +

T ′2d0i

(xdi − x′di)
2
×

(
xdi − x′di

T ′d0i

+
Ki

T ′2d0i

) (
φi +

ūi

T ′d0i

)2
]
≤ 0 (25)

Observing that

S = {(xxx,zzz) : Ḣ(xxx,zzz) = 0,σσσ(xxx,zzz) = 000} =

{(xxx,zzz) : ωi = 1, φi +
ūi

T ′d0i

= 0,

σσσ(xxx,zzz) = 0, i = 1, · · · , n} =

{(xxx,zzz) : ωi = 1, Pmi = Pei, φi +
ūi

T ′d0i

= 0,

σσσ(xxx,zzz) = 0, i = 1, · · · , n} (26)

and taking into consideration that ωi = 1, Pmi = Pei,
φi + ūi/T ′d0i = 0, and σσσ(xxx,zzz) = 0 are the equations the de-
sired equilibrium point should satisfy, we can know that S
contains no trajectories other than the desired equilibrium
point. According to Theorem 2, the closed loop system is
asymptotically stable. ¤

Before the end of this section, let us discuss the realiza-
tion problem of the controller (24). It is known that E′

qi

is unmeasurable, and δi and θi are difficult to get. So, in
order to complete the feedback control, we must replace
these signals by measurable variables such as Pei, Qei, and
Vi. The reactive power of generator can be presented as

Qei =
V 2

i

x′di

− E′
qiVi cos(θi − δi)

x′di

(27)

With the active power Pei, we can get that

E′
qi =

√
P 2

eix
′2
di + (V 2

i −Qeix′di)
2

Vi
(28)

Vi cos(θi − δi) =
Vi(V

2
i −Qeix

′
di)√

P 2
eix

′2
di + (V 2

i −Qeix′di)
2

(29)

Thus, we can complete the nonlinear control. Furthermore,
it can be seen that the proposed excitation controller (24)
is a decentralized one, that is, only the local information is
used for the feedback control.

3 Simulation

We choose a six-machine eight-load power network
system[11, 31] as a paradigm to demonstrate the effective-
ness of the proposed control strategy where No. 6 machine
is a synchronous condenser and No. 1 generator represents
an equivalent large power system, which is used as the ref-
erence here. As to the generator data, load parameters, and
other data we refer to [31]. The simulation is accomplished
by the PSASP package 1.

In order to compare the effectiveness of different con-
trol strategies, we simulate the system under the following
control configurations:

Case 1. Generators No. 2∼No. 5 are equipped with the
nonlinear optimal excitation controller (NOEC)[11].

Case 2. Generators No. 2∼No. 5 are equipped with
nonlinear decentralized excitation controller (NDEC) pro-
posed in this paper, where the feedback gain Ki = 0.02 for
i = 2, · · · , 5.

In the two cases, a three-phase temporary short-circuit
fault is assumed to occur at the middle of the transmis-
sion line between buses 11 and 12 during the time pe-
riod 0.1∼ 0.39 s. The simulation results are depicted in
Fig. 1∼Fig. 6, where Fig. 1 and Fig. 2 show the responses
of the rotor angles under the above two control configura-
tions (δi1 = δi − δ1, (i = 2, · · · , 5)), Fig. 3 and Fig. 4 show
the angle speed responses, and Fig. 5 and Fig. 6 show the
voltage responses of bus 11 and bus 18, respectively.

Fig. 1 Responses of the generator angles under NOEC

Fig. 2 Responses of the generator angles under NDEC

1PSASP is a professional testing software for power systems de-
signed by the China Electrical Power Research Institute, Beijing,
China.
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Fig. 3 Responses of the angle speeds under NOEC

Fig. 4 Responses of the angle speeds under NDEC

Fig. 5 Responses of the bus voltages under NOEC

Fig. 6 Responses of the bus voltages under NDEC

From the simulation results, it can be seen that the
proposed nonlinear decentralized excitation scheme makes
the system respond much faster than the NOEC controller
when the fault occurs. The overshot is also smaller. So the
proposed nonlinear excitation control law outperforms the
nonlinear optimal excitation controller in transient stabil-
ity enhancement and dynamic performance improvement of
power systems.

4 Conclusion

The stabilization problem of the multi-machine multi-
load power systems is investigated within a novel dissi-
pative Hamiltonian realization framework for NDAS. We
generalize the existing Hamiltonian function method and
propose a nonlinear decentralized excitation control strat-
egy by utilizing the internal structure properties and the
internal energy balance of the power systems. Simulations
on a six-machine eight-nonlinear-load power system show
that the control scheme proposed in this paper is more effec-
tive compared with the widely used power system stabilizer
scheme.
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