
Vol. 35, No. 5 ACTA AUTOMATICA SINICA May, 2009

Global K-exponential Tracking Control of Nonholonomic
Systems in Chained-form by Output Feedback

CAO Ke-Cai1

Abstract The output tracking control problem of nonholonomic chained form systems is studied in this paper and global
K-exponential output trackers are presented without persistent excitation or not-converging to zero on reference trajectories. First,
a time-varying coordinate transformation is introduced to avoid manipulating exponentially converging signals. Then, with the help
of theory of cascaded systems and linear perturbed systems, global K-exponential output trackers are successfully obtained. A new
feature of the proposed controller is that the output tracking control problem of nonholonomic chained form systems is also resolvable
without the popular condition of persistent excitation or not converging to zero on reference signals in the previous works. The
proposed method is demonstrated and discussed by means of nonholonomic mobile robots and cars with one trailer.
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Due to Brockett′s famous necessary condition[1], there
does not exist smooth or even continuous time-invariant
state feedback law for the stabilization problems of non-
holonomic system. Thus, the stabilization problems of such
systems become a focus of research[2−9], which still remain
to be a very interesting topic today. Compared with the
stabilization problems, the tracking problems — sometimes
called stabilization of trajectories[10] — have received less
considerations.

Results about the tracking problems of nonholonomic
system can be classified as local results and global
results[11]. Methods related to local results are mainly lo-
cal linearization or input-output linearization. Controllers
obtained using local linearization are only effective in lo-
cal area while those obtained using input-output lineariza-
tion have some singularity due to the methods adopted.
There are mainly two methods to deal with the global
tracking problems: the method based on backstepping and
the method based on cascade-design. The main differ-
ences of the above two methods lie in dealing with cou-
pling terms between subsystems: controllers based on the
cascade-design method are much simpler than those based
on backstepping because the coupling terms are neglected
when some conditions are satisfied without affecting perfor-
mance of the entire systems. Under the requirement that
the reference target′s velocity must satisfy some persistent
conditions, the global tracking control laws based on output
were presented in [12] by using method of backstepping and
Lyapunov function. Although global K-exponential track-
ing controllers were successfully brought out in [13−15] by
using cascaded-design method for low-dimensional and gen-
eral chained-form systems, persistent excitations were also
required for reference target systems.

For ease of application, recent years have also seen
increasing interests in controllers dealing with stabiliza-
tion and tracking problems simultaneously. Inspired by
Samson′s[16] stabilization method, Lee[17] and Do[18−19]

have designed a time-varying “universal” controller to solve
both stabilization and tracking problems under some per-
sistent excitations. However, as pointed in [17], there was
no straight way to extend their methods to n-dimensional
chained-from systems and the converging speed of tracking-
error systems was not exponential.
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To avoid using velocity measurements in mechanical sys-
tems, it is more preferred to design stabilizers or trackers
based on output feedback. Both Jiang[12] and Lefeber[13]

have presented global feedback trackers based on output
provided that the reference trajectory satisfies some per-
sistent excitations or does not converge to zero. The
theme of this paper is to construct output-feedback track-
ers for the chained-form nonholonomic system based on
our previous results[20−21]. Tools from cascaded systems
and linear perturbed systems were utilized to construct
globalK-exponential output trackers. The obtained conclu-
sions enlarged the previous results[11, 13, 20−21] and showed
that the popular condition of persistent excitations or not-
converging to zero is not necessary.

1 Problem statement

After a suitable change of coordinates and state feed-
back, many nonholonomic systems can be transformed into
the following chained form[22]:

ẋ1 = u1

ẋ2 = x3u1

... (1)

ẋn−1 = xnu1

ẋn = u2

yyy = [x1, x2]
T

where uuu = [u1, u2]
T is the control input, xxx = [x1, · · · , xn]T

is the system state, and yyy is the system output.
A reference signal xxxd(t) = [x1d(t), · · · , xnd(t)]T is pro-

duced by

ẋ1d = u1d

ẋ2d = x3du1d

... (2)

ẋn−1,d = xndu1d

ẋnd = u2d

where uuud = [u1d, u2d]T denotes the reference input.
Problem of global output-feedback tracking.

Given a vector-valued reference signal xxxd(t) = [x1d(t), · · · ,
xnd(t)]T defined by (2) and tracking error eee(t) = xxx(t) −
xxxd(t), the global output tracking problem is to design a C0
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time-varying dynamic output feedback law as

χ̇χχ = ννν0(t,yyy,χχχ)

uuu = µµµ0(t,yyy,χχχ) (3)

such that the closed-loop trajectories (eee(t), χχχ(t)) are glob-
ally uniformly bounded and limt→∞ |eee(t)| = 0 holds for
arbitrary initial tracking error eee(0) in Rn.

In this paper, the global output-feedback tracking prob-
lem is considered under the following assumption.

Assumption 1. u1d = e−λ(t−t0)D(t), λ is a nonnegative
constant and there exists a nonzero constant D such that
the bounded continuous D(t) satisfies

lim
t→∞

D(t) = D,

∫ ∞

0

‖D(t)−D‖dt < +∞ (4)

Remark 1. Compared with [11−15] related to the same
problem, we can see that the above assumption has relaxed
the condition imposed on the reference input u1d. The
signal that is persistent excited or not-converging to zero
satisfies Assumption 1 when λ = 0 while the signal u1d in
Assumption 1 does not satisfy the condition of persistent
excitation or not-converging to zero when λ 6= 0.

First, we give some preliminary results that will be used
in the proof of our main results.

Definition 1[13, 23]. Consider a nonlinear system ẋxx =
f(t,xxx). The equilibrium xxx = 0 of the system is said to
be globally K-exponentially stable if there exist a class K
function α(·) and a positive constant γ such that for all
t0 ≥ 0 and xxx(t0) ∈ Rn, we have

‖xxx(t)‖ ≤ α(‖xxx(t0)‖)e−γ(t−t0)

Lemma 1[9, 24−25]. Consider the linear time-varying
system

ẋxx = (A0 + A1(t))xxx (5)

where xxx ∈ Rn is the state vector of the system. Suppose
A0 ∈ Rn×n is a Hurwitz matrix, and A1(t) ∈ Rn×n is
smooth in t and satisfies:

1) A1(t) → 0 as t →∞;

2)

∫ ∞

0

‖A1(t)‖dt < ∞.

Then, the state xxx(t) of system (5) is globally uniformly
exponentially stable.

Consider a time-varying system żzz = f(t, zzz) given by

żzz1 = f1(t, zzz1) + g(t, zzz1, zzz2)zzz2

żzz2 = f2(t, zzz2) (6)

We call system (6) a cascaded system because it can be
viewed as the following system

Σ1 : żzz1 = f1(t, zzz1) (7)

perturbed by the output of the system

Σ2 : żzz2 = f2(t, zzz2) (8)

Lemma 2[13−15, 26−27]. The cascaded time-varying sys-
tem (6) is globally K-exponentially stable if the following
assumptions are satisfied:

1) Subsystem (7) is globally uniformly exponentially sta-
ble (GUES);

2) Function g(t, zzz1, zzz2) satisfies the following condition
for all t ≥ t0

‖g(t, zzz1, zzz2)‖ ≤ θ1(‖zzz2‖) + θ2(‖zzz2‖)‖zzz1‖
where θ1(·) and θ2(·) are continuous functions;

3) Subsystem (8) is globally K-exponentially stable.

2 Observer-based tracking control law

2.1 Model transformation

Apply the following coordinate transformation for sys-
tem (1)

y1 = x1

y2 = x2e
(n−2)λ(t−t0)

... (9)

yn−1 = xn−1e
λ(t−t0)

yn = xn

Then, system (1) is transformed into (where σ(t) =

u1e
λ(t−t0))




ẏ2

ẏ3

...
ẏn−1

ẏn



=




(n−2)λ σ(t) 0 · · · 0
0 (n−3)λ σ(t) · · · 0
...

. . .
. . .

...
0 0 · · · λ σ(t)
0 0 · · · 0 0







y2

y3

...
yn−1

yn



+




0
0
...
0
u2




(10)

ẏ1= u1 (11)

Similarly, apply the following coordinate transformation
to system (2)

y1d = x1d

y2d = x2de(n−2)λ(t−t0)

... (12)

yn−1,d = xn−1,deλ(t−t0)

ynd = xnd

System (2) is transformed into




ẏ2d

ẏ3d

...
ẏn−1,d

ẏnd



=




(n−2)λ D(t) 0 · · · 0
0 (n−3)λ D(t) · · · 0
...

. . .
. . .

...
0 0 · · · λ D(t)
0 0 · · · 0 0







y2d

y3d

...
yn−1,d

ynd



+




0
0
...
0

u2d




(13)

ẏ1d = u1d (14)

2.2 Design of a reduced-order observer

Motivated by the linear Luenberger observer design, we
introduce the new variables

z3 = y3 − h1y2

...

zi = yi − hi−2y2 (15)

...

zn = yn − hn−2y2

where hi are constant parameters to be determined later.
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As can be directly checked, we have




ż3

ż4

...
żn−1

żn



=




(n−3)λ−h1σ(t) σ(t) 0 · · · 0
−h2σ(t) (n−4)λ σ(t) · · · 0

...
. . .

. . .
...

−hn−3σ(t) 0 · · · λ σ(t)
−hn−2σ(t) 0 · · · 0 0







z3

z4

...
zn−1

zn



+




0
0
...
0
u2



+




(h2 − h2
1)σ(t)y2 − λh1y2

(h3 − h1h2)σ(t)y2 − 2λh2y2

...
(hn−2−h1hn−3)σ(t)y2−(n− 3)λhn−3y2

(−h1hn−2)σ(t)y2 − (n− 2)λhn−2y2




(16)

Then, a time-varying observer is introduced which depends
on the output y2 and the input u2




˙̂z3

˙̂z4

...
˙̂zn−1

˙̂zn



=




(n−3)λ−h1σ(t) σ(t) 0 · · · 0
−h2σ(t) (n−4)λ σ(t) · · · 0

...
. . .

. . .
...

−hn−3σ(t) 0 · · · λ σ(t)
−hn−2σ(t) 0 · · · 0 0







ẑ3

ẑ4

...
ẑn−1

ẑn



+




0
0
...
0
u2



+




(h2 − h2
1)σ(t)y2 − λh1y2

(h3 − h1h2)σ(t)y2 − 2λh2y2

...
(hn−2−h1hn−3)σ(t)y2−(n− 3)λhn−3y2

(−h1hn−2)σ(t)y2 − (n− 2)λhn−2y2




(17)

For notational simplicity, let us denote Z̃ZZ = [z̃3, · · · , z̃n]T

as the observer error with z̃i = zi − ẑi for all 3 ≤ i ≤ n. It
is easily seen that the Z̃ZZ-dynamics satisfy




˙̃z3

˙̃z4

...
˙̃zn−1

˙̃zn



=




(n−3)λ−h1σ(t) σ(t) 0 · · · 0
−h2σ(t) (n−4)λ σ(t) · · · 0

...
. . .

. . .
...

−hn−3σ(t) 0 · · · λ σ(t)
−hn−2σ(t) 0 · · · 0 0







z̃3

z̃4

...
z̃n−1

z̃n




(18)

Theorem 1. Considering the observer error system
(18), if u1d satisfies Assumption 1 then the following control
input

u1 = u1d − e−(n−2)λ(t−t0)k1w1 (19)

renders the observer error system (18) globally
K-exponentially stable, provided that k1 > (n − 2)λ,
HHH = [h1, · · · , hn−2]

T is a constant vector such that
matrix A0 − HHHDCCC is Hurwitzian, where D is nonzero
constant defined in Assumption 1 and CCC = [1, 0, · · · , 0]T,

w1 = (x1 − x1d)× e(n−2)λ(t−t0).
Proof. The observer error system (18) can also be writ-

ten as




˙̃z3

˙̃z4

...
˙̃zn−1

˙̃zn



=




(n−3)λ−h1D(t) D(t) 0 · · · 0
−h2D(t) (n−4)λ D(t)· · · 0

...
. . .

. . .
...

−hn−3D(t) 0 · · · λ D(t)
−hn−2D(t) 0 · · · 0 0







z̃3

z̃4

...
z̃n−1

z̃n



+




−h1 1 0 · · · 0
−h2 0 1 · · · 0

...
. . .

. . .
...

−hn−3 0 0 · · · 1
−hn−2 0 0 · · · 0







z̃3

z̃4

...
z̃n−1

z̃n



(u1−u1d)eλ(t−t0) (20)

and the state w1 satisfies the following differential equation

ẇ1 = (n− 2)λw1 + e(n−2)λ(t−t0)(u1 − u1d) (21)

Under the control law u1 of (19), system (20) can be
viewed as

˙̃
ZZZ = (A0 + HHHDCCC + A1(t))Z̃ZZ (22)

cascaded by system (21), where

A0 =




(n− 3)λ D 0 · · · 0
0 (n− 4)λ D · · · 0
...

...
. . .

. . .
...

0 0 · · · λ D
0 0 · · · 0 0




A1(t)=




−h1(D(t)−D) D(t)−D 0 · · · 0
−h2(D(t)−D) 0 D(t)−D · · · 0

...
. . .

. . .
...

−hn−3(D(t)−D) 0 · · · 0 D(t)−D
−hn−2(D(t)−D) 0 · · · 0 0




and the cascaded term is




−h1 1 0 · · · 0
−h2 0 1 · · · 0

...
. . .

. . .
...

−hn−3 0 0 · · · 1
−hn−2 0 0 · · · 0







z̃3

z̃4

...
z̃n−1

z̃n



(u1−u1d)eλ(t−t0) (23)

Considering u1 defined as (19), the cascade term (23)

can also be written as g(t, Z̃ZZ, w1)w1, where g(t, Z̃ZZ, w1) is
defined as

−k1e
−(n−3)λ(t−t0)




−h1 1 0 · · · 0
−h2 0 1 · · · 0

...
. . .

. . .
...

−hn−3 0 0 · · · 1
−hn−2 0 0 · · · 0







z̃3

z̃4

...
z̃n−1

z̃n




(24)
Now, we check the three conditions of Lemma 2 for the

cascaded system (21) and (22) as follows.
1) With substitution (19) into (21), it is easily to obtain

that system (21) is globally exponentially stable.
2) Since (A0,CCC) is an observable pair, there exists HHH such

that (A0+HHHDCCC) is Hurwitzian. And it follows that system
(22) is globally exponentially stable under Assumption 1
and Lemma 1.

3) Because g(t, Z̃ZZ, w1) defined as (24) is a product of ex-
ponentially converging term and system′s state, it is easily
to obtain that the second condition of Lemma 2 is also
satisfied.

Therefore, by Lemma 2 we conclude that system (20)
is globally K-exponentially stable under the control law u1

of (19) and constant vector HHH which makes (A0 + HHHDCCC)
Hurwitz. ¤
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2.3 Output-feedback design procedure of uuu2

Before stating our main results the following variables
for system (13) is introduced first

z3d = y3d − h1y2d

...

zid = yid − hi−2y2d (25)

...

znd = ynd − hn−2y2d

Then, it is easily to get




ż3d

ż4d

...
żn−1,d

żnd



=




(n−3)λ−h1D(t) D(t) 0 · · · 0
−h2D(t) (n−4)λ D(t) · · · 0

...
. . .

. . .
...

−hn−3D(t) 0 · · · λ D(t)
−hn−2D(t) 0 · · · 0 0







z3d

z4d

...
zn−1,d

znd



+




0
0
...
0

u2d



+




(h2 − h2
1)D(t)y2d − λh1y2d

(h3 − h1h2)D(t)y2d − 2λh2y2d

...
(hn−2−h1hn−3)D(t)y2d−(n− 3)λhn−3y2d

(−h1hn−2)D(t)y2d−(n−2)λhn−2y2d




For simplicity of notation, we denote

w2 = y2 − y2d

w3 = ẑ3 − z3d

...

w4 = ẑ4 − z4d (26)

...

wn = ẑn − znd

where w1 is defined in Theorem 1 and Ξ(t),ΣΣΣ(t) are as
follows, respectively.

Ξ(t)=




ξ1(t) D(t) 0 · · · · · · 0
ξ2(t) −h1D(t)+(n−3)λ D(t) 0 · · · 0

...
...

. . .
. . .

. . .
...

ξi(t) −hi−2D(t) 0 (n−i)λ
. . . 0

...
...

. . .
. . .

. . . D(t)
ξn−1(t) −hn−2D(t) 0 0 · · · 0




Σ(t)=




σ(t)z̃3 + (σ(t)−D(t))[ẑ3 + h1y2]
(σ(t)−D(t))[ẑ4 − h1ẑ3 + (h2 − h2

1)y2]
...

(σ(t)−D(t))[ẑi+1 − hi−2ẑ3 + (hi−1 − h1hi−2)y2]
...

(σ(t)−D(t))[−hn−2ẑ3 − h1hn−2y2]




(27)

where ξ1(t) = h1D(t)+(n−2)λ, ξ2(t) = (h2−h2
1)D(t)−λh1,

ξi−1(t) = (hi−1−h1hi−2)D(t)−(i−2)λhi−2 (3 ≤ i ≤ n−1),
and ξn−1(t) = −h1hn−2D(t)− (n− 2)λhn−2.

We are ready to state and prove our main results on
global output-feedback tracking.

Theorem 2. Considering the output-feedback track-
ing control problem of system (1) and system (2), assume
that u1d satisfies Assumption 1 and x3d, x4d, · · · , xnd are
bounded. Then, the output feedback control law given by

u1 = u1d − exp(−(n− 2)λ(t− t0)) · k1w1 (28)

u2 = u2d −KKK[w2 w3 · · · wn]T (29)

renders the closed system (1), (2), (17), (28), (29) glob-
ally K-exponentially stable, where control law u1 defined
as (28) is the same as that obtained in Theorem 1 and KKK is
constant vector such that matrix Ā0 + BBBKKK is Hurwitzian.

Proof. Based on new coordinate transformation (26),
the new tracking error dynamics satisfy

ẆWW 1 = Ξ(t)WWW 1 + ΣΣΣ(t) +
[
0 · · · 0 u2 − u2d

]T
(30)

where WWW 1 = [w2, w3, · · · , wn]T. And system (30) can be
viewed as

ẆWW 1 = Ξ(t)WWW 1 +
[
0 · · · 0 u2 − u2d

]T
(31)

cascaded by system (20) and (21), and the cascaded term
is ΣΣΣ(t) which is defined in (27).

Under the control law u2 of (29), system (31) can also
be written as

ẆWW 1 = (Ā0 + BBBKKK + Ā1(t))WWW 1 (32)

where

Ā0 =




ξ1 D 0 · · · · · · 0
ξ2 −h1D + (n− 3)λ D 0 · · · 0
...

...
. . .

. . .
. . .

...

ξi −hi−2D 0 (n− i)λ
. . . 0

...
...

. . .
. . .

. . . D
ξn−1 −hn−2D 0 0 · · · 0




BBB =




0
...
0
...
0

1




, KKK =




−k2

...
−ki

...
−kn−1

−kn




T

Ā1(t) = (D(t)−D)




h1 1 0 · · · · · · 0
(h2 − h2

1) −h1 1 0 · · · 0
...

...
. . .

. . .
...

...

(hi−1−h1hi−2) −hi−2 0 0
. . . 0

...
...

...
...

. . . 1
−h1hn−2 −hn−2 0 0 · · · 0




ξ1 = h1D + (n− 2)λ, ξ2 = (h2 − h2
1)D − λh1, ξi = (hi−1 −

h1hi−2)D − (i − 2)λhi−2, and ξn−1 = −h1hn−2D− (n −
2)λhn−2.

Since the cascaded term Σ(t) defined as (27) is equivalent
to
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


ẑ3+z̃3+h1y2

−h1ẑ3 + ẑ4 + (h2 − h2
1)y2

...
−hi−2ẑ3+ẑi+1+(hi−1−h1hi−2)y2

...
−hn−2ẑ3 − h1hn−2y2




eλ(t−t0)(u1−u1d)+




D(t)
0
...
0
...
0




z̃3

under the control law u1 of (28), Σ(t) can be written as

G(t,WWW 1,WWW 2)WWW 2

where G(t,WWW 1,WWW 2) is defined as




(ẑ3 + z̃3 + h1y2)e
−(n−3)λ(t−t0) D(t)

(−h1ẑ3 + ẑ4 + (h2 − h2
1)y2)e

−(n−3)λ(t−t0) 0
...

(−hi−2ẑ3+ẑi+1+(hi−1−h1hi−2)y2)e
−(n−3)λ(t−t0) 0

...

(−hn−2ẑ3 − h1hn−2y2)e
−(n−3)λ(t−t0) 0




and WWW 2 = [−k1w1 z̃3]
T. It is easily to check that the above

formula of G(t,WWW 1, WWW 2) can be simplified as

e−(n−3)λ(t−t0)




w3+z̃3+h1w2 0
−h1w3+w4+(h2−h2

1)w2 0
...

...
−hi−2w3+wi+1+(hi−1−h1hi−2)w2 0

...
...

−hn−2w3−h1hn−2w2 0




+

e−(n−3)λ(t−t0)




y3d e(n−3)λ(t−t0)D(t)
−h1y3d+y4d 0

...
...

−hi−2y3d+y(i+1)d 0
...

...
−hn−2y3d 0




=

e−(n−3)λ(t−t0)




w3+z̃3+h1w2 0
−h1w3+w4+(h2 − h2

1)w2 0
...

...
−hi−2w3+wi+1+(hi−1−h1hi−2)w2 0

...
...

−hn−2w3−h1hn−2w2 0




+




x3d D(t)

−h1x3d+e−λ(t−t0)x4d 0
...

...

−hi−2x3d+e−(i−2)λ(t−t0)x(i+1)d 0
...

...
−hn−2x3d 0




(33)

Now, the output tracking problem composed of systems
(1) and (2) is converted into a stabilizing problem of system
formed by (21) and (30) under the observer error system
(20). In the following, we will check the three conditions of
Lemma 2 for cascaded system (20), (21) and (32).

1) Since (Ā0,BBB) is a controllable pair, there exists KKK
such that (Ā0+BBBKKK) is Hurwitzian. System (32) is globally
exponentially stable under Assumption 1 and Lemma 1.

2) It has been proved that system (20) and (21) is glob-
ally K-exponentially stable in Theorem 2.

3) Since D(t) is bounded in Assumption 1, there exists
constant M such that

|D(t)| ≤ M

Since x3d, x4d, · · · , xnd are also bounded signals, the second
condition of Lemma 2 is also satisfied from (33).

Therefore, by Lemma 2 it can be concluded that sys-
tem formed by (1), (2), (17), (28), (29) is globally K-
exponentially stable. ¤

3 Applications

In this section, we apply our tracking control method to
two benchmark mechanical systems under nonholonomic
constrains: a unicycle mobile robot and an articulated ve-
hicle.

3.1 Example 1: a unicycle mobile robot

A unicycle mobile robot is described by

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω (34)

where (x, y) denotes the coordinates of the center of mass,
θ is the angle between the heading direction and the x axis.
Using the following well known coordinate transformation

x1 = θ

x2 = x sin θ − y cos θ

x3 = x cos θ + y sin θ

u1 = ω

u2 = v − x3ω (35)

we easily obtain the chained form of system (34)

ẋ1 = u1

ẋ2 = x3u1

ẋ3 = u2

The following initial conditions of the target system and
the dilated error system are selected in this simulation




x1d(0)
x2d(0)
x3d(0)


=



−2.9865
1.3153
0.18698


 ,




w1(0)
w2(0)
w3(0)


=




0.05
−0.1415
1.2079




Case A (Movement exponentially to a steady
point). The tracking problem that cannot be manipulated

using control law presented in previous papers[11−15, 28−30]

is considered first. In this case, the reference velocities vd

and ωd are assumed to be e−0.5t and e−0.5t +e−1.5t, respec-
tively. After simple computation, it is easy to get

θd(t) = θd(0)− 2e−0.5t − 2

3
e−1.5t − 8

3

|xd(t)| = |xd(0) +

∫ t

0

e−0.5t cos θ dt| ≤ |xd(0)|+
∫ t

0

|e−0.5t| dt = |xd(0)|+ 2(1− e−0.5t)

|yd(t)| = |yd(0) +

∫ t

0

e−0.5t sin θ dt| ≤ |yd(0)|+
∫ t

0

|e−0.5t|dt = |yd(0)|+ 2(1− e−0.5t)
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And it is easy to see that Assumption 1 is satisfied in this
case. The observer error is presented in Fig. 1. Fig. 2 shows
the moving trajectory of the mobile robot. Tracking errors
and control inputs are given in Figs. 3 and 4, respectively.

Fig. 1 Observer error with respect to time (Case A)

Fig. 2 Plot of (xc(t), yc(t)) (Case A)

Fig. 3 Tracking errors with respect to time (Case A)

Fig. 4 Control signals with respect to time (Case A)

Case B (Movement along a circular path). Simi-

lar to previous papers[11−15] on this problem, the reference
velocities vd and ωd are assumed to be 1 + t/(t + 10) and
1 in this case.

Through simple integration it can be obtained that

θd(t) = θd(0) + t

|xd(t)| =
∣∣∣∣xd(0) +

∫ t

0

[
1 +

t

t + 10

]
cos(t + θd(0)) dt

∣∣∣∣ ≤
∣∣∣∣xd(0) + 2

∫ t

0

cos(t + θd(0)) dt

∣∣∣∣ =

|xd(0)|+ 2(sin(t + θd(0))− sin θd(0))

|yd(t)| ≤ |yd(0)|+ 2(cos(t + θd(0))− cos θd(0))

and Assumption 1 is also satisfied in this case.
The observer error is presented in Fig. 5. Fig. 6 shows

the moving trajectory of the mobile robot. Tracking errors
and control inputs are given in Figs. 7 and 8, respectively.

Fig. 5 Observer error with respect to time (Case B)

Fig. 6 Plot of (xc(t), yc(t)) (Case B)

Fig. 7 Tracking errors with respect to time (Case B)
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Fig. 8 Control signals with respect to time (Case B)

3.2 Example 2: an articulated vehicles

An articulated vehicle, which is a car pulling a single
trailer, is described by

ẋc = v cos θ0

ẏc = v sin θ0

φ̇ = ω

θ̇0 =
1

l
tan φ

θ̇1 =
1

d1
sin(θ0 − θ1) (36)

where (xc, yc) denotes the coordinates of the center of mass
of the tow car, θ0(θ1) is the angle between the heading di-
rections of the car (trailer) and the x axis, l is the wheelbase
of the car, d1 is the distance from the wheel of trailer to the
wheel of the car, and v and ω represent the driving velocity
and steering velocity of the tow car, respectively, which can
be controlled independently (for a figure of the articulated
vehicle, please refer to [11−12]).

Although system (36) is not in a chained form, it can
be transformed into (1) with n = 5 via a change of co-

ordinates and state feedback[22]. As done in [11], we still
select parameter l and d1 as 1, and initial condition as
xid(0) = 0, 1 ≤ i ≤ 5.

Jiang[11] solved the tracking control problem using the
method of backstepping under the following condition

u1d = 1, u2d = 0, x1d(t) = t, xid(t) = 0 (2 ≤ i ≤ 5) (37)

However, the control law presented by [11] is complicated

and semi-global. Lefeber[13] brought out a simpler global
K exponential controller

u1 = u1d − k1x1e (38)

u2 = u2d − k2x̂2e − k3x̂3e − k4x̂4e − k5x̂5e (39)

using the cascaded structure in the error system under the
following condition

u1d = 1, u2d = 0, xid(0) = 0, ∀1 ≤ i ≤ 5 (40)

where x̂ie = x̂i − xid, i = 1, · · · , 5.
In order to show the differences with previous

results[11−15, 28−30], the following two cases are considered.
Case C. First, we select u1d = 1 and u2d = 0 the same

as those selected in [11, 13]. From (37), it is easy to testify
that Assumption 1 is satisfied in this case.

Since A0 in the design of reduced observer is

A0 =




(n− 3)λ D 0
0 (n− 4)λ D
0 0 0


 =




0 1 0
0 0 1
0 0 0




we select HHH = [−6 − 11 − 6]T such that A0 + HHHCCC is
Hurwitzen. Hence, Ā0 in the design of output feedback
controller is

Ā0 =




h1D+(n−2)λ D 0 0
(h2−h2

1)D−λh1 −h1D+(n−3)λ D 0
(h3−h1h2)D−2λh2 −h2D λ D
−h1h3D−3λh3 −h3D 0 0


=




6 1 0 0
−25 −6 1 0
−60 −11 0 1
−36 −6 0 0




Then, the gain matrix can be selected as KKK =
[−85.1800 −2.4400 −4.4600 −3.5000] so that Ā0 +BBBKKK
is Hurwitz. Performance of x(t) with respect to time is
presented in Fig. 9. Fig. 10 shows tracking errors. The ob-
server errors and control inputs are presented in Figs. 11
and 12, respectively.

Fig. 9 Plot of x(t) with respect to time (Case C)

Fig. 10 Tracking errors with respect to time (Case C)

Fig. 11 Observer error with respect to time (Case C)



No. 5 CAO Ke-Cai: Global K-exponential Tracking Control of Nonholonomic Systems · · · 575

Fig. 12 Control signals with respect to time (Case C)

Case D. u1d converging to zero and u2d = 0.
As we can see, if we select u1d = e−0.5t(1+e−0.5t), u2d =

0, and xid(0) = 0 (1 ≤ i ≤ 5) then the tracking control
problem could not be dealt by the controllers presented in
[11−15, 28−30]. After simple computation it is easy to get
that the reference signal is

x1d(t) = −2e−0.5t − e−t, xid(t) = 0 (2 ≤ i ≤ 5)

and Assumption 1 is also satisfied in this case.
Since A0 in the design of reduced observer is

A0 =




(n− 3)λ D 0
0 (n− 4)λ D
0 0 0


 =




1 1 0
0 0.5 1
0 0 0




we can select HHH = [−11.5 −36.25 −30]T such that A0+HHHCCC
is Hurwitzian. Similarly, since

Ā0 =




h1D+(n−2)λ D 0 0
(h2−h2

1)D−λh1 −h1D+(n− 3)λ D 0
(h3−h1h2)D−2λh2 −h2D λ D
−h1h3D−3λh3 −h3D 0 0


 =




13.0000 1.0000 0 0
−101.7500 −10.5000 1.0000 0
−423.1250 −36.2500 0.5000 1.0000
−390.0000 −30.0000 0 0




we can select KKK = [884.431 20.914 13.29 4.9] such that
Ā0+BBBKKK is Hurwitzian. Performance of x(t) with respect to
time is presented in Fig. 13 and Fig. 14 shows the tracking
errors. The observer errors and control inputs are presented
in Fig. 15 and Fig. 16, respectively.

Fig. 13 Plot of x(t) with respect to time (Case D)

Fig. 14 Tracking errors with respect to time (Case D)

Fig. 15 Observer error with respect to time (Case D)

Fig. 16 Control signals with respect to time (Case D)

4 Conclusion

Global K-exponential tracking solutions are obtained
for a class of nonholonomic control systems using out-
put feedback. The constructive design procedure has been
motivated by our recent tracking approaches proposed in
[20−21]. In particular, sufficient conditions on reference
trajectories have been given under which the problem of
global exponential tracking using output feedback is solv-
able. Different to earlier research[11−15, 28−30] addressing
the tracking problem for nonholonomic chained form sys-
tems, our controllers do not require conditions such as per-
sistent excitation or not-converging to zero on reference tra-
jectories. It is under current investigations to explore the
feasibility of constructing more general trackers under more
relaxed assumptions.
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