
Vol. 35, No. 5 ACTA AUTOMATICA SINICA May, 2009

The Translation Invariant Contourlet-like
Transform for Image Denoising

LIAN Qiu-Sheng1 CHEN Shu-Zhen1

Abstract The contourlet transform with anisotropy and directionality is a new extension to the wavelet transform. Because of
its filter bank structure, the contourlet transform is not translation-invariant. In this paper, we propose the translation-invariant
contourlet-like transform (TICLT) with lower redundancy than both the nonsubsampled contourlet transform (NSCT) and the
translation invariant contourlet transform (TICT). The TICLT is constructed by combining the translation invariant Laplacian
pyramid and undecimated directional filter banks. The undecimated directional filter banks, which satisfy the perfect reconstruction
condition, are designed by the mapping approach using one-dimensional fractional splines orthogonal filter banks as prototype filters.
We evaluate the performance of the TICLT in image denoising. Some comparisons with the state-of-the-art denoising methods are
given to illustrate the potential of the TICLT.
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The importance of wavelets in signal processing applica-
tions is widely acknowledged. Indeed, they provide optimal
approximation for one-dimensional piecewise smooth func-
tions, but they do not perform well in higher dimensions.
This limitation has led to several new constructions that
can handle the geometrical structures of images efficiently.
These constructions build dictionaries of anisotropic ba-
sis functions with many more shapes and directions than
the classical separable wavelets, and provide a sparse rep-
resentation of edges in images. One of the most success-
ful constructions is the curvelet proposed by Candes and
Donoho[1−2], which achieves optimal approximation for 2-
D piecewise smooth functions with discontinuities along
C2 edges. Inspired by the curvelets, Do and Vetterli de-
veloped the contourlet transform[3], which is constructed
by combining the Laplacian pyramid (LP) and the direc-
tional filter bank (DFB). Due to downsampling in the two
stages, the contourlet transform is shift-variant. However,
translation invariance is a desirable feature in many imag-
ing applications such as pattern recognition, edge detec-
tion, and image denoising[4−6]. In [4], the nonsubsampled
contourlet transform (NSCT) was obtained by combining
a nonsubsampled pyramid structure and the nonsubsam-
pled DFBs (NSDFB). In [5], the translation invariant con-
tourlet transform (TICT) was constructed by coupling the
translation invariant pyramid with the translation invari-
ant DFB. In the TICT scheme, there are four detail chan-
nels at each scale without downsampler. In [7], the non-
subsampled shearlet transform (NSST), which has similar
frequency tiling with contourlet, was constructed by com-
bining a nonsubsampled Laplacian pyramid decomposition
and shearing filters. All of the three transforms (NSCT,
TICT, and NSST) are translation invariant at the cost of
high redundancy. The NSCT and the TICT have redun-
dancy given by 1 +

∑J

j=1 2lj and 1 + 4×
∑J

j=1 2lj , respec-
tively, where lj denotes the number of levels in the NSDFB
at the j-th scale. The redundancy of NSST is the same as
NSCT.

Inspired by the nonsubsampled contourlet transform[4]

and the second generation curvelets[2], we propose the
translation invariant contourlet-like transform (TICLT) in
this paper, which is built upon low-redundancy transla-
tion invariant Laplacian pyramid (TILP) and NSDFB. The
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TICLT is a translation invariant and directional multires-
olution expansion that has similar frequency partition as
the second generation curvelet transforms. Based on the
TICLT, we propose a new method for image denoising, and
some comparisons with the best available denoising results
reported in the published works will be given to illustrate
the potential of the TICLT.

1 The translation invariant contourlet-
like transform

The TICLT combines the low-redundancy TILP and NS-
DFBs as shown in Fig. 1 (a). The TILP provides multireso-
lution composition and NSDFB provides directional decom-
position. First, the input image is separated into lowpass
and highpass subbands by filters H0 and G0. The highpass
subband is decomposed into several directional subbands
by NSDFB. The lowpass subband is then split into a band-
pass subband and a lower-pass subband by filters H and
G. The bandpass subband is further decomposed into sev-
eral directional subbands by NSDFB, while the lower-pass
subband is downsampled by a factor 2 in the horizontal
and vertical directions. This scheme can be iterated on the
lower-pass subband. We refer to the pyramidal structure
constructed by H0, G0, H , G, and the downsampler M as
TILP. The structure of TICLT as shown in Fig. 1 (a) splits
the 2-D frequency plane into the subbands illustrated in
Fig. 1 (b). To ensure the translation invariant property, the
lowpass filter H must obey Nyquist sampling criterion

H(ωωω) = 0 for |ωωω| =
√

ω2
1 + ω2

2 >
π

2
(1)

Using the basic principle in multi-dimensional multirate
system[8], we can obtain the perfect reconstruction condi-
tions of the TILP as

H2
0 (ωωω) + G2

0(ωωω) = 1 (2)

and

G2(ωωω) +
H2(ωωω)

4
= 1 (3)

These filters are designed by using the raise cosine func-
tion in frequency domain. They can be written as
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H0(ωωω) = H(ωωω/2)/2 and G0(ωωω) = G(ωωω/2). It is easy to
testify that the filters H , G, H0, and G0 satisfy (1)∼ (3).

(a) The filter bank structure that implements the TICLT

(M = diag{2, 2})

(b) The idealized frequency partitioning of TICLT

Fig. 1 The schematic diagrams of TICLT

The NSDFB in the TICLT is a nonsubsampled version
of the critically sampled DFB[4, 9]. The building block of
the NSDFB is a two-channel nonsubsampled fan filter bank
(NSFFB) illustrated in Fig. 2. In this paper, the NSFFB is
designed by the mapping approach using the 1-D fractional
splines orthogonal filter bank

Hλ(ω) =
(2 + 2 cos ω)

λ
2

√

(2 + 2 cos ω)λ + (2 − 2 cos ω)λ
(6)

and

Gλ(ω) =
(2 − 2 cos ω)

λ
2

√

(2 + 2 cos ω)λ + (2 − 2 cos ω)λ
(7)

proposed in [10] as prototype filters, where λ is the continu-
ously varying order parameter (in our implement, the best
spacial-frequency resolution can be obtained when λ = 10).
We can adjust the frequency responses of Hλ and Gλ by
varying λ. As λ increases, these filters converge to the ideal
half-band filters. Furthermore, Hλ is maximally flat at the
origin. Applying the fan McClellan transform[11] to the 1-
D fractional splines orthogonal filter bank, we obtain the

complementary fan filters:

A(ωωω) =Hλ(ω)|cos ω=M(ωωω) =

(2 + 2M(ωωω))
λ
2

√

(2 + 2M(ωωω))λ + (2 − 2M(ωωω))λ
(8)

B(ωωω) =Gλ(ω)|cos ω=M(ωωω) =

(2 − 2M(ωωω))
λ
2

√

(2 + 2M(ωωω))λ + (2 − 2M(ωωω))λ
(9)

where M(ωωω) is the mapping function and M(ωωω) = (cos ω1−
cos ω2)/2. Fig. 3 shows the frequency response of the com-
plementary fan filters for λ = 10. It is easy to show that the
complementary fan filters satisfy the perfect reconstruction
condition, that is,

A2(ωωω) + B2(ωωω) = 1 (10)

Moreover, since the analysis and synthesis filters in the
TICLT system are identical, they form a tight frame[12].
We can derive from (2), (3), and (10) that the frame bounds
are equal to 1. In other words, the basis function ϕj,l,kkk of
TICLT obeys Parseval relation

∑

j,l,k
|〈f, ϕj,l,kkk〉|

2 = ‖f‖2,

∀f ∈ L2(Z
2), where j is the scale parameter, l is the

orientation parameter, and kkk = [k1, k2], k1, k2 ∈ Z is
the translation parameter. Fig. 4 shows some basis func-
tions of the TICLT. As the picture shows, these func-
tions have a high degree of regularity, and offer good di-
rectional selectivity. The redundancy of the TICLT is
∑2

j=1 2lj +
∑J

j=3 4−(j−2)×2lj +4−(J−1), when J > 2, which
is lower than those of the NSCT, NSST, and TICT.

Fig. 2 The structure of the nonsubsampled fan filter bank

(a) The frequency response

of A(ωωω)

(b) The frequency response

of B(ωωω)

Fig. 3 The frequency response of the complementary fan filters

The main drawback of our construction is that the fil-
ters in the TICLT are not finite impulse response (FIR),
so it may be costly to implement the transform. However,
this drawback can be overcomed by using the fast Fourier
transform (FFT) algorithm. In the following experiments,
we implement the NSDFB in the Fourier domain, whereas
the TILP in spacial domain with symmetric-padding ex-
tension mode.

The impulse responses of the filters in the TILP are ob-
tained using the frequency-sampling approach. The four
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filters in the TILP are zero-phase with 33× 33 coefficients.
We find that this implementation scheme improves the de-
noising performance of the TICLT slightly over the one
that implements both the TILP and the NSDFB in Fourier
domain.

Fig. 4 Basis functions of the TICLT at scale 4

2 The image denoising algorithms
based on the TICLT

In order to show the potential of the TICLT proposed in
this paper, we applied it to remove additive white Gaussian
noise (AWGN) by means of the hard-thresholding[13] and

the minimum mean squared error (MMSE) estimator[14].
We refer to them as TICLT-HT and TICLT-MMSE, re-
spectively. In our experiments, we used four scales of de-
composition for the TICLT, and 8, 8, 16, 16 directions in
the scales from coarser to finer, respectively. The continu-
ously varying order parameter in (8) and (9) is fixed (i.e.
λ = 10) to obtain the best spacial-frequency resolution.

For the hard-thresholding, we chose the global thresh-
old Tj,l = βσnj,l for each directional subband, where σnj,l

denotes the noise standard deviation of the directional sub-
band at scale j and direction l. We set β = 4 for the finest
scale and β = 3 for the others to get high peak signal to
noise ratio (PSNR) and preserve more fine image details[4].
Since the TICLT is a nonorthogonal transform, the noise
standard deviation σnj,l should be estimated using Monte-

Carlo simulations[3−4].
The TICLT-MMSE is illustrated as Fig. 5. For the

MMSE estimator, each clean TICLT coefficient xj,l,kkk was

estimated by[14]

x̂j,l,kkk =
σ2

j,l,kkk

σ2
j,l,kkk

+ σ2
nj,l

yj,l,kkk (11)

where yj,l,kkk is the noisy observation of xj,l,kkk, and σ2
j,l,kkk is

the variance of the kkk-th clean TICLT coefficients at the l-th

directional subband of the j-th scale. It was assumed that
σ2

j,l,kkk is deterministic and known. But in fact, σ2
j,l,kkk was

unknown, so we used σ̂2
j,l,kkk, which is an estimate of σ2

j,l,kkk.

We set σ̂2
j,l,kkk equal to the variance of TICLT coefficients

that were initially denoised by using the hard-thresholding
estimator. That is, σ̂2

j,l,kkk = (1/S)
∑

zi∈N(kkk) z2
i , where N(kkk)

is the neighborhood of zj,l,kkk, which is a “clean” TICLT co-
efficient of the denoised image using the hard-thresholding
estimator, and S is the size of N(kkk). In our experiments,
we set S equals to 5 × 5.

Fig. 5 The proposed TICLT-MMSE image denoising
algorithm

3 Experiments

To benchmark the performance of the TICLT, we have
used some of the best available denoising algorithms re-
ported in the published works such as hard-thresholding
in the undecimated wavelet transform domain (UWT-HT),
hard-thresholding in the curvelet transform domain (CvT-

HT)[15], hard-thresholding in the TICT domain (TICT-

HT)[5], hard-thresholding in the NSCT domain (NSCT-

HT)[4], local adaptive shrinkage in the NSCT domain

(NSCT-LAS)[4], local adaptive shrinkage in the NSST1
(16, 32) domain (NSST-LAS), and Bayes least-squares with
a Gaussian scale-mixture model (BLS-GSM, this high com-
plexity denoising algorithm is the benchmark used widely
for evaluating different denoising methods)[16]. We used
three 8-bit grayscale standard images of size 512 × 512 in
our test suit: “Lena”, “Barbara”, and “Peppers”. The re-
sults of these experiments are listed in Table 1 for three
different levels of additive white Gaussian noise. The re-
sults showed that for the hard-thresholding estimator, the

Table 1 The PSNR values of the nine denoising methods (dB)

Image Lena Barbara Peppers

σ 10 20 30 10 20 30 10 20 30

Noisy 28.15 22.13 18.63 28.17 22.15 18.63 28.17 22.14 18.62

UWT-HT 34.26 31.40 29.66 31.58 27.23 25.10 33.71 31.19 29.43

CvT-HT 34.17 31.52 30.01 32.28 28.89 26.93 33.59 31.13 29.45

TICT-HT 34.89 31.75 — 33.49 29.53 — 34.00 31.15 —

NSCT-HT 34.69 32.03 30.35 33.01 29.41 27.24 33.81 31.60 30.07

TICLT-HT 35.10 32.18 30.38 33.78 30.25 28.11 34.09 31.76 30.11

NSCT-LAS 35.46 32.50 30.70 34.09 30.60 28.56 34.41 31.82 30.19

NSST-LAS 35.38 32.47 — — — — 34.35 31.90 —

BLS-GSM 35.59 32.62 30.84 34.03 30.28 28.11 34.63 32.06 30.41

TICLT-MMSE 35.46 32.54 30.71 34.24 30.73 28.59 34.34 32.07 30.45
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proposed TICLT outperforms other transforms in PSNR
measure. The TICLT-MMSE obtains very encouraging re-
sults as well. In particular, the TICLT-MMSE yields the
highest PSNR values for the “Barbara” image among the
methods studied. The denoising results of the Barbara im-
age are shown in Fig. 6. As the pictures show, the TICLT
can preserve the edges and texture features of the original
image effectively.

Since the complexity of MMSE is comparative with lo-
cal adaptive shrinkage, moreover, the redundancy of the
TICLT is lower than those of NSCT and NSST, and the
computation complexity of TICLT-MMSE is also lower
than those of NSCT-LAS and NSST-LAS.

(a) Original image (b) Noisy image (22.15 dB)

(c) The result of BLS-GSM

(30.28 dB)

The result of TICLT-MMSE

(30.73 dB)

Fig. 6 Denoising results for the Barbara images (cropped to
256 × 256) at σ = 20

4 Conclusion and future research

In this paper, we have proposed the translation invari-
ant contourlet-like transform with lower redundancy than
both the NSCT and the TICT. The potential of the TICLT
has been demonstrated with some denoising examples. For
the hard-thresholding, our results show that the TICLT
outperforms other transforms such as UWT, CvT, TICT,
and NSCT. For the TICLT-MMSE, better performance can
be achieved at some cases when compared to the state-of-
the-art denoising methods. Besides image denoising us-
ing TICLT, other inverse image problems (such as image

debluring, super-resolution, compressed sensing[17], etc),
which use the priors of sparseness when the image is rep-
resented by translation invariant transforms, will benefit
with the use of TICLT. We intend to study some of these
applications in future research.
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