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Static Output Feedback Control for Discrete-time

Piecewise Linear Systems: an LMI Approach
DING Da-Wei1, 2 YANG Guang-Hong1, 2

Abstract This paper investigates the problem of static output feedback (SOF) control for discrete-time piecewise linear systems.
Based on piecewise quadratic Lyapunov functions, new sufficient LMI conditions for the synthesis of SOF stabilization controllers
are presented. Meanwhile, by using Finsler′s lemma, a set of slack variables with special structure are introduced to reduce design
conservatism. Compared to the existing methods, the proposed method has a good performance and can work successfully in
situations where the existing methods fail. An extension of this method is also given in order to incorporate H∞ performance. Three
examples are given to illustrate the effectiveness of our method.
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Piecewise linear systems have been receiving much atten-
tion in control and system and circuit communities because
a large class of nonlinear systems, such as systems with
relay, saturation, or dead-zone, can be modeled as piece-
wise linear systems[1]. In fact, piecewise linear systems are
a broad modeling class in the sense that they have been
shown to be equivalent to many other classes of systems,
such as mixed logic dynamical systems[2] and extended lin-
ear complementary systems[3].

Since [4] presented a pioneering work on the analy-
sis of discrete-time piecewise linear systems in the early
1980 s, numerous results[1−17] have been obtained on anal-
ysis and synthesis of piecewise linear systems. For exam-
ple, [6−7] presented results on stability and optimal per-
formance analysis for continuous-time piecewise linear sys-
tems based on a piecewise quadratic Lyapunov function.
Reference [16] extended the stability analysis method of
[6] to discrete-time piecewise linear systems. Meanwhile,
controller design for piecewise linear systems arose, such as
[8−11] for continuous-time systems and [15, 17] for discrete-
time systems. For stability analysis and control synthesis of
piecewise linear systems, there are two major differences be-
tween the continuous-time and discrete-time case[12]. First,
in the former, only continuous Lyapunov functions can be
used, whereas in the latter, discontinuous Lyapunov func-
tions are also allowed. Second, in the discrete-time case,
switching can also occur between non-adjacent regions and
this fact must be properly handled in analysis and synthesis
algorithms.

On the other hand, static output feedback (SOF) is one
of the most important open problems in control theory and
practice. It represents the simplest closed-loop control sys-
tem, which can be easily implemented with low cost. There-
fore, the problem has been extensively studied for the past
decades. To deal with the SOF control problem of linear
systems, there are various approaches; see [18−21] and ref-
erences therein.

This paper studies the problem of SOF control for
discrete-time piecewise linear systems. In [22−23], the
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problem of SOF control for discrete-time switched linear
systems was investigated and sufficient LMI conditions were
given to obtain controller gains. These two methods are
also applicable to discrete-time piecewise linear systems. In
this paper, based on piecewise quadratic Lyapunov func-
tions, new sufficient LMI conditions for the synthesis of
SOF stabilization controllers are given. Meanwhile, by
using Finsler′s lemma, a set of slack variables with spe-
cial structure are introduced to reduce design conservatism.
Compared to the methods in [22−23], our method proves
to have a good performance and can work successfully in
situations where the methods in [22−23] do not. In addi-
tion, an extension of this method is also given in order to
incorporate H∞ performance.

The rest of the paper is organized as follows. Section 1
gives the problem statement. Section 2 gives new sufficient
LMI-based conditions for SOF stabilization of discrete-time
piecewise linear systems. Section 3 extends the method to
H∞ SOF control. Section 4 gives three examples to illus-
trate the effectiveness of the proposed methods. Finally,
we conclude the paper in Section 5.

Notations. We use standard notations throughout this
paper. MT is the transpose of matrix M and M−T means
(M−1)T. M > 0 (< 0) means that M is positive (negative)
definite. The symbol “∗” is used in some matrix expressions
to induce a symmetric structure. L2 is the Lebesgue space
consisting of all discrete-time vector-valued functions that
are square-summable over [0, 1, 2, · · · ,∞).

1 Problem statement

Consider the following discrete-time piecewise linear sys-
tem

{
xxx(k + 1) = Aixxx(k) + Biuuu(k)
yyy(k) = Cixxx(k)

, for xxx ∈ Xi, i ∈ Il (1)

where xxx(k) ∈ Rn is the state, uuu(k) ∈ Rm is the control
input, and yyy(k) ∈ Rp is the measured output. {Xi}i∈Il ⊆
Rn denotes a partition of the state space X into a number
of closed polyhedral subspaces, i.e., Il = {1, 2, · · · , l} is the
index set of subspaces. We refer to each Xi as a cell. Let
S be the set of all ordered pairs (i, j) of indices, denoting
the possible switches from cell i to cell j

S = {(i, j) : i, j∈Il such that xxx(k)∈Xi and xxx(k+1)∈Xj}
(2)

The set S can be determined via reachability analysis for
mixed logic dynamical (MLD) systems[2].

In this paper, we investigate the SOF stabilization prob-
lem, i.e., the problem of designing a static output feedback



338 ACTA AUTOMATICA SINICA Vol. 35

control law
uuu(k) = Kiyyy(k), i ∈ Il (3)

such that the closed-loop piecewise linear system

xxx(k + 1) = Aclixxx(k) (4)

with
Acli = Ai + BiKiCi (5)

is exponentially stable.
Without loss of generality, it is assumed that Bi (or Ci),

i = 1, 2, · · · , l are of full column (or row) rank. Then, there
exist nonsingular transformation matrices Tbi (or Tci), i =
1, 2, · · · , l such that

TbiBi =

[
I
0

]
(6)

CiTci =
[

I 0
]

(7)

Note that for any given Bi (or Ci), the corresponding Tbi

(or Tci) are generally not unique. Special Tbi and Tci can
be obtained by

Tbi =

[
(BT

i Bi)
−1BT

i

BT⊥T
i

]
(8)

Tci =
[

CT
i (CiC

T
i )−1 C⊥i

]
(9)

where BT⊥T
i denotes the transpose of an orthogonal basis

for the null space of BT
i , and C⊥i denotes an orthogonal

basis for the null space of Ci.
The following lemmas are useful throughout this paper.
Lemma 1 (Finsler′s lemma). Let ξξξ ∈ Rn, P = PT ∈

Rn×n, and H ∈ Rm×n such that rank(H) = r < n; then
the following statements are equivalent:

1) ξξξTPξξξ < 0, for all ξξξ 6= 0, Hξξξ = 0;
2) ∃X ∈ Rn×m such that P + XH + HTXT < 0.

Lemma 2[13, 15]. If there exist matrices Pi = PT
i > 0,

∀i ∈ Il such that the positive definite function V (xxx) =
xxxTPixxx, ∀xxx ∈ Xi satisfies V (xxx(k + 1)) − V (xxx(k)) < 0, then
the closed-loop piecewise linear system (4) is exponentially
stable.

The piecewise quadratic Lyapunov function appearing in
Lemma 2 can be computed as[13, 15]

AT
cliPjAcli − Pi < 0, ∀(i, j) ∈ S

Pi = PT
i > 0, ∀i ∈ Il

where S is given in (2).

2 SOF stabilization

In this section, based on a piecewise quadratic Lyapunov
function and Finsler′s lemma, new sufficient LMI condi-
tions are deduced to obtain the SOF control gains Ki.

Theorem 1. Assume that Bi, i = 1, 2, · · · , l are of
full column rank. If there exist symmetric matrices P̄i,
P̄j ∈ Rn×n, and matrices Gi ∈ Rn×n, Li ∈ Rn×p with the
following structure

Gi =

[
Gi11 Gi12

0 Gi22

]
, Li =

[
Li1

0

]
(10)

satisfying the inequalities
[

P̄j −Gi −GT
i GiĀi + LiC̄i

∗ −P̄i

]
< 0, ∀(i, j) ∈ S (11)

where
Āi = TbiAiT

−1
bi , C̄i = CiT

−1
bi (12)

and Tbi are given by (8), then the closed-loop piecewise
linear system (4) is exponentially stable and the control
gain Ki can be obtained by

Ki = G−1
i11Li1, i ∈ Il (13)

Proof. Assume that LMIs (11) are feasible. From the
structure of Li and Gi, and from (6) and (13), we can
obtain

Li =

[
Li1

0

]
=

[
Gi11Ki

0

]
=

[
Gi11 Gi12

0 Gi22

] [
I
0

]
Ki = GiTbiBiKi (14)

Define Pj = TT
bi P̄jTbi, Pi = TT

bi P̄iTbi, then

P̄j = T−T
bi PjT

−1
bi , P̄i = T−T

bi PiT
−1
bi (15)

Substituting (12), (14), and (15) into (11), we have

[
T−T

bi PjT
−1
bi −Gi −GT

i Ξi

∗ −T−T
bi PiT

−1
bi

]
< 0,

∀(i, j) ∈ S (16)

where Ξi = GiTbiAiT
−1
bi + GiTbiBiKiCiT

−1
bi .

Pre- and post-multiplying (16) by

[
TT

bi 0
0 TT

bi

]
and its

transpose, we have

[
Pj − TT

biGiTbi − TT
biG

T
i Tbi TT

biGiTbiAcli

∗ −Pi

]
< 0,

∀(i, j) ∈ S (17)

Inequalities (17) can be written in the form

P + XH + HTXT < 0, ∀(i, j) ∈ S (18)

where

P =

[
Pj 0
0 −Pi

]
, X =

[
TT

biGiTbi

0

]

H =
[ −I Acli

]
(19)

Define ξξξ =

[
xxx(k + 1)

xxx(k)

]
, then the closed-loop system (4)

can be written in the form

Hξξξ = 0 (20)

It follows from Finsler′s lemma that (18) is equivalent to

ξξξTPξξξ < 0, ∀(i, j) ∈ S (21)

Then, we have

[
xxxT(k + 1) xxxT(k)

] [
Pj 0
0 −Pi

] [
xxx(k + 1)

xxx(k)

]
< 0,

∀(i, j) ∈ S (22)

that is,

xxxT(k +1)Pjxxx(k +1)−xxxT(k)Pixxx(k) < 0, ∀(i, j) ∈ S (23)
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Substituting (4) into (23) obtains

AT
cliPjAcli − Pi < 0, ∀(i, j) ∈ S

It follows from (11) and (15) that

Pi = PT
i > 0, ∀i ∈ Il

Based on Lemma 2, the closed-loop piecewise linear system
(4) is exponentially stable. ¤

Note that the invertibility of Gi11 can be assured by con-
dition (11) in Theorem 1. See the following lemma.

Lemma 3. If LMIs (11) are feasible, then Gi11 are in-
vertible.

Proof. It follows from (11) that

P̄j −Gi −GT
i < 0, ∀(i, j) ∈ S

−P̄i < 0, ∀i ∈ Il

then, we have Gi + GT
i > P̄j > 0. This implies Gi are

invertible[24]. Therefore, Gi11, the block (1, 1) of Gi, are
invertible. ¤

In the same way, the invertibility of Gi11 can be assured
by the conditions of Theorems 2∼ 4 below.

Theorem 2. Assume that Ci, i ∈ Il are of full row rank.
If there exist symmetric matrices P̄i and P̄j ∈ Rn×n, and
matrices Gi ∈ Rn×n and Li ∈ Rm×n with the following
structure

Gi =

[
Gi11 0
Gi21 Gi22

]
, Li =

[
Li1 0

]
(24)

satisfying the inequalities
[

P̄j −Gi −GT
i ∗

ĀiGi + B̄iLi −P̄i

]
< 0, ∀(i, j) ∈ S (25)

where
Āi = T−1

ci AiTci, B̄i = T−1
ci Bi (26)

and Tci are given by (9), then the closed-loop piecewise
linear system (4) is exponentially stable and the control
gain Ki can be obtained by

Ki = Li1G
−1
i11, i ∈ Il (27)

Proof. From the structure of Li and Gi, and from (7)
and (27), we can obtain

Li =
[

Li1 0
]

=
[

KiGi11 0
]

=

Ki

[
I 0

] [
Gi11 0
Gi21 Gi22

]
= KiCiTciGi (28)

Define Pj = TciP̄jT
T
ci , Pi = TciP̄iT

T
ci , then

P̄j = T−1
ci PjT

−T
ci , P̄i = T−1

ci PiT
−T
ci (29)

Substituting (26), (28), and (29) into (25), we have
[

T−1
ci PjT

−T
ci −Gi −GT

i ∗
T−1

ci AiTciGi+T−1
ci BiKiCiTciGi −T−1

ci PiT
−T
ci

]
<0,

∀(i, j) ∈ S (30)

Pre- and post-multiplying (30) by

[
Tci 0
0 Tci

]
and its

transpose, we have
[

Pj − TciGiT
T
ci − TciG

T
i TT

ci ∗
AcliTciGiT

T
ci −Pi

]
< 0, ∀(i, j) ∈ S

(31)

Inequalities (31) can be rewritten in the following form

P + XH + HTXT < 0, ∀(i, j) ∈ S (32)

where

P =

[
Pj 0
0 −Pi

]
, X =

[
TciGiT

T
ci

0

]
, H =

[−I AT
cli

]

Consider the dual system of (4)

xxx′(k + 1) = AT
clixxx

′(k) (33)

Define ξξξ′ =

[
xxx′(k + 1)

xxx′(k)

]
. Then, (33) can be rewritten in

the form
Hξξξ′ = 0 (34)

From Finsler′s lemma, we know that (32) is equivalent to

ξξξ′TPξξξ′ < 0 (35)

then, we have

[
xxx′T(k + 1) xxx′T(k)

] [
Pj 0
0 −Pi

] [
xxx′(k + 1)

xxx′(k)

]
< 0,

∀(i, j) ∈ S
(36)

that is,

xxx′
T
(k + 1)Pjxxx

′(k + 1)− xxx′
T
(k)Pixxx

′(k) < 0, ∀(i, j) ∈ S
(37)

Substituting (33) into (37) yields

(AT
cli)

TPjA
T
cli − Pi < 0, ∀(i, j) ∈ S

It follows from (25) and (29) that

Pi = PT
i > 0, ∀i ∈ Il

Based on Lemma 2, the closed-loop piecewise linear system
(4) is exponentially stable. ¤

Remark 1. Theorems 1 and 2 present new sufficient
LMI-based conditions for SOF stabilization control for
discrete-time piecewise linear systems. These conditions
are convex and numerically well tractable with commer-
cially available software[25−26]. Free slack variables Gi with
special structure are introduced to reduce design conser-
vatism.

Remark 2. For discrete-time piecewise linear systems,
the state may switch among non-adjacent regions of the
state-space partition. In this paper, we define the set S that
contains all the ordered pairs of indices denoting the possi-
ble switches and can be computed via reachability analysis
for MLD systems[2]. However, when designing an SOF con-
troller, the set of all possible switches is seldom known in
advance, and it may be necessary to consider all pairs of
indices in Sall = Il × Il. Therefore, our synthesis approach
in Theorems 1 and 2 can be used to design SOF control for
discrete-time switched linear systems with arbitrary switch-
ing.

Remark 3. The proposed method is different from that
in [22], where equality constraint was imposed on Lyapunov
matrics Pi or slack variables Gi. It also differs from the
method in [23], which works well only when matrix A

(22)
i

(the block (2, 2) of Ai) are Schur stable. Numerical ex-
amples (in Section 4) will show that our method can work
successfully in situations where [22−23] do not.



340 ACTA AUTOMATICA SINICA Vol. 35

3 Extension to H∞H∞H∞ SOF control

Consider the following discrete-time piecewise linear sys-
tem





xxx(k + 1) = Aixxx(k) + Bi1uuu(k) + Bi2www(k)

zzz(k) = Ci1xxx(k) + Di11uuu(k) + Di12www(k)

yyy(k) = Ci2xxx(k) + Di21www(k)

(38)

for xxx(k) ∈ Xi, i ∈ Il, where xxx(k) ∈ Rn is the system state,
uuu(k) ∈ Rm is the control input, www(k) ∈ Rr is disturbance
input, zzz(k) ∈ Rq is the controlled output, and yyy(k) ∈ Rp is
the measured output. Let S be the set of all ordered pairs
(i, j) of indices, denoting the possible switches from cell i
to cell j

S = {(i, j) : i, j ∈ Il such that xxx(k)∈ Xi and xxx(k+1) ∈ Xj}
(39)

In this section, we will design SOF control for the
discrete-time piecewise linear system (38) in the H∞ frame-
work: Given a real number γ > 0, the exogenous signal www
is attenuated by γ if, assuming xxx(0) = 000, for each integer
N ≥ 0 and for every www ∈ L2([0, N ],Rr)

N∑

k=0

‖zzz(k)‖2 < γ2
N∑

k=0

‖www(k)‖2 (40)

With the controller (3), the closed-loop piecewise linear
system becomes

{
xxx(k + 1) = Aclixxx(k) + Bcliwww(k)

zzz(k) = Cclixxx(k) + Dcliwww(k)
, for i ∈ Il (41)

where

Acli = Ai + Bi1KiCi2, Bcli = Bi2 + Bi1KiDi21

Ccli = Ci1 + Di11KiCi2, Dcli = Di12 + Di11KiDi21(42)

Without loss of generality, we assume that Bi1 (or Ci2),
i = 1, · · · , l are of full column (or row) rank. Then, there
exist nonsingular transformation matrices Tbi (or Tci), i =
1, · · · , l such that

TbiBi1 =

[
I
0

]
, Ci2Tci =

[
I 0

]
(43)

Note that for any given Bi1 (or Ci2), the corresponding Tbi

(or Tci) are generally not unique. Special Tbi and Tci can
be given as

Tbi =

[
(BT

i1Bi1)
−1BT

i1

BT⊥T
i1

]
, Tci =

[
CT

i2(Ci2C
T
i2)
−1 C⊥i2

]

(44)
The following lemma is useful in this section.
Lemma 4[13, 15]. Consider the piecewise linear system

(38) with zero initial condition xxx(0) = 000. If there exists
a function V (xxx) = xxxTPixxx, ∀xxx ∈ Xi with Pi = PT

i > 0
satisfying the following inequality

V (xxx(k + 1))− V (xxx(k)) < γ2‖www(k)‖2 − ‖zzz(k)‖2, ∀k (45)

then the H∞ performance condition (40) is satisfied. Fur-
thermore, the closed-loop piecewise linear system (41) is
exponentially stable.

The piecewise quadratic Lyapunov function appearing in
Lemma 3 can be computed as[13, 15]

xxxT(k + 1)Pjxxx(k + 1)− xxxT(k)Pixxx(k) <

γ2wwwT(k)www(k)− zzzT(k)zzz(k), ∀(i, j) ∈ S

and
Pi = PT

i > 0, ∀i ∈ Il

Now, we give sufficient LMI conditions to obtain H∞
SOF control gains Ki.

Theorem 3. Assume that Di11 are null matrices and
Bi1, i = 1, · · · , l are full column rank matrices. If there
exist symmetric matrices P̄i and P̄j ∈ Rn×n and matrices
Gi ∈ Rn×n and Li ∈ Rn×p with the following structure

Gi =

[
Gi11 Gi12

0 Gi22

]
, Li =

[
Li1

0

]
(46)

satisfying the inequalities



Πij 0 GiĀi + LiC̄i2 GiB̄i2 + LiDi21

∗ −I C̄i1 Di12

∗ ∗ −P̄i 0
∗ ∗ ∗ −γ2I


 < 0,

∀(i, j) ∈ S (47)

where Πij = P̄j −Gi −GT
i and

Āi = TbiAiT
−1
bi , B̄i2 = TbiBi2

C̄i1 = Ci1T
−1
bi , C̄i2 = Ci2T

−1
bi (48)

and Tbi are given by (44), then the piecewise linear system
(38) is stabilized by the SOF controller (3) and the H∞-
norm of the closed-loop system (41) is smaller than γ, i.e.,∑N

k=0 ‖zzz(k)‖2 < γ2 ∑N
k=0 ‖www(k)‖2. The control gains Ki

can be obtained by

Ki = G−1
i11Li1, i ∈ Il (49)

Proof. Assume that LMIs (47) are feasible and define
Pj = TT

bi P̄jTbi, Pi = TT
bi P̄iTbi. Then,

P̄j = T−T
bi PjT

−1
bi , P̄i = T−T

bi PiT
−1
bi (50)

Substituting (48) and (50) into (47) leads to




Υij 0 GiTbiAiT
−1
bi + LiCi2T

−1
bi Γi

∗ −I Ci1T
−1
bi Di12

∗ ∗ −T−T
bi PiT

−1
bi 0

∗ ∗ ∗ −γ2I


< 0,

∀(i, j) ∈ S (51)

where Υij = T−T
bi PjT

−1
bi −Gi−GT

i , Γi = GiTbiBi2+LiDi21.
Pre- and post-multiplying (51) by




TT
bi 0 0 0
0 I 0 0
0 0 TT

bi 0
0 0 0 I




and its transpose yields



Φij 0 TT
biGiTbiAi + TT

biLiCi2 Λi

∗ −I Ci1 Di12

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I


 < 0,

∀(i, j) ∈ S (52)

where

Φij = Pj − TT
biGiTbi − TT

biG
T
i Tbi

Λi = TT
biGiTbiBi2 + TT

biLiDi21
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From the structure of Li and Gi and from (43) and (49),
we have

Li =

[
Li1

0

]
=

[
Gi11Ki

0

]
=

[
Gi11 Gi12

0 Gi22

] [
I
0

]
Ki = GiTbiBi1Ki (53)

By simple algebraic operation, we can obtain

TT
biGiTbiAi + TT

biLiCi2 = TT
biGiTbiAcli

TT
biGiTbiBi2 + TT

biLiDi21 = TT
biGiTbiBcli (54)

Due to the assumption that Di11 = 0, we have

Ci1 = Ccli, Di12 = Dcli (55)

By substituting (54) and (55) into (52), it follows that




Φij 0 TT
biGiTbiAcli TT

biGiTbiBcli

∗ −I Ccli Dcli

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I


 < 0,

∀(i, j) ∈ S (56)

Inequalities (56) can be written in the form

P + XH + HTXT < 0, ∀(i, j) ∈ S (57)

where

P =




Pj 0 0 0
0 I 0 0
0 0 −Pi 0
0 0 0 −γ2I


 , X =




TT
biGiTbi 0

0 I
0 0
0 0




H =

[ −I 0 Acli Bcli

0 −I Ccli Dcli

]
(58)

In addition, the closed-loop piecewise linear system (41)
can be written in the form

Hξξξ(k) = 0 (59)

where

ξξξ(k) =




xxx(k + 1)
zzz(k)
xxx(k)
www(k)


 (60)

It follows from Finsler′s lemma that (57) is equivalent to

ξξξT(k)Pξξξ(k) < 0 (61)

Substituting (58) and (60) into (62) yields

xxxT(k + 1)Pjxxx(k + 1)− xxxT(k)Pixxx(k) <

γ2wwwT(k)www(k)− zzzT(k)zzz(k), ∀(i, j) ∈ S (62)

It follows from (47) and (50) that

Pi = PT
i > 0

Based on Lemma 4, the closed-loop piecewise linear system
is exponentially stable and the H∞-norm is smaller than γ.

¤
Theorem 4. Assume that Di21 are null matrices and

Ci2, i = 1, · · · , l are full row rank matrices. If there exist

symmetric matrices P̄i and P̄j ∈ Rn×n and matrices Gi ∈
Rn×n and Li ∈ Rm×n with the following structure

Gi =

[
Gi11 0
Gi21 Gi22

]
, Li =

[
Li1 0

]
(63)

satisfying the inequalities




P̄j −Gi −GT
i ∗ ∗ ∗

0 −I ∗ ∗
ĀiGi + B̄i1Li B̄i2 −P̄i ∗

C̄i1Gi + Di11Li Di12 0 −γ2I


 < 0,

∀(i, j) ∈ S (64)

where

Āi = T−1
ci AiTci, B̄i1 = T−1

ci Bi1

B̄i2 = T−1
ci Bi2, C̄i1 = Ci1Tci (65)

and Tci are given in (44), then the piecewise linear sys-
tem (38) is stabilized by the SOF controller (3) and the
H∞-norm of the closed-loop system (41) is smaller than γ,

i.e.,
∑N

k=0 ‖zzz(k)‖2 < γ2 ∑N
k=0 ‖www(k)‖2. The control gains

Ki can be obtained by

Ki = Li1G
−1
i11, i ∈ Il (66)

Proof. Assume that the LMI conditions (64) are feasi-
ble. Define Pj = TciP̄jT

T
ci and Pi = TciP̄iT

T
ci . Then,

P̄j = T−1
ci PjT

−T
ci , P̄i = T−1

ci PiT
−T
ci (67)

Substituting (65) and (67) into (64) yields




T−1
ci PjT

−T
ci −Gi −GT

i ∗ ∗ ∗
0 −I ∗ ∗

T−1
ci AiTciGi + T−1

ci Bi1Li T−1
ci Bi2 Ωi ∗

Ci1TciGi + Di11Li Di12 0 −γ2I


 < 0,

∀(i, j) ∈ S
(68)

where Ωi = −T−1
ci PiT

−T
ci .

Pre- and post-multiplying (68) by




Tci 0 0 0
0 I 0 0
0 0 Tci 0
0 0 0 I




and its transpose leads to




Pj − TciGiT
T
ci − TciG

T
i TT

ci ∗ ∗ ∗
0 −I ∗ ∗

AiTciGiT
T
ci + Bi1LiT

T
ci Bi2 −Pi ∗

Ci1TciGi + Di11Li Di12 0 −γ2I


 < 0,

∀(i, j) ∈ S
(69)

From the structure of Li and Gi, and from (43) and (66),
we have

Li =
[

Li1 0
]

=
[

KiGi11 0
]

=

Ki

[
I 0

] [
Gi11 0
Gi21 Gi22

]
= KiCi2TciGi (70)
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By simple algebraic operation, we can obtain

AiTciGiT
T
ci + Bi1LiT

T
ci = AcliTciGiT

T
ci

Ci1TciGi + Di11Li = CcliTciGi (71)

Due to the assumption that Di21 = 0, we have

Bi2 = Bcli, Di12 = Dcli (72)

By substituting (71) and (72) into (69), it follows that




Pj − TciGiT
T
ci − TciG

T
i TT

ci ∗ ∗ ∗
0 −I ∗ ∗

AcliTciGiT
T
ci Bcli −Pi ∗

CcliTciGi Dcli 0 −γ2I


 < 0,

∀(i, j) ∈ S
(73)

Inequalities (73) can be rewritten in the form

P + XH + HTXT < 0, ∀(i, j) ∈ S (74)

where

P =




Pj 0 0 0
0 I 0 0
0 0 −Pi 0
0 0 0 −γ2I


 (75)

X =




TciGiT
T
ci 0

0 I
0 0
0 0


 , H =

[ −I 0 AT
cli CT

cli

0 −I BT
cli DT

cli

]

(76)

Consider the dual system of (41)

xxx′(k + 1) = AT
clixxx

′(k) + CT
cliwww

′(k)

zzz′(k) = BT
clixxx

′(k) + DT
cliwww

′(k) (77)

which can be written in the form

Hξξξ′(k) = 0

where

ξξξ′(k) =




xxx′(k + 1)
zzz′(k)
xxx′(k)
www′(k)


 (78)

It follows from Finsler′s lemma that (74) is equivalent to

ξξξ′
T
(k)Pξξξ′(k) < 0 (79)

Substituting (76) and (78) into (79) yields

xxx′
T
(k + 1)Pjxxx

′(k + 1)− xxx′
T
(k)Pixxx

′(k) <

γ2www′
T
(k)w′w′w′(k)− zzz′

T
(k)zzz′(k), ∀(i, j) ∈ S (80)

It follows from (64) and (67) that

Pi = PT
i > 0

Based on Lemma 4, the closed-loop piecewise linear system
is exponentially stable and the H∞-norm is smaller than γ.

¤
Remark 4. Theorems 3 and 4 present sufficient LMI

conditions for H∞ SOF control for discrete-time piecewise

linear systems. By using Finsler′s lemma, a set of slack
variables Gi with special structure are introduced to im-
prove H∞ performance and to reduce design conservatism.
Note that by letting Ci = I in (4) or Ci2 = I in (38) and
slack variables Gi be general matrices, SOF control in The-
orems 1∼ 4 reduces to the state-feedback control in [14].

Remark 5. In Theorems 1 and 2, it is assumed that Bi

are of full column rank or Ci are of full row rank. If this as-
sumption is not satisfied, i.e., both Bi and Ci are not of full
rank, we can introduce non-singular linear transformation
to system (1) and obtain a new system model satisfying the

assumption[27]. Then, Theorems 1 and 2 can be used for
the newly-built model. Therefore, this method can also be
used to deal with the situation where both Bi1 and Ci2 in
system (38) are not of full rank.

4 Examples

In this section, three examples are given to illustrate
the effectiveness of our method. Examples 1 and 2 pro-
vide a comparison of the proposed method to the methods
presented in [22−23]. These two examples show that our
synthesis method can work successfully in situations where
[22−23] do not, respectively. In Example 3, an H∞ SOF
controller is designed to show the effectiveness of Theorems
3 and 4.

Example 1. Consider the following system borrowed
from [23]

xxx(k + 1) = Aixxx(k) + Biuuu(k), i = 1, 2, 3, 4

where

A1 =




0.7786 0.9908 0.1270
0.1616 0.8443 0.8144
0.9214 0.9747 0.7825




A2 =




0.3894 0.3263 0.7746
0.7806 0.9886 0.1297
0.8814 0.4718 0.3110




A3 =




0.3049 0.4247 0.8979
0.8448 0.2485 0.6921
0.7558 0.9160 0.3636




A4 =




0.1194 0.3964 0.2454
0.1034 0.2515 0.4983
0.6981 0.8655 0.2403




and

B1 =




0.2458 0.7409
0.2501 0.5257

0 0


 , B2 =




0.2722 0.6055
0.1576 0.1580

0 0




B3 =




0.4945 0.3020
0.9237 0.9118

0 0


 , B4 =




0.9894 0.7205
0.1709 0.1519

0 0




Note that A1∼A4 are all unstable. The system is allowed
to switch arbitrarily between these four modes. Output
matrices are selected as[23]

C1 =
[

0.3815 0.6916 0.7183
]

C2 =
[

0.0591 0.8258 0.4354
]

C3 =
[

0.5204 0.8010 0.9708
]

C4 =
[

0.6995 0.3081 0.8767
]
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Reference [23] has shown that this system cannot be stabi-
lized using the method in [22]. However, it can be stabilized
using our method and the control gains are given as

K1 =

[ −5.1512
0.6370

]
, K2 =

[ −4.1075
−0.0307

]

K3 =

[ −3.2011
2.4172

]
, K4 =

[
1.7127
−2.9989

]

These SOF control gains give the following closed-loop
poles for each modes:

Mode 1 : {0.6351, 0.4040± 0.5478i}
Mode 2 : {0.7029, 0.1902± 0.6019i}
Mode 3 : {0.4600,−0.2949± 0.3924i}
Mode 4 : {0.7737,−0.2693± 0.3320i}

Example 2. Consider system (1) with three modes,
which is described by the following matrices:

A1 =




3 0.3 2
1 0 1

0.3 0.6 0.6




A2 =



−0.5871 −0.8441 −0.0092
−0.6865 −0.5090 −0.8561
0.0974 0.4523 −0.2280




A3 =




0.1089 0.2458 −0.9035
0.3998 −0.9213 −0.4161
0.6745 −0.5750 0.7138




B1 =




1 0
0 1
1 0


 , B2 =




0.1930 −0.4204
−0.7359 0.0346
0.5073 −0.9077




B3 =



−0.4164 0.0244
0.8297 −0.4366
−0.0900 −0.8416




Note that all the modes are unstable. The output matrices
are given as

C1 =
[
1 1 0

]
, C2 =

[
1 0 1

]
, C3 =

[
0 1 1

]

For this system, the method developed in [23] does not
allow to compute an SOF controller. However, our method
provides the following control gains:

K1 =

[−0.9273
0.0032

]
, K2 =

[−1.0162
−0.4316

]
, K3 =

[
0.3791
0.5438

]

These SOF control gains give the following closed-loop
poles for each modes:

Mode 1 : {0.0412, 0.7174± 0.6314i}
Mode 2 : {0.5364,−0.4631± 0.2830i}
Mode 3 : {−0.8203, 0.1535± 0.5217i}

Example 3. Consider system (38) with two modes. Sys-
tem matrices are given as

A1 =



−0.5871 −0.8441 −0.0092
−0.6865 −0.5090 −0.8561
0.0974 0.4523 −0.2280




A2 =




0.1089 0.2458 −0.9035
0.3998 −0.9213 −0.4161
0.6745 −0.5750 0.7138




B11 =




0.1930 −0.4204
−0.7359 0.0346
0.5073 −0.9077




B21 =



−0.4164 0.0244
0.8297 −0.4366
−0.0900 −0.8416




B12 = B22 =




0
1
0


 , C11 = C21 =




1 0 0
0 1 0
0 0 1




C12 =
[

1 0 1
]
, C22 =

[
0 1 1

]

D111 = D211 =




0 0
0 1
0 1


 , D112 =




1
1
0


 , D212 =




1
0
1




D121, D221 are null matrices.
By Theorem 4, the control gains are obtained as

K1 =

[ −1.0832
−0.5259

]
, K2 =

[
0.3563
−0.1241

]

and the H∞-norm is 5.6853.
The following two figures are the responses of open-

loop and closed-loop states with initial states chosen as
xxx(0) = [−2 2 4]T and disturbances chosen as w ={

2, k < 10
0, k ≥ 10

. Fig. 1 shows that the open-loop system is

unstable and Fig. 2 shows that the closed-loop system is
exponentially stable.

5 Conclusion

In this paper, the problem of SOF control for discrete-
time piecewise linear systems has been addressed. By the
aid of piecewise quadratic Lyapunov functions combined
with Finsler′s lemma, new sufficient LMI conditions for the
synthesis of SOF stabilization controllers have been given.
The proposed method can work successfully where the ex-
isting ones do not. Extension to H∞ control has also been
presented. The numerical examples have shown the effec-
tiveness of the proposed methods.

Fig. 1 Responses of open-loop states
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Fig. 2 Responses of closed-loop states
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