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Abstract

YANG Guang-Hong'?

This paper investigates the problem of static output feedback (SOF) control for discrete-time piecewise linear systems.

Based on piecewise quadratic Lyapunov functions, new sufficient LMI conditions for the synthesis of SOF stabilization controllers
are presented. Meanwhile, by using Finsler’s lemma, a set of slack variables with special structure are introduced to reduce design
conservatism. Compared to the existing methods, the proposed method has a good performance and can work successfully in
situations where the existing methods fail. An extension of this method is also given in order to incorporate H, performance. Three

examples are given to illustrate the effectiveness of our method.
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Piecewise linear systems have been receiving much atten-
tion in control and system and circuit communities because
a large class of nonlinear systems, such as systems with
relay, saturation, or dead-zone, can be modeled as piece-
wise linear systems[l]. In fact, piecewise linear systems are
a broad modeling class in the sense that they have been
shown to be equivalent to many other classes of systems,
such as mixed logic dynamical systems!® and extended lin-
ear complementary systems!®l.

Since [4] presented a pioneering work on the analy-
sis of discrete-time piecewise linear systems in the early
1980 s, numerous results' 7 have been obtained on anal-
ysis and synthesis of piecewise linear systems. For exam-
ple, [6—7] presented results on stability and optimal per-
formance analysis for continuous-time piecewise linear sys-
tems based on a piecewise quadratic Lyapunov function.
Reference [16] extended the stability analysis method of
[6] to discrete-time piecewise linear systems. Meanwhile,
controller design for piecewise linear systems arose, such as
[8—11] for continuous-time systems and [15, 17] for discrete-
time systems. For stability analysis and control synthesis of
piecewise linear systems, there are two major differences be-
tween the continuous-time and discrete-time casel'?. First,
in the former, only continuous Lyapunov functions can be
used, whereas in the latter, discontinuous Lyapunov func-
tions are also allowed. Second, in the discrete-time case,
switching can also occur between non-adjacent regions and
this fact must be properly handled in analysis and synthesis
algorithms.

On the other hand, static output feedback (SOF) is one
of the most important open problems in control theory and
practice. It represents the simplest closed-loop control sys-
tem, which can be easily implemented with low cost. There-
fore, the problem has been extensively studied for the past
decades. To deal with the SOF control problem of linear
systems, there are various approaches; see [18—21] and ref-
erences therein.

This paper studies the problem of SOF control for
discrete-time piecewise linear systems. In [22—23], the
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problem of SOF control for discrete-time switched linear
systems was investigated and sufficient LMI conditions were
given to obtain controller gains. These two methods are
also applicable to discrete-time piecewise linear systems. In
this paper, based on piecewise quadratic Lyapunov func-
tions, new sufficient LMI conditions for the synthesis of
SOF stabilization controllers are given. Meanwhile, by
using Finsler’s lemma, a set of slack variables with spe-
cial structure are introduced to reduce design conservatism.
Compared to the methods in [22—23], our method proves
to have a good performance and can work successfully in
situations where the methods in [22—23] do not. In addi-
tion, an extension of this method is also given in order to
incorporate Ho performance.

The rest of the paper is organized as follows. Section 1
gives the problem statement. Section 2 gives new sufficient
LMI-based conditions for SOF stabilization of discrete-time
piecewise linear systems. Section 3 extends the method to
Ho SOF control. Section 4 gives three examples to illus-
trate the effectiveness of the proposed methods. Finally,
we conclude the paper in Section 5.

Notations. We use standard notations throughout this
paper. M7 is the transpose of matrix M and M~ T means
(M~HT. M > 0 (< 0) means that M is positive (negative)
definite. The symbol “+” is used in some matrix expressions
to induce a symmetric structure. L? is the Lebesgue space
consisting of all discrete-time vector-valued functions that
are square-summable over [0,1,2,--- ,00).

1 Problem statement

Consider the following discrete-time piecewise linear sys-
tem

{ z(k+1) = Aiz(k) + Bau(k)
y(k) = Ciz(k) ’

where z(k) € R" is the state, u(k) € R™ is the control
input, and y(k) € R” is the measured output. {X;}icr, C
R" denotes a partition of the state space X into a number
of closed polyhedral subspaces, i.e., I; = {1,2,---,1} is the
index set of subspaces. We refer to each X; as a cell. Let
S be the set of all ordered pairs (4,5) of indices, denoting
the possible switches from cell 7 to cell j

S ={(4,4) : i,j €L, such that z(k)e X, and z(k+1)e X,}

)

The set S can be determined via reachability analysis for
mixed logic dynamical (MLD) systems!?.

In this paper, we investigate the SOF stabilization prob-

lem, i.e., the problem of designing a static output feedback

for x € Xz‘,i el (1)
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control law where ~ B
u(k) = Kiy(k), i€l (3) A = Tu ATy, Gy = CiTy) ! (12)
such that the closed-loop piecewise linear system and Tj; are given by (8), then the closed-loop piecewise
linear system (4) is exponentially stable and the control
z(k+1) = Aciz(k) (4) gain K; can be obtained by
with o -lp )
Acti = Ai + BiK;C; (5) Ki=Gila, iel (13)

is exponentially stable.

Without loss of generality, it is assumed that B; (or C;),
i=1,2,---,l are of full column (or row) rank. Then, there
exist nonsingular transformation matrices Tp; (or Tci), 7=
1,2,---,1 such that

Ty B; = { é } (6)

CTa=[1 0] (7)

Note that for any given B; (or C;), the corresponding Ty;
(or T¢;) are generally not unique. Special T; and T¢; can
be obtained by

(B Bi)~' B

Ty =
BTLT

(8)

T.=[ cf(Gch)™ o ] ©)
where BI 1T denotes the transpose of an orthogonal basis
for the null space of BY, and C; denotes an orthogonal
basis for the null space of C;.

The following lemmas are useful throughout this paper.

Lemma 1 (Finsler’s lemma). Let £ € R*, P = PT ¢
R™ ", and H € R™*" such that rank(H) = r < n; then
the following statements are equivalent:

1) £TPe <0, for all € #0, HE = 0;

2) 3X € R™™ such that P+ XH + HTXT < 0.

Lemma 21315, If there exist matrices P; = P’ > 0,
Vi € I, such that the positive definite function V(z) =
zT Pz, Vo € X; satisfies V(z(k + 1)) — V(z(k)) < 0, then
the closed-loop piecewise linear system (4) is exponentially
stable.

The piecewise quadratic Lyapunov function appearing in
Lemma 2 can be computed asl'3:19]

A’ElinAcli - P < 0,
P, =Pr >0,

Y(i,j) €S
Viel

where S is given in (2).
2 SOF stabilization

In this section, based on a piecewise quadratic Lyapunov
function and Finsler’s lemma, new sufficient LMI condi-
tions are deduced to obtain the SOF control gains K;.

Theorem 1. Assume that B;, i = 1,2,---,1 are of
full column rank. If there exist symmetric matrices P;,
P; € R™™, and matrices G; € R"*™, L; € R™*? with the
following structure

_ | Gin Gae | La
o[ 8] we[]

satisfying the inequalities

|: Pj -G — G;F GZAZ -tLlC'Z

. " } <0, Y(i,j)€S (11)

Proof. Assume that LMIs (11) are feasible. From the
structure of L; and G;, and from (6) and (13), we can
obtain

| La | | GuK; |
L=l g =[5 ] -

l: Gill Gi12

I

0

Define P; = T}; PiTyi, P; = T} P;Ty;, then
P =T,"PT,', Pi=T,"PT,' (15)

Substituting (12), (14), and (15) into (11), we have

T, PT,;' — G — G E
* ~Ty " PT,!
V(i,j) €S  (16)

| <o

where EZ = GszlAszzl + GszlBlKZCZszl

T
Pre- and post-multiplying (16) by { %i 19T } and its
bi
transpose, we have
P — Ty GiTyi — Ty, Gi Ty Ty GiTyi At <0

* 7Pz
V(i,5) €S (17)

Inequalities (17) can be written in the form

P+ XH+H"'X" <0, V(4,j)eS (18)
where
[P o0 _ [ TG,
o5 8] e[
H=[ -1 Au ] (19)
Define & = [ m(:(;:)l) }, then the closed-loop system (4)

can be written in the form
H({=0 (20)
It follows from Finsler’s lemma that (18) is equivalent to
£'PE<0, V(i,j)eS (21)

Then, we have

[2T(k+1) 27(k)] {%’ 0 } [””(’”1)} <0,

that is,

2T (k+1)Px(k+1)—2" (k)Px(k) <0, V(,j)eS (23)
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Substituting (4) into (23) obtains

A;FZZ-P]'ACH - P < 0, V(Lj) €S
It follows from (11) and (15) that
P,=P'>0, Vi€l

Based on Lemma 2, the closed-loop piecewise linear system
(4) is exponentially stable. O
Note that the invertibility of Gi11 can be assured by con-
dition (11) in Theorem 1. See the following lemma.
Lemma 3. If LMIs (11) are feasible, then G;11 are in-
vertible.
Proof. It follows from (11) that

Y(i,j) €S
Vie I,

Pj—Gi—G;F<O,
—152‘<07

then, we have G; + G¥ > P; > 0. This implies G; are
invertible!?l. Therefore, Gi11, the block (1,1) of G, are
invertible. O

In the same way, the invertibility of G;11 can be assured
by the conditions of Theorems 2 ~ 4 below.

Theorem 2. Assume that C;, ¢ € I, are of full row rank.
If there exist symmetric matrices P; and P; € R™ "™, and
matrices G; € R™*™ and L; € R"™*™ with the following
structure

_| G O
Gi= { Giz1 Gize

}7 Li=[ Lo 0] (29)
satisfying the inequalities
Pj - Gz - G;r *

- _ _ <0, V(,j) €S 25
AiGi+ BiLy —F; (.9) (25)

where B B
A =T AT, Bi=T;'B; (26)
and T; are given by (9), then the closed-loop piecewise

linear system (4) is exponentially stable and the control
gain K; can be obtained by
Ki=LaGht, iel (27)

Proof. From the structure of L; and G;, and from (7)
and (27), we can obtain

Gin 0
Ki[I 0] [ Gt Ging } = K;CiT.iGi  (28)

Define P; = T P10, Py = T.; /T, then
Py =T,'PTS", Pi=T, PT;" (29)
Substituting (26), (28), and (29) into (25), we have

T;'PT, " —Gi — GY *
14 1 -1 —7 |<0,
v(i,7) € S (30)
. T O .
Pre- and post-multiplying (30) by { 0 T. } and its

transpose, we have

Py — TuGiTS — TuGITSE  +
AiTeiGiTE —P;

Inequalities (31) can be rewritten in the following form

P+XH+H"'X" <0, V(,j)es (32)

where
P, 0 TG TE
p=lg ] x| moran)
Consider the dual system of (4)
2 (k+1) = ALz (k) (33)
/

Define ¢’ = { z :(1:]?(2)1) } Then, (33) can be rewritten in
the form

HE =0 (34)
From Finsler’s lemma, we know that (32) is equivalent to
&P <0 (35)

then, we have

[T (k+1) 2" (k) ] { P;j _(}i } { z/gf(Z)l) <0,
v(i,j) €S
(36)

that is,

g (k+ )P’ (k+1) -z (k)Px'(k) <0, V(i,j) €S
(37)
Substituting (33) into (37) yields

(A&) TP AL — P <0, V(i,j)€S
It follows from (25) and (29) that
P,=P'>0, Viel

Based on Lemma 2, the closed-loop piecewise linear system
(4) is exponentially stable. O

Remark 1. Theorems 1 and 2 present new sufficient
LMI-based conditions for SOF stabilization control for
discrete-time piecewise linear systems. These conditions
are convex and numerically well tractable with commer-
cially available software?* 2% Free slack variables G; with
special structure are introduced to reduce design conser-
vatism.

Remark 2. For discrete-time piecewise linear systems,
the state may switch among non-adjacent regions of the
state-space partition. In this paper, we define the set S that
contains all the ordered pairs of indices denoting the possi-
ble switches and can be computed via reachability analysis
for MLD systems!®. However, when designing an SOF con-
troller, the set of all possible switches is seldom known in
advance, and it may be necessary to consider all pairs of
indices in S, = I; X I;. Therefore, our synthesis approach
in Theorems 1 and 2 can be used to design SOF control for
discrete-time switched linear systems with arbitrary switch-
ing.

Remark 3. The proposed method is different from that
in [22], where equality constraint was imposed on Lyapunov
matrics P; or slack variables G;. It also differs from the
method in [23], which works well only when matrix AEZQ)
(the block (2,2) of A;) are Schur stable. Numerical ex-
amples (in Section 4) will show that our method can work
successfully in situations where [22—23] do not.
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3 Extension to H,, SOF control

Consider the following discrete-time piecewise linear sys-
tem

z(k+1) = Aiz(k) + Bau(
2(k) = zlx(k) + Dinu(k)
y(k) = Cioz (k) + Dizyw(k)

for (k) € X;, i € I, where (k) € R" is the system state,
u(k) € R™ is the control input, w(k) € R" is disturbance
input, z(k) € RY is the controlled output, and y(k) € R? is
the measured output. Let S be the set of all ordered pairs
(¢,7) of indices, denoting the possible switches from cell 4
to cell j

S={(i,7) : i,j € I such that z(k) € X; andz(k+1) € X,}

(39)

In this section, we will design SOF control for the

discrete-time piecewise linear system (38) in the Ho frame-

work: Given a real number v > 0, the exogenous signal w

is attenuated by ~ if, assuming (0) = 0, for each integer
N > 0 and for every w € L2([0, N],R")

> llz(k)
k=0

With the controller (3), the closed-loop piecewise linear
system becomes

(k + 1) = Acliz(k’) =+ Bcuw(k)
2(k) = Coiz(k) + Dow(k)

k) + Bisw(k)
+ Di1aw(k) (38)

2< Y (b)) (40)
k=0

, foriel; (41)

where

Acti = Ai + B K Cia,
Cei = Cin + D11 K Cia,

By = Bia + Bin K Djo1
Deii = Dir2 + Din1 KiDi21(42)

Without loss of generality, we assume that B;1 (or Ci2),

i =1,---,1 are of full column (or row) rank. Then, there
exist nonsingular transformation matrices Ty; (or Te;), i =

, [ such that
TyiBi1 = { (I) } , CoTeu=[1 0] (43)

Note that for any given B;1 (or Cj2), the corresponding Tp;
(or T¢;) are generally not unique. Special Tp; and T¢; can
be given as

BEBi) 'BY _
Badale P3|, 1 [ chcach) ™ ci]

(44)

T :{

The following lemma is useful in this section.
Lemma 4" %, Consider the piecewise linear system
(38) with zero initial condition z(0) = 0. If there exists

a function V(z) = TPz, Vo € X; with P, = PT > 0
satisfying the following inequality
V((k+1)) = V(@(k) < 2*lwk)|* - lz(k)|*, vk (45)

then the Ho performance condition (40) is satisfied. Fur-
thermore, the closed-loop piecewise linear system (41) is
exponentially stable.

The piecewise quadratic Lyapunov function appearing in
Lemma 3 can be computed asl13:19]

z (k4 1)Pjz(k+1) —z" (k)Pa(k) <
Yw  (B)yw(k) — 2" (k)z(k), V(i,j) €S

and

P=P">0, Viel

Now, we give sufficient LMI conditions to obtain Heo
SOF control gains K;.

Theorem 3. Assume that D;;; are null matrices and
Bi1, i = 1,---,1 are full column rank matrices. If there
exist symmetric matrices P; and P; € R"*™ and matrices
G; € R"*™ and L; € R"*? with the following structure

_ | Gi1 Gaa | La
Gi_[ : Gm}, Lz—{ 0} (46)

satisfying the inequalities

IL; 0 GiAi+LiCi2 GiBia+ LiDin
x =1 Ca Di12
* * —P 0 <0,
* * * —~%T

(i, j) € S (47)
where II;; = Pj —G; — GZ-T and
Biy = TyiBio
Ciz = CiaTy;" (48)

A; = TbiAz'Tb;l7
Cin = CilTb;17
and Ty; are given by (44), then the piecewise linear system

(38) is stabilized by the SOF controller (3) and the Heo-
norm of the closed-loop system (41) is smaller than ~, i.e.,

Zg:o lz(k)|? < ~2 Zszo |lw(k)||*>. The control gains K;
can be obtained by
Ki =Gy La,

Proof. Assume that LMIs (47) are feasible and define
P]' = Tl;l,;Piji, Pz = T,;I;PZTM Then,

1€ (49)

P =T,"PT;', P=T,"PT;"  (50)

Substituting (48) and (50) into (47) leads to

Yi; 0  GiTuAT,,' + LiCioT,,* I
x =1 CnTy,! Di12
£ o T R o |<%
* * * _72]

V(i,j) €S (51)

where Yi; = T, " P, T, —Gi—G{, I'i = GiTyi Bia+ LiDin1.

Pre- and post- multlplymg (51) by

T 0 0 0
0 I 0 0
0 0 T o
0 0 0 I

and its transpose yields

;0 T GiTwiAi + Ty LiCiz A;
S
* * * —~2T
Y(i,j) €S (52)
where
b,; =P — T GiTyi — T G T

A; = Ty GiTyi Biz + Tps Li Do
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From the structure of L; and G; and from (43) and (49),
we have

| La | _ | GuKs | _
[ ]- o)

{ G(i)n g;z } { é } K; = GiTyBaK;  (53)
By simple algebraic operation, we can obtain
Ty GiTvi Ai + Ty LiCiz = Ty GiTyi Acii
Tyi GiTy; Bia + Ty; Li Dio1 = Ty GiTvi Beti (54)
Due to the assumption that D;1; = 0, we have
Ci1 = Celi, Diz = Dai (55)

By substituting (54) and (55) into (52), it follows that

Oy 0 TrEGiTwAa: ToGiTyiBe
* -1 Ccli Dcli < 0
* * —P; 0 ’
* * * —721

V(i,5) €8 (56)

Inequalities (56) can be written in the form

P+XH+H"X" <0, V(4,j)esS (57)
where

P, 0 0 0 TrYG:Ty O
P=l 5 0 n o |- X=| o 0

0 0 0 — 0 0
- —I 0 A B (58)

0 —I Cu D

In addition, the closed-loop piecewise linear system (41)
can be written in the form

H¢(k)=0 (59)
where
z(k+1)
ew=| 20 (60)
w(k)

It follows from Finsler's lemma that (57) is equivalent to
&' (k)PE(K) <0 (61)
Substituting (58) and (60) into (62) yields
' (k+1)Pjz(k+1) —z" (k)Pax(k) <
yw' (Kyw(k) - 2" (k)z(k), V(@) es  (62)
It follows from (47) and (50) that
P;=P'>0

Based on Lemma 4, the closed-loop piecewise linear system
is exponentially stable and the Hoo-norm is smaller than ~.
|

Theorem 4. Assume that D;>; are null matrices and
Ci2, i = 1,--- 1l are full row rank matrices. If there exist

symmetric matrices P; and F’j € R™™ and matrices G; €
R™™ and L; € R™*™ with the following structure

Ginn 0

Gi = { Giz1 G

}, Li=[ La 0] (63)

satisfying the inequalities

P; -G, —GF *
0 -1 <0

AiGi 4+ B L; B2 P * ’

Ci1Gi+ DiniLi  Diio 0

where
A =T AT,
Bis = TC;lBiz,

B = TC;IBil

Cin=CinTe (65)

and T,; are given in (44), then the piecewise linear sys-
tem (38) is stabilized by the SOF controller (3) and the

Hoo-norm of the closed-loop system (41) is smaller than =,
ie., Zgzo llz(B)||> < ~* Zszo lw(k)||>. The control gains

K; can be obtained by
Ki=LuGyy, i€l (66)

Proof. Assume that the LMI conditions (64) are feasi-
ble. Define P; = T.;P;T,: and P; = Te; P;T,%. Then,
P =Ti BT , P=T;'PT;" (67)

Substituting (65) and (67) into (64) yields

TG PTLT —Gi =GP £ x
0 -1 * * <0
Tc_ilAiTm‘Gi + Tc_l-lBil L; TC;IB»L'Q Qs * ’
Ci1TeiGi + Dinn Ls D12 0 —4’I
V(i,j) €S
(68)
where Q; = —T.,'P,T.;".
Pre- and post-multiplying (68) by
Te: 0 0 O
0 I 0 0
0 0 T, O
0 0 o0 I
and its transpose leads to
Pj — T.GiTS — TG TS * *
0 —I * <0
AZTC»LGZTCT; + leLzTcI; Bi2 _Pi * ’
Ci1TeiGi + Dinn L; Dy 0 —°I
V(i,j) €S
(69)

From the structure of L; and G;, and from (43) and (66),
we have

Li:[Lil O}Z[KiGill 0}:
Gi1 0
KZ-[ I 0 } { Gioy  Clins } = K;Ci2Te; G (70)
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By simple algebraic operation, we can obtain

ATaGiTy + Ba LTy, = AaiTeiGiTL;
CiiTeiGi + DinnLi = CoiTei Gy (71)
Due to the assumption that D;2; = 0, we have
Biz = Beii, Dii2 = Dei (72)

By substituting (71) and (72) into (69), it follows that

Pj — Te;GiTos — Tei GE T * * *
0 -1 * * <0
AaiTeiGiT); Bei —P * ’
CaiTei Gy Dai 0 —4°I
v(i,j) €S
(73)
Inequalities (73) can be rewritten in the form
P+XH+H'X" <0, V(,j)es (74)
where
P, 0 O 0
0 I 0 0
P=1"9 0 -p o0 (75)
0 0 0 —42I
T.G:TE 0
_ 0 I [ -r o AL, cCl
X= 0 o> = o I BY, DX
0 0
(76)
Consider the dual system of (41)
z'(k+1) = ALz (k) + Chaw' (k)
' (k) = Baa' (k) + Dagw' (k) (77)
which can be written in the form
HE' (k) =0
where
'(k+1)
N — 2 (k)
ew=| ) (79)
w'(k)

It follows from Finsler’s lemma that (74) is equivalent to
€7 (k)PE (k) <0 (79)
Substituting (76) and (78) into (79) yields
&' (k+1)Pa' (k+1) — &' (k)P (k) <
Y (kyw' (k) =2 () (k), ¥(i.j) €S (80)
It follows from (64) and (67) that
P,=P">0

Based on Lemma 4, the closed-loop piecewise linear system
is exponentially stable and the Hoo-norm is smaller than ~.
|

Remark 4. Theorems 3 and 4 present sufficient LMI
conditions for Ho, SOF control for discrete-time piecewise

linear systems. By using Finsler’s lemma, a set of slack
variables G; with special structure are introduced to im-
prove Ho, performance and to reduce design conservatism.
Note that by letting C; = I in (4) or Cj2 = I in (38) and
slack variables G; be general matrices, SOF control in The-
orems 1~ 4 reduces to the state-feedback control in [14].

Remark 5. In Theorems 1 and 2, it is assumed that B;
are of full column rank or C; are of full row rank. If this as-
sumption is not satisfied, i.e., both B; and C; are not of full
rank, we can introduce non-singular linear transformation
to system (1) and obtain a new system model satisfying the
assumption?”. Then, Theorems 1 and 2 can be used for
the newly-built model. Therefore, this method can also be
used to deal with the situation where both B;; and Cj2 in
system (38) are not of full rank.

4 Examples

In this section, three examples are given to illustrate
the effectiveness of our method. Examples 1 and 2 pro-
vide a comparison of the proposed method to the methods
presented in [22—23]. These two examples show that our
synthesis method can work successfully in situations where
[22—23] do not, respectively. In Example 3, an Hoo SOF
controller is designed to show the effectiveness of Theorems
3 and 4.

Example 1. Consider the following system borrowed
from [23]

z(k+1) = Aqz(k) + Bou(k), i=1,2,3,4
where
[ 0.7786 0.9908 0.1270 ]
Ay = | 0.1616 0.8443 0.8144
| 0.9214 0.9747 0.7825 |
[ 0.3894 0.3263 0.7746 |
Ay = | 0.7806 0.9886 0.1297
| 0.8814 0.4718 0.3110 |
[ 0.3049 0.4247 0.8979
As = | 0.8448 0.2485 0.6921
| 0.7558 0.9160 0.3636 |
[ 0.1194 0.3964 0.2454
As = | 0.1034 0.2515 0.4983
| 0.6981 0.8655 0.2403 |
and
0.2458 0.7409 0.2722  0.6055
By = | 02501 0.5257 |, By=| 0.1576 0.1580
0 0 0 0
0.4945 0.3020 0.9894 0.7205
Bs= | 09237 09118 |, Bs=| 0.1709 0.1519
0 0 0 0

Note that A; ~ A4 are all unstable. The system is allowed
to switch arbitrarily between these four modes. Output
matrices are selected as?*!

0.3815
0.0591
0.5204
0.6995

0.6916
0.8258
0.8010
0.3081

0.7183
0.4354
0.9708
0.8767

Cy
C
Cs
Cy

[ ]
[ ]
[ ]
[ ]
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Reference [23] has shown that this system cannot be stabi-
lized using the method in [22]. However, it can be stabilized
using our method and the control gains are given as

Ky — [ —5.1512 } Ky — { —4.1075 }

0.6370 —0.0307
—3.2011 1.7127
K = [ 2.4172 } » Ka= { —2.9989 }

These SOF control gains give the following closed-loop
poles for each modes:

Mode 1 : {0.6351,0.4040 £ 0.5478i}

Mode 2 : {0.7029,0.1902 + 0.6019i}

Mode 3 : {0.4600, —0.2949 + 0.3924i}

Mode 4 : {0.7737,—0.2693 £ 0.3320i}

Example 2. Consider system (1) with three modes,
which is described by the following matrices:

3 03 2
A= 1 o0 1
| 0.3 06 0.6
[ —0.5871 —0.8441 —0.0092
A, = | —0.6865 —0.5090 —0.8561
| 0.0974  0.4523 —0.2280
[ 0.1089 0.2458 —0.9035
As = | 0.3998 —0.9213 —0.4161
| 0.6745 —0.5750 0.7138
1 0 0.1930 —0.4204
Bi=|0 1|, By=1| —07359 0.0346
|10 0.5073  —0.9077
[ —0.4164 0.0244
Bs=| 0.8297 —0.4366
| —0.0900 —0.8416

Note that all the modes are unstable. The output matrices
are given as

Ci=[1 1 0], Co=[1 0 1], Cs=[0 1 1]

For this system, the method developed in [23] does not
allow to compute an SOF controller. However, our method
provides the following control gains:

—0.9273 ~1.0162 0.3791
K= { 0.0032 } K= {—0.4316]’ K = {0.5438]

These SOF control gains give the following closed-loop
poles for each modes:

Mode 1 : {0.0412,0.7174 + 0.6314i}

Mode 2 : {0.5364, —0.4631 + 0.2830i}

Mode 3 : {—0.8203,0.1535 £ 0.5217i}

Example 3. Consider system (38) with two modes. Sys-
tem matrices are given as

—0.5871 —0.8441 —0.0092
A= | —0.6865 —0.5090 —0.8561
0.0974 0.4523  —0.2280
0.1089  0.2458  —0.9035
Az = | 03998 —0.9213 —0.4161
0.6745 —0.5750 0.7138

0.1930 —0.4204
By = —0.7359  0.0346
0.5073 —0.9077
—0.4164 0.0244
Bs = 0.8297 —0.4366
—0.0900 —0.8416
0 1 0 O
0 0 0 1
Ca=[1 0 1], Cp=[0 1 1]
0 0 1 1
D111 =D211=|0 1|, Duo=|1|, D2a2=|0
0 1 0 1

D121, D221 are null matrices.
By Theorem 4, the control gains are obtained as

—1.0832 0.3563
K= [ —0.5259 } K2 = { —0.1241 }

and the H..-norm is 5.6853.
The following two figures are the responses of open-
loop and closed-loop states with initial states chosen as

z(0) = [-2 2 4]T and disturbances chosen as w =
2 K <10" b 1 shows that th ! tem i
0, k> 10 - Fig 1 shows that the open-loop system is

unstable and Fig.2 shows that the closed-loop system is
exponentially stable.

5 Conclusion

In this paper, the problem of SOF control for discrete-
time piecewise linear systems has been addressed. By the
aid of piecewise quadratic Lyapunov functions combined
with Finsler’s lemma, new sufficient LMI conditions for the
synthesis of SOF stabilization controllers have been given.
The proposed method can work successfully where the ex-
isting ones do not. Extension to H, control has also been
presented. The numerical examples have shown the effec-
tiveness of the proposed methods.

100 T T T T T T T T T
50 F
= 0 —MN\NWW\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/Z
50} ]
-100 L L L L L L L L L
0 0.5 1 1.5 2 25 3 35 4 45 5
40 T T T T T T T T T
201
= 0
=201
_400 0.5 1 1.5 2 25 3 35 4 45 5
40 T T T T T T T T T
20 1
<0 ~-’s'\’\’\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\
0t
-40 L L : L L L L L L
0 0.5 1 1.5 2 25 3 35 4 45 5

t/s

Fig.1 Responses of open-loop states
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