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LMI Approach to Exponential Stabilization of

Distributed Parameter Control Systems with Delay
LUO Yi-Ping1 XIA Wen-Hua1 LIU Guo-Rong1 DENG Fei-Qi2

Abstract A renovating method for distributed parameter control systems with constants, varying-delays, and multi-varying-delays
is put forward. By constructing average Lyapunov functions and employing linear matrix inequality (LMI) and other matrix inequality
technologies, several sufficient conditions for exponential stabilization are derived. In this method, the conditions are delay-dependent
and at the same time, the upper-bound of exponential convergence rate is obtained. In addition, the distinctive advantage of our
method is that the criteria mentioned in the paper are easy to check, so it can be applied to practice easily. Finally, a computation
example is given to illustrate the proposed method.
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The model of distributed parameter control systems is
widely applied in heat processing, migration, and other ar-
eas, therefore it is significant to research the control of dis-
tributed parameter systems. As we know, variable struc-
ture control is the main method applied in the parameters
control system at present[1−12]. However, it is especially
difficult to avoid the wobble phenomenon[6], and the con-
trol that is designed as a tool for operator semigroup theory
or a matrix norm theory is based on variable structure con-
trol theory[1−12]. Reference [6] has pointed that the con-
troller based on the semigroups operator theory is difficult
to use in practice because it is hard to verify compactness,
incredulity, and exchangeability of the operator, which are
requested. On the other hand, variable structure controller
designed on matrix norm theorem is also difficult to apply.
Therefore, it is a hot topic to find a practical and effective
method for distributed parameter control system. In order
to avoid the above-mentioned problems, we recently pro-
posed a way with some useful results[13−14]. However, these
results were mainly used by comparative principles. In this
method, the stability conditions of the closed-loop system
require that all the system parameters should be of abso-
lute value format. This paper is to propose a new method
to obtain the stabilization conditions of the distributed pa-
rameter control system. By choosing a Lyapunov function,
applying distributed control, and using linear matrix in-
equality (LMI) and the related theory of matrix inequal-
ity with the choice of linear state feedback controller, the
exponential stabilization of distributed parameter systems
with constants, varying delay, and multi-varying-delays is
obtained.

1 Description

Consider the following distributed parameter system
with multi-varying-delays

∂wi(xxx, t)

∂t
= D

m∑

k=1

∂2wi(xxx, t)

∂x2
k

+

n∑
j=1

a0
ijwj(xxx, t)+

n∑
j=1

aijwj(xxx, t− τ) +

n∑
j=1

bijuj(xxx, t)

i = 1, 2, · · · , n (1)
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The matrix form of system (1) is

∂WWW

∂t
= D4WWW (xxx, t) + A0WWW (xxx, t) + AWWW (xxx, t− τ) + Buuu(xxx, t)

(2)
where (xxx, t) ∈ Ω × R+, D > 0, and τ > 0 are constants;
A0 = (a0

ij), A = (aij), and B = (bij) are constant matrices
with corresponding ranks; Ω = {xxx, ‖ xxx ‖< l < +∞} ⊂ Rm

is the bounded domain with smooth boundary ∂Ω, and
mesΩ > 0 (mes is short for measure). State function
WWW (xxx, t) = col(w1(xxx, t), w2(xxx, t), · · · , wn(xxx, t)) ∈ Rn, ∆ =
∑m

k=1

∂2

∂x2
k

is the Laplace diffusion operator on Ω. And the

initial value and boundary value conditions satisfy

WWW (xxx, t) = 0, (xxx, t) ∈ ∂Ω× [−τ, +∞) (3)

∂WWW (xxx, t)

∂nnn
= 0, (xxx, t) ∈ ∂Ω× [−τ, +∞) (4)

WWW (xxx, t) = ϕϕϕ(xxx, t), (xxx, t) ∈ ∂Ω× [−τ, 0) (5)

where nnn is the unit outward normal vector of ∂Ω and ϕϕϕ(xxx, t)
is the suitable smooth function.

2 Main results

In order to get our main results, we first give some lem-
mas.

Lemma 1[15]. The inequality
(

Q(xxx) S(xxx)

ST(xxx) R(xxx)

)
> 0 (6)

is equal to

R(xxx) > 0, Q(xxx)− S(xxx)R−1(xxx)ST(xxx) > 0 (7)

where Q(xxx) = QT(xxx), R(xxx) = RT(xxx), and S(xxx) is affine on
xxx.

Lemma 2[16−17]. Let U1, U2, U3 be real matrices, and
U3 = UT

3 > 0, then for an arbitrary scalar β > 0, the
following inequality

UT
2 U1 + UT

1 U2 ≤ β−1UT
1 U−1

3 U1 + βUT
2 U3U2 (8)

holds. In this paper, we let

uuu(xxx, t) = KWWW (xxx, t) (9)

Theorem 1. For arbitrarily given A0, A, B, and β, if
there exist a matrix K and a positive matrix P , such that
the following LMI
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(
A0 + AT

0 + BK + KTBT + 2kI + βP ekτA
ekτAT −βP

)
< 0

(10)
holds, then system (2) is exponentially stabilized, and

‖WWW (xxx, t) ‖≤
√

1 + βλM (P )
1− e−2kτ

2k
‖ Φ ‖ e−kt (11)

where λM is the largest matrix eigenvalue of P and ‖ Φ ‖=
sup−τ≤s≤0(

∫
Ω
|WWW (xxx, s)|2dxxx)

1
2 .

Proof. Construct a Lyapunov function:

V (t,WWW (xxx, t)) =

∫

Ω

e2ktWWWT(xxx, t)WWW (xxx, t)dx +

β

∫

Ω

∫ t

t−τ

e2kθWWWT(xxx, θ)PWWW (xxx, θ)dθdxxx

(12)

where P is a positive matrix, PT = P , and β > 0. By
derivation of V (t,WWW (xxx, t)) along with the solution of (2),
we obtain

V̇ =

∫

Ω

e2kt(ẆWW
T
(xxx, t)WWW (xxx, t) + WWWT(xxx, t)ẆWW (xxx, t))dxxx +

∫

Ω

2ke2ktWWWT(xxx, t)WWW (xxx, t)dxxx +

β

∫

Ω

e2ktWWWT(xxx, t)PWWW (xxx, t)dxxx−

β

∫

Ω

e2k(t−τ)WWWT(xxx, t− τ)PWWW (xxx, t− τ)dxxx =

2

∫

Ω

e2ktWWWT(xxx, t)D∆WWW (xxx, t)dxxx +

∫

Ω

e2ktWWWT(xxx, t)(A0 + 2kI + AT
0 )WWW (xxx, t)dxxx +

∫

Ω

e2ktWWWT(xxx, t)AWWW (xxx, t− τ)dxxx +

e2kt

∫

Ω

WWWT(xxx, t− τ)ATWWW (xxx, t)dxxx +

e2kt

∫

Ω

(WWWT(xxx, t)Buuu(xxx, t) + uuuT(xxx, t)BTWWW (xxx, t))dxxx +

βe2kt

∫

Ω

WWWT(xxx, t)PWWW (xxx, t)dxxx−

βe2k(t−τ)

∫

Ω

WWWT(xxx, t− τ)PWWW (xxx, t− τ)dxxx =

2De2kt

∫

Ω

WWWT(xxx, t)∆WWW (xxx, t)dxxx + e2kt×
∫

Ω

WWWT(xxx, t)(A0 + AT
0 + 2kI + βP )WWW (xxx, t)dxxx +

e2kt

∫

Ω

WWWT(xxx, t)AWWW (xxx, t− τ)dxxx +

e2kt

∫

Ω

WWWT(xxx, t− τ)ATWWW (xxx, t)dxxx +

e2kt

∫

Ω

WWWT(xxx, t)(BK + KTBT)WWW (xxx, t)dxxx−

βe2k(t−τ)

∫

Ω

WWWT(xxx, t− τ)PWWW (xxx, t− τ)dxxx (13)

According to Lemma 2, it follows that

WWWT(xxx, t)AWWW (xxx, t− τ) + WWWT(xxx, t− τ)ATWWW (xxx, t) ≤
1

β
e2kτWWWT(xxx, t)AP−1ATWWW (xxx, t)+

βe−2kτWWWT(xxx, t− τ)PWWW (xxx, t− τ) (14)

Then,
∫

Ω

(WWWT(xxx, t)AWWW (xxx, t− τ) + WWWT(xxx, t− τ)ATWWW (xxx, t))dxxx ≤
∫

Ω

1

β
e2kτWWWT(xxx, t)AP−1ATWWW (xxx, t)dxxx +

βe−2kτ

∫

Ω

WWWT(xxx, t− τ)PWWW (xxx, t− τ)dxxx (15)

And,
∫

Ω

WWWT(xxx, t)∆WWW (xxx, t)dxxx =

n∑
i=1

∫

Ω

wi(xxx, t)∆wi(xxx, t)dxxx =

n∑
i=1

m∑

k=1

∫

Ω

wi(xxx, t)
∂2wi

∂x2
k

dxxx =

n∑
i=1

∫

Ω

wi(xxx, t)∇ ·
(

∂wi

∂xk

)m

k=1

dxxx =

n∑
i=1

∫

Ω

∇ ·
(

wi(xxx, t)
∂wi

∂xk

)m

k=1

dxxx−
∫

Ω

(
∂wi

∂xk

)m

k=1

∇ · wi(xxx, t)dxxx =

n∑
i=1

∫

∂Ω

(
wi(xxx, t)

∂wi

∂xk

)m

k=1

ds−
n∑

i=1

m∑

k=1

∫

Ω

(
∂wi

∂xk

)2

dxxx = −
n∑

i=1

m∑

k=1

∫

Ω

(
∂wi

∂xk

)2

dxxx

(16)

where ∇ =

(
∂

∂x1
, · · · ,

∂

∂xm

)
is the gradient operator, and

(
∂wi

∂xk

)m

k=1

=

(
∂wi

∂x1
, · · · ,

∂wi

∂xm

)

Combining (14)∼ (16), we obtain

V̇ ≤ − 2De2kt
n∑

i=1

m∑

k=1

∫

Ω

(
∂wi

∂xk

)2

dxxx +

e2kt

∫

Ω

WWWT(xxx, t)(A0 + AT
0 + 2kI + βP )WWW (xxx, t)dxxx +

e2kt

∫

Ω

WWWT(xxx, t)(BK + KTBT)WWW (xxx, t)dxxx +

1

β
e2k(t+τ)

∫

Ω

WWWT(xxx, t)AP−1ATWWW (xxx, t)dxxx ≤

e2kt

∫

Ω

WWWT(xxx, t)

(
A0 + AT

0 + BK + KTBT + 2kI+

1

β
e2kτAP−1AT + βP

)
WWW (xxx, t)dxxx (17)

Therefore, from Schur complement, V̇ (t,WWW ) < 0 while
R < 0. Thus, we have

V (WWW (xxx, t)) ≤ V (WWW (xxx, 0))
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and

V (WWW (xxx, 0)) =

∫

Ω

WWWT(xxx, 0)WWW (xxx, 0)dxxx +

β

∫

Ω

∫ 0

−τ

e2kθWWWT(xxx, θ)PWWW (xxx, θ)dθdxxx ≤

‖ Φ ‖2 +βλM (P ) ‖ Φ ‖2
∫ 0

−τ

e2kθdθ ≤
{

1 + βλM (P )
1− e−2kτ

2k

}
‖ Φ ‖2 (18)

where |WWW | denotes Euclid mode of vector WWW . For
V (t,WWW ) ≥ e2kt ‖WWW (xxx, t) ‖2, we have

‖WWW (xxx, t) ‖≤
√

1 + βλM (P )
1− e−2kτ

2k
‖ Φ ‖ e−kt (19)

¤
Corollary 1. Let P = I in Theorem 1. If

R1 =

(
A0 + AT

0 + B + BT + 2kI + βI ekτA
ekτAT −βI

)
< 0

then system (2) is exponentially stabilized, and

‖WWW (xxx, t) ‖≤
√

1 + β
1− e−2kτ

2k
‖ Φ ‖ e−kt (20)

where P is positive, PT = P , and β > 0.
Theorem 2. For given A0, A, B, and K, if there exist a

matrix K and a positive matrix P such that the following
LMI holds:

R2 =




AT
0 P +PA0+2kP +βP +P KTBT ekτPA

BK −P−1 0
ekτATP 0 −βP


<0

(21)
then, system (2) is exponentially stabilized, and

‖WWW (xxx, t) ‖≤

√√√√λM +
λM (1− e−2kτ )

2k
λm

‖ Φ ‖ e−kt (22)

where λM and λm are the largest and the smallest eigen-
values of P , respectively.

Proof. Choose a Lyapunov function as

V (t,WWW (xxx, t)) = e2kt

∫

Ω

WWWT(xxx, t)PWWW (xxx, t)dxxx +

β

∫

Ω

∫ t

t−τ

e2kθWWWT(xxx, θ)PWWW (xxx, θ)dθdxxx

(23)

where P is positive, PT = P , and β > 0. Clearly, V (t,WWW )
is positive, and

V̇ =e2kt

∫

Ω

(ẆWW
T
(xxx, t)PWWW (xxx, t) + WWWT(xxx, t)PẆWW (xxx, t))dxxx +

2ke2kt

∫

Ω

WWWT(xxx, t)PWWW (xxx, t)dxxx +

βe2kt

∫

Ω

WWWT(xxx, t)PWWW (xxx, t)dxxx−

βe2k(t−τ)

∫

Ω

WWWT(xxx, t− τ)PWWW (xxx, t− τ)dxxx =

e2kt

∫

Ω

(D∆WWW (xxx, t) + A0WWW (xxx, t)+

AWWW (xxx, t− τ) + Buuu(xxx, t))TPWWW (xxx, t)dxxx +

2ke2kt

∫

Ω

WWWTPWWWdxxx+e2kt

∫

Ω

WWWT(xxx, t)P (D∆WWW (xxx, t)+

A0WWW (xxx, t) + AWWW (xxx, t− τ) + Buuu(xxx, t))dxxx +

βe2kt

∫

Ω

WWWT(xxx, t)PWWW (xxx, t)dxxx−

βe2k(t−τ)

∫

Ω

WWWT(xxx, t− τ)PWWW (xxx, t− τ)dxxx =

2e2ktD

∫

Ω

WWWT(xxx, t)P (∆WWW (xxx, t))dxxx +

e2kt

∫

Ω

WWWT(xxx, t− τ)ATPWWW (xxx, t)dxxx +

e2kt

∫

Ω

WWWT(xxx, t)PAWWW (xxx, t− τ)dxxx−

βe2k(t−τ)

∫

Ω

WWWT(xxx, t− τ)PWWW (xxx, t− τ)dxxx +

e2kt

∫

Ω

WWWT(xxx, t)(AT
0 P +PAT

0 +2kP +βP )WWW (xxx, t)dxxx +

e2kt

∫

Ω

(WWWT(xxx, t)PBuuuuuuuuu(xxx, t) + uuuT(xxx, t)BTPWWW (xxx, t))dxxx

(24)

and

WWWT(xxx, t)PBuuu(xxx, t) + uuuT(xxx, t)BTPWWW (xxx, t) ≤
− [P

1
2 Buuu(xxx, t)− P

1
2WWW (xxx, t)]T×

[P
1
2 Buuu(xxx, t)− P

1
2WWW (xxx, t)]+

uuuT(xxx, t)BTPBuuu(xxx, t) + WWWT(xxx, t)PWWW (xxx, t) (25)

∫

Ω

WWWT(xxx, t)P∆WWW (xxx, t)dxxx =

n∑
i=1

n∑
j=1

∫

Ω

wjpij 5
(

∂wi

∂xk

)m

k=1

dxxx =

n∑
i=1

n∑
j=1

∫

Ω

wjpij · 5
(

∂wi

∂xk

)m

k=1

dxxx =

n∑
i=1

n∑
j=1

∫

Ω

5
(

wjpij
∂wi

∂xk

)m

k=1

dxxx−

n∑
i=1

n∑
j=1

∫

Ω

(
∂wi

∂xk

)m

k=1

· 5(wjpij)dxxx =

n∑
i=1

n∑
j=1

∫

∂Ω

(
wjpij

∂wi

∂xk

)m

k=1

ds−

n∑
i=1

n∑
j=1

m∑

k=1

∫

Ω

∂wi

∂xk
pij

∂wj

∂xk
dxxx =

−
m∑

k=1

(
n∑

i=1

n∑
j=1

∫

Ω

∂wi

∂xk
pij

∂wj

∂xk
dxxx

)
=
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−
m∑

k=1

∫

Ω

(
∂WWW

∂xk

)T

P

(
∂WWW

∂xk

)
dxxx (26)

where
∂WWW

∂xk
= col

(
∂w1

∂xk
, · · · ,

∂wn

∂xk

)
. Because P is positive,

we have

(
∂WWW

∂xk

)T

P

(
∂WWW

∂xk

)
> 0. By Lemma 2, we have

∫

Ω

[WWWT(xxx, t−τ)ATPWWW (xxx, t)+WWWT(xxx, t)PAWWW (xxx, t−τ)]dxxx≤
∫

Ω

[
1

β
e2kτWWWT(xxx, t)PAP−1ATPWWW (xxx, t)+

e−2kτβWWWT(xxx, t− τ)PWWW (xxx, t− τ)

]
dxxx (27)

Combining (24)∼ (27) and condition (21), we get

V̇ = − 2De2kt
m∑

k=1

∫

Ω

(
∂WWW

∂xk

)T

P

(
∂WWW

∂xk

)
dxxx +

e2kt

∫

Ω

WWWT(xxx, t)

(
AT

0 P + PAT
0 + 2kP +

βP +
1

β
e2kτPAP−1ATP

)
WWW (xxx, t)dxxx +

e2kt

∫

Ω

WWWT(xxx, t)(KTBTPBK + P )WWW (xxx, t)dxxx ≤

e2kt

∫

Ω

WWWT(xxx, t)

(
AT

0 P + PAT
0 + 2kP + βP +

1

β
e2kτPAP−1ATP + KTBTPBK + P

)
WWW (xxx, t)dxxx

(28)

From Schur supplement, V̇ < 0 is obvious. By a deriva-
tion similar to that of Theorem 1, we can also know system
(1) is exponentially stabilized. ¤

Corollary 2. For a given A0, A, and B, if there exits a
matrix K such that the following LMI

R3 =




A0 + AT
0 + (2k + β + 1)I KTBT ekτA

BK −I 0
ekτAT 0 −βI


 < 0

(29)
holds, then system (2) is exponentially stabilized, and

‖WWW (xxx, t) ‖≤
√

1 +
1− e−2kτ

2k
‖ Φ ‖ e−kt (30)

Moreover, we consider the stabilization of distributed
control system with multi-time delays. Now, we study the
following system

∂WWW

∂t
= D4WWW (xxx, t) + A0WWW (xxx, t)+

z∑
q=1

AqWWW (xxx, t− τq) + Buuu(xxx, t) (31)

Theorem 3. If there exist a matrix K and a positive
matrix Pq (q = 1, · · · , z) , such that the following LMI

holds:

R4 =




A0+AT
0+BK+KTBT+

z∑
q=1

βqPq ekτ1A1 · · · ekτz Az

ekτ1AT
1 −β1P1 0 0

.

.. 0
. . . 0

ekτz AT
z 0 0 −βzPz




<0

(32)
then, system (31) is exponentially stabilized and

‖WWW (xxx, t) ‖≤
√√√√1 +

z∑
q=1

βqλM (Pq)
1− e−2kτq

2k
‖ Φ ‖ e−kt

(33)
where λM (Pq) (q = 1, · · · , z) is the largest matrix eigen-
value of Pq.

Proof. Choose a positive function

V (t,WWW (xxx, t)) =

∫

Ω

WWWT(xxx, t)WWW (xxx, t)dxxx +

z∑
q=1

βq

∫

Ω

∫ t

t−τq

WWWT(xxx, θ)PqWWW (xxx, θ)dθdxxx

(34)

where βq > 0 (q = 1, 2, · · · , n), matrix Pq (q = 1, · · · , z) is
positive, and PT

q = Pq. Similar to Lemma 2, we can prove
it. ¤

Next, we consider the stabilization of distributed control
system with a varying delay:

∂WWW

∂t
= D4WWW (xxx, t)+A0WWW (xxx, t)+AWWW (xxx, t−τ(t))+Buuu(xxx, t)

(35)
where τ(t) is a non-negative, bounded differential function,
and 0 ≤ τ(t) ≤ τ .

Theorem 4. If τ(t) satisfies τ̇(t) ≤ η < 1, and there
exist a matrix K and a positive matrix P , such that the
following LMI holds:

R5 =

(
A0+AT

0 +2kI+βP +BK+KTBT ekτA
ekτAT −β(1−τ̇(t))P

)
<0

(36)
then system (35) is stabilized, and

‖WWW (xxx, t) ‖≤
√

1 + βλM (P )
1− e−2kτ

2k
‖ Φ ‖ e−kt (37)

where λM is the largest matrix eigenvalue of P .
Proof. Choose a positive function as

V (t,WWW (xxx, t)) = e2kt

∫

Ω

WWWT(xxx, t)WWW (xxx, t)dxxx +

β

∫

Ω

∫ t

t−τ(t)

e2kθWWWT(xxx, θ)PWWW (xxx, θ)dθdxxx

(38)

where P is positive, PT = P , and β > 0. We have

V̇ =e2kt

∫

Ω

(ẆWW
T
(xxx, t)WWW (xxx, t) + WWWT(xxx, t)ẆWW (xxx, t))dxxx +

βe2kt

∫

Ω

WWWT(xxx, t)PWWW (xxx, t)dxxx−

β(1− τ̇(t))e2k(t−τ(t))×
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∫

Ω

WWWT(xxx, t− τ(t))PWWW (xxx, t− τ(t))dxxx =

2e2kt

∫

Ω

WWWT(xxx, t)D∆WWW (xxx, t)dxxx +

e2kt

∫

Ω

WWWT(xxx, t)(A0 + 2kI + AT
0 )WWW (xxx, t)dxxx +

e2kt

∫

Ω

WWWT(xxx, t)AWWW (xxx, t− τ(t))dxxx +

e2kt

∫

Ω

WWWT(xxx, t− τ(t))ATWWW (xxx, t)dxxx +

e2kt

∫

Ω

(WWWT(xxx, t)Buuu(xxx, t) + uuuT(xxx, t)BTWWW (xxx, t))dxxx +

βe2kt

∫

Ω

WWWT(xxx, t)PWWW (xxx, t)dxxx−

β(1− τ̇(t))e2k(t−τ(t))×∫

Ω

WWWT(xxx, t− τ)PWWW (xxx, t− τ(t))dxxx (39)

also
∫

Ω

(WWWT(xxx, t)AWWW (xxx, t− τ) + WWWT(xxx, t− τ)ATWWW (xxx, t))dxxx ≤
∫

Ω

1

β
(1− τ̇(t))−1e2kτ(t)WWWT(xxx, t)AP−1ATWWW (xxx, t)dxxx +

β(1− τ̇(t))e−2kτ(t)

∫

Ω

WWWT(xxx, t− τ(t))PWWW (xxx, t− τ(t))dxxx

(40)

By (39), (40), and condition (36), we have

V̇ ≤
∫

Ω

WWWT(xxx, t)

(
A0 + 2kI + AT

0 + BK + KTBT + βP+

1

β
e2kτ(t)(1− τ̇(t))−1AP−1AT

)
WWW (xxx, t)dxxx < 0 (41)

The rest is similar to the proof of Theorem 3, so is omit-
ted. ¤

Next, we consider stabilization of distributed parameter
control system with multi-varying delays, and the following
system is mainly studied.

∂WWW

∂t
= D4WWW (xxx, t) + A0WWW (xxx, t)+

z∑
q=1

AqWWW (xxx, t− τq(t)) + Buuu(xxx, t) (42)

where τq(t) is a non-negative bounded differential function
and 0 ≤ τq(t) ≤ τq, q = 1, · · · , z.

Theorem 5. If τq(t) satisfies τ̇q(t) ≤ ηq < 1 ( q =
1, · · · , z) and there are a matrix K and some positive ma-
trices Pq (q = 1, · · · , z) such that the following LMI (43)

holds, system (42) is exponentially stabilized, and in the
inequality below

‖WWW (xxx, t) ‖≤
√√√√1 +

z∑
q=1

βqλM (Pq)
1− e−2kτq

2k
‖ Φ ‖ e−kt

(44)
where λM , λm are the largest and the smallest eigenvalues
of P , respectively.

The proof of Theorem 5 is similar to that of Theorem 4
and thus is omitted for brevity.

3 Calculation of parameter βββ and ex-
ponential convergence rate kkk

In the above theorem, we set a scalar β and k at first,
then obtain a feedback matrix K by Matlab. What is the
range of β that can keep our given system exponentially
stabilized for the obtained K? We just offer the way to
ensure the range of β for Theorem 1. The calculations of
the range of β in other theorems are similar to it, so we
omit them.

Based on Theorem 1, k is given in constraint condition
(10) when we solve the optimization problem to ensure the
system is stable. The supremum of β can be obtained by
solving the following optimization problem.

max β

s.t. P > 0 and (10)

This is a quasi-convex optimization problem, and it can be
solved by the tool of LMI in Matlab. Suppose the optimal
solution is β. Then, system (2) is exponentially stabilized

when β ≤ β in (10).

Moreover, when β is ensured, we can obtain supremum of
the exponential convergence rate k by solving the following
optimization problem

max k

s.t. P > 0 and (10)

Note that in the first optimization problem, k is given in
constraint condition (10), and at the same time, β is given
in constraint condition (10) when we solve it.

4 Example

In order to state the problem, we give a simple exam-
ple. In system (1), we set m = n = 2, where A0 =(−2 0.7

0.5 −0.5

)
, A =

(−1 −0.1
3 −0.3

)
, and B =

(
0.5 0
0 3

)
.

By Corollary 2, we can get a feedback matrix K =(−0.1 0
0 −1.7

)
and know system (1) is exponentially sta-

bilized for L2-norm. The trajectories of the example based
on L2-norm is given in Fig. 1.

R6 =




A0 + AT
0 + BK + KTBT + 2kI +

z∑
q=1

βqPq ekτ1A1 · · · ekτz Az

ekτ1AT
1 −β1(1− τ̇1(t))P1 0 0

...
...

. . .
...

ekτz AT
z 0 0 −βz(1− τ̇z(t))Pz




< 0 (43)
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Fig. 1 The trajectories of the example based on L2-norm

5 Conclusion

Based on Lyapunov stability theory, the exponential sta-
bilization for some classes of distributed parameter control
systems with time delays is investigated by using inequality
analysis as the main mathematic tool. Sufficient conditions
are found for exponential stabilization for the distributed
parameter control systems with delays and some theorems
of the exponential stabilization for the distributed parame-
ter control systems are established. The biggest advantage
of this method is that by choosing Lyapunov function, we
come to the conclusion that the stabilization conditions of
the closed-loop system consist in an LMI. In addition, the
difficulty in analysis dealing with those distributed param-
eter systems can be reduced by taking off the partial part
through technical processing in the deviation of Lyapunov
function. Applying this new method, we get the above con-
clusion, by which the obtained linear matrix inequality can
be tested easily. This provides a solid theoretical basis for
the designers of distributed parameter control systems.
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