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Output-feedback Control for a Class of Uncertain

Nonlinear Systems with Linearly Unmeasured

States Dependent Growth
SHANG Fang1 LIU Yun-Gang1

Abstract This paper is devoted to the problem of global stabilization by output-feedback for a class of nonlinear systems with
uncertain control coefficients, stable zero-dynamics, and linearly unmeasured states dependent growth. First, by introducing two
kinds of appropriate state transformations, the original system is converted into a new system with deterministic virtual control
coefficients and the separated zero-dynamics. Then, a suitable observer based on high-gain K-filters is constructed for the new
system, and the backstepping design approach is successfully proposed to the output-feedback controller. It is shown that the global
asymptotic stability of the closed-loop system can be guaranteed by the appropriate choice of the design parameters. A simulation
example is also provided to show the correctness of the theoretical results and the effectiveness of the proposed approach.
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Because the system states are incompletely measurable,
the problem of output-feedback control is more challenging
and difficult than that of the state-feedback control[1−5].
Unlike linear systems, the separation principle is invalid for
most nonlinear systems, hence the observer and controller
should be designed and analyzed together. The objective
of the control design based on observer is to guarantee not
only the stability of the closed-loop system but also the
convergence of the estimation error. Because the theory of
observer develops slowly[6−9], the output-feedback control
based on observer is far from maturity, and there are still
many problems unsolved[2, 10]. For example, a foundational
question is what the sufficient and necessary conditions are
to output-feedback stabilize nonlinear systems. It has been
pointed out in the remarkable paper [11] that if the power of
the nonlinearity growth with respect to unmeasured states
is greater than 2, there are counterexamples for which no
output-feedback controls exist.

Recently, the problem of output-feedback control design
has received considerable attention and been intensively in-
vestigated for a class of nonlinear systems with unmeasured
states dependent growth[3, 12−18]. In [14], adaptive output-
feedback tracking control was investigated in detail for a
class of nonlinear systems linearly depending on unmea-
sured states and in generalized output-feedback canonical
form. In [12], exponentially stable output-feedback control
was considered for a family of nonlinear systems that are
dominated by a triangular system satisfying linear growth
condition, and in [15, 19], the more general case was con-
sidered where the linear growth rate was an unknown con-
stant. In [18], the results of [12] were generalized to the sys-
tems with unknown control coefficients by introducing the
novel observer based on high-gain K-filters. Furthermore,
in [3, 13, 16], the output-feedback control was investigated
for systems with output dependent growth rate, and by
constructing norm estimators, an extension was obtained
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to the systems with unmeasured states dependent growth
rate in [17].

This paper continues the investigation proposed in [18]
and considers the output-feedback stabilizing control design
for a more general class of nonlinear systems with uncer-
tain control coefficients, hidden zero-dynamics, and linearly
unmeasured states dependent growth, and generalizes the
relevant results distributed in [1, 12, 15, 18]. Mainly thanks
to the presence of the unmeasured states dependent growth
and the uncertain control coefficients, the output-feedback
control problem of the systems under consideration is very
hard and hence a very meaningful question. In addition,
due to the existence of the hidden zero-dynamics, it is dif-
ficult to directly carry out the output-feedback control de-
sign. To achieve the control objective, two kinds of linear
state transformations are firstly introduced. One is to lump
the uncertain control coefficients together, and then a new
system with deterministic virtual control coefficients is ob-
tained. The other is to separate the zero-dynamics from
the system. Then, enlightened by [18], we propose the ap-
propriate high-gain K-filters based on which the state es-
timation is successfully constructed. Such kind of K-filters
indeed play a central role in the output-feedback control de-
sign which will be realized by the backstepping approach.
Moreover, by choosing the design parameters properly, the
global asymptotic stability of the closed-loop system can
be guaranteed.

The remainder of this paper is organized as follows. Sec-
tion 1 describes the system to be considered and formu-
lates the control problem to be solved. Section 2 provides
two kinds of linear state transformations through which the
original system can be converted into a new system that is
convenient for observer design and observer-based output-
feedback control design. Section 3 gives the main results of
this paper, that is, the high-gain K-filters based observer is
constructed and the output-feedback stabilizing control de-
sign is given using backstepping method. Section 4 presents
some concluding remarks.

Notations. Throughout this paper, I denotes iden-
tity matrix of appropriate dimension; for any xxx ∈ Rn,
xi denotes its i-th element and xxx[i] denotes [x1, · · · , xi]

T;

000[i] ∈ Ri denotes the zero vector; eeei,j(i ≤ j) denotes

[000T
[i−1], 1,000T

[j−i]]
T ∈ Rj ; bbb′[i,0] denotes [b′i, b′i−1, · · · , b′0]

T ∈
Ri+1; ccci,[j] denotes [ci1, · · · , cij ]

T ∈ Rj , and ΦΦΦi,[j,k] denotes

[Φi,j , · · · , Φi, k]T ∈ Rk−j+1. We use ‖ · ‖1, ‖ · ‖(i.e., ‖ · ‖2),
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and ‖ · ‖F to denote 1-norm, Euclidean norm, and Frobe-
nius norm for vectors, respectively, and the correspond-
ing induced norm for matrices. Besides, for simplicity of
expression, we sometimes drop the arguments of function
when no confusion is caused.

1 System description and problem for-
mulation

Consider the following class of single-input-single-output
(SISO) nonlinear systems:





ζ̇i =giζi+1 + φi(t, ζζζ, u), i = 1, · · · , ρ− 1

ζ̇j =gjζj+1+bn−ju+φj(t, ζζζ, u), j =ρ, · · · , n− 1

ζ̇n =gnb0u + φn(t, ζζζ, u)
y = ζ1

(1)

where ζζζ = [ζ1, · · · , ζn]T ∈ Rn is the system state with the
initial condition ζζζ(0) = ζζζ0; u ∈ R and y ∈ R are the con-
trol input and output, respectively; ρ is the relative degree
of the system satisfying ρ + m = n; both gi and bi are un-
known constants, called uncertain control coefficients, and
specially, gi 6= 0, b0 6= 0, and bm 6= 0; functions φi :
R+ × Rn × R → R, i = 1, · · · , n are piece-wise contin-
uous in the first argument and locally Lipschitz in the rest
arguments. In what follows, we suppose that only the sys-
tem output is measurable and the relative degree ρ > 1.

Obviously, we can see that control u appears in the last
(m + 1) equations of system (1). This means that hidden
zero-dynamics exist in the system. When control coeffi-
cients are known, if 1 < ρ < n, then we can construct
K-filters and the output-feedback controller to stabilize sys-
tem (1) by consulting Chapter 8 of [1] and if ρ = n, system
(1) degenerates to a simpler case which has been extensively

investigated based on the Luenberger-like observer[12−15].
Moreover, when control coefficients are unknown, various
theoretical results have been obtained under somewhat
strong assumption that the nonlinearities are dominated
by some known functions of measurable output y [1]. When
the system nonlinearities inherently depend on unmeasured
states, the output-feedback control design will become very
hard. Recently, for the systems with unmeasured states de-
pendent growth and without zero-dynamics, [12, 15−16, 18]
have considered the problem of output-feedback stabiliza-
tion for the cases of exactly known control coefficients and
uncertain control coefficients, respectively.

This paper is to investigate the problem of global output-
feedback stabilization for system (1) with uncertain control
coefficients, zero-dynamics, and unmeasured states depen-
dent growth under the following assumptions.

Assumption 1. For i = 1, · · · , n and any t ∈ R+,
ζζζ ∈ Rn, and u ∈ R, there exists a known constant c > 0,
such that

|φi(t, ζζζ, u)| ≤ c(|ζ1|+ · · ·+ |ζk|), k = min{i, ρ} (2)

Assumption 2. The signs of gi, i = 1, · · · , ρ − 1 are
known, and there exist known positive constants g

i
and gi

satisfying

g
i
≤ |gi| ≤ gi, i = 1, · · · , n (3)

Assumption 3. The sign of bm is known, and there
exist known constants bN > 0 and bi > 0, i = 0, · · · , m
such that

|bi| ≤ bi, i = 0, · · · , m− 1, bN ≤ |bm| ≤ bm (4)

Assumption 4. For the polynomial p(s) = b′msm +
· · · +b′1s+b′0, where m ≥ 1, b′i = biΠ

n−i−1
k=1 gk, i = 1, · · · , m,

and b′0 = b0Π
n
k=1gk, there exists a known positive constant

d such that the real part of each pole of the polynomial is
not larger than −(d/2).

For the aim of a better understanding, we would like
to give further interpretation for the above four assump-
tions. Assumption 1 means that system (1) has linearly
unmeasured states dependent growth. It seems to be strin-
gent, but it is crucial to carry out the output-feedback
control[3, 12−15, 18, 20]. On the other hand, maybe due to
the existence of hidden zero-dynamics and uncertainties in
control coefficients, it is hard to relax Assumption 1 to a
weaker one.

Assumptions 2 and 3 give some available information
about the uncertain coefficients gi and bi. The known signs
of bm and gi, i = 1, · · · , ρ− 1 will play an important role in
control design. Otherwise, one cannot decide the direction
along which the control operates, and the closed-loop sys-
tem may be unstable. The boundary restrictions imposed
on gi and bi look somewhat severe but cannot be removed
as will be detailed later.

Assumption 4 means that the hidden zero-dynamics of
the system possess the input-to-state stable (ISS) property.
This assumption on the zero-dynamics is commonly im-
plicitly assumed in most of the work in robust/adaptive

output-feedback control of nonlinear systems[1, 10, 13].
According to Assumption 2, there exist known positive

constants gN = min{g
1
, g

1
g
2
, · · · , Πn

j=1gj

}
and gM =

max{g1, g1g2, · · · , Πn
j=1gj} such that gN ≤ |Πi

j=1gj | ≤ gM ,
i = 1, · · · , n.

Similarly, by Assumption 3, we know that bM = max{b0,

b1, · · · , bm} is a known positive constant such that |bi| ≤
bM , i = 0, · · · , m − 1 and bN ≤ |bm| ≤ bM . Moreover, by

Assumptions 2 and 3, the sign of b′m = bmΠρ−1
k=1gk 6= 0 is

known.
The objective of the paper is to design a dynamic output-

feedback controller for system (1), so that the closed-loop
system is globally asymptotically stable. This will be car-
ried out based on the methods of appropriate state trans-
formation and observer-based backstepping, as will be de-
tailed in the next section.

2 Linear state transformations

In this section, it can be shown that through two kinds
of linear state transformations, the system can be success-
fully transformed into a system with deterministic virtual
control coefficients, and the hidden zero-dynamics can be
separated out, and then the output-feedback control design
becomes less difficult.

By carefully examining system (1), we find that the nega-
tive influence of uncertain control coefficient, gi, disappears
if the corresponding equation is multiplied by g1g2 · · · gi−1

with the scaled state being defined as the new state. This
simple observation motivates us to introduce the following
linear state transformation to convert the original system
into a new system in which there are no uncertain virtual
control coefficients, and the original uncertain control co-
efficients are lumped into the actual control coefficients:

x1 = ζ1, x2 = g1ζ2, · · · , xn = g1g2 · · · gn−1ζn (5)

The dynamics of xxx = [x1, · · · , xn]T are then given by

{
ẋxx = Anxxx + bbbu + fff(t, xxx, u)
y = x1

(6)
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where xxx ∈ Rn is the state of the new system with the initial
condition depending on ζζζ0 and (5), fff = [f1, · · · , fn]T =
[φ1, g1φ2, · · · , g1g2 · · · gn−1φn]T, and

An =




0
... I
0 0 · · · 0


 , bbb =

[
000[ρ−1]

bbb′[m,0]

]

It is worth pointing out that when ρ = n (or m = 0), the
above transformation is enough and output-feedback con-
trol design can be pursued since there are no zero-dynamics
in this particular case. For the sake of integrality in the
later development, system (6) with ρ = n is rewritten as

{
Σχχχ : χ̇χχ = Aρχχχ + b′meeeρ,ρu + ΦΦΦρ,[ρ](t, xxx, u)

χ1 = eeeT
1,ρχχχ = y

(7)

where χχχ = xxx, ΦΦΦρ,[ρ] = fff .
However, when ρ < n, the foregoing linear transforma-

tion is still necessary but somewhat insufficient for the con-
trol design purpose. This is chiefly because certain closed-
loop observer should be constructed to develop an output-
feedback stabilizing controller. But due to the presence of
hidden zero-dynamics in (6), it is very difficult to determine
what kind of observer is appropriate as well as to analyze
the closed-loop observer error performance. Mainly enlight-
ened by the existing relevant works on the stabilization of
the similar systems with hidden zero-dynamics[21−22], an ef-
fectual idea is to look for some kind of state transformation
to separate the zero-dynamics from the system. To achieve
this, let us introduce the second kind of linear state trans-
formation for system (6) with ρ < n, which will be defined
in a step-by-step manner, and simultaneously, the effect
and meaning for each step of the state transformation will
be shown accordingly.

The effect of the first transformation T1 (i.e., the lin-
ear transformation matrix) is to transform all the elements
of BBB into zero except the ρ-th element. Let ςςς1 = T1xxx,
where T1 and T−1

1 are the same as I except their ρ-th
columns that are [000T

[ρ−1], 1,−b′m−1/b′m, · · · , −b′0/b′m]T and

[000T
[ρ−1], 1, b′m−1/b′m, · · · , b′0/b′m]T, respectively. Then, we

can get the dynamics of ςςς1 as

ς̇ςς1 = C1ςςς1 + BBBu + ΦΦΦ1(t,xxx, u) (8)

where C1 is the same as An except its ρ-th and (ρ + 1)-th
columns, which are [000T

[ρ−2], 1, cccT
1,[m+1]]

T and [000T
[ρ−1], 1,

− 1

b′m
bbb′T[m−1,0]]

T, respectively, and BBB = T1bbb = [000T
[ρ−1], b

′
m,

000T
[m]]

T = b′meeeρ,n, ΦΦΦ1 = T1fff(t, xxx, u).
The rest ρ − 1 transformations are designed mainly for

matrix C1 such that we can eventually get Cρ which is the
same as matrix I except the first and (ρ + 1)-th columns.
Specifically, the second transformation is to transform the
ρ-th column of C1 into eeeρ−1,n, i.e., [000T

[ρ−2], 1,000T
[m+1]]

T. Let

ςςς2 = T2ςςς1, where T2 and T−1
2 are the same as I except

their (ρ−1)-th columns that are [000T
[ρ−2], 1,−cccT

1, [m+1]]
T and

[000T
[ρ−2], 1, cccT

1,[m+1]]
T, respectively. By noting that BBB = T2BBB,

the dynamics of ςςς2 is

ς̇ςς2 = C2ςςς2 + BBBu + ΦΦΦ2(t,xxx, u) (9)

where C2 is the same as An except its (ρ − 1)-th and
(ρ+1)-th columns which are [000T

[ρ−3], 1, cccT
2,[m+2]]

T and [000T
[ρ−1],

1,− 1

b′m
bbb′T[m−1,0]]

T, respectively, and ΦΦΦ2 = T2ΦΦΦ1(t,xxx, u).

Similarly, the i-th (i = 3, · · · , ρ−1) linear transformation
Ti can be constructed to transform the (ρ−i+2)-th column
of Ci−1 into eeeρ−i+1,n. Let ςςςi = Tiςςςi−1, where Ti and T−1

i

are the same as I except their (ρ− i+1)-th columns, which
are [000T

[ρ−i], 1,−cccT
i−1,[m+i−1]]

T and [000T
[ρ−i], 1, cccT

i−1,[m+i−1]]
T,

respectively. By noting that BBB = TiTi−1 · · ·T2BBB, the dy-
namics of ςςςi is

ς̇ςςi = Ciςςςi + BBBu + ΦΦΦi(t,xxx, u) (10)

where Ci is the same as An except its (ρ−i+1)-th and (ρ+
1)-th columns, which are [000T

[ρ−i−1], 1, cccT
i,[m+i]]

T and [000T
[ρ−1],

1,− 1

b′m
bbb′T[m−1, 0]]

T, respectively, and ΦΦΦi = TiΦΦΦi−1(t,xxx, u).

Finally, the ρ-th linear transformation ςςςρ = Tρςςςρ−1 can
be constructed to transform the second column of Cρ−1

into eee1,n, where Tρ and T−1
ρ are the same as I except their

first columns that are [1,−cccT
ρ−1,[n−1]]

T and [1, cccT
ρ−1,[n−1]]

T,
respectively. By noting that BBB = TρTρ−1 · · ·T2BBB, the dy-
namics of ςςςρ is

ς̇ςςρ = Cρςςςρ + BBBu + ΦΦΦρ(t,xxx, u) (11)

where Cρ is the same as An except its first and (ρ +1)-th

columns, which are cccρ,[n] and [000T
[ρ−1], 1, − 1

b′m
bbb′T[m−1,0]]

T,

respectively, and ΦΦΦρ = TρΦΦΦρ−1 = [Φρ,1, · · · , Φρ,n]T.
Till now, the two kinds of linear state transformations

are completely introduced. For the transformed system
(11), it is natural to design observer and observer-based
output-feedback control, as will be seen from the later de-
velopment.

First, we would like to give the 2-norm estimation of
the unknown vectors cccρ,[ρ] and cccρ,[ρ+1,n] which can be de-
duced from the above state transformations though a bit
complicatedly. In fact, from its definition, one can see that
each element of ccci,[m+i] is in the form of a quotient whose
denominator is a power function of b′m and numerator a
polynomial of the constants b′0, b

′
1, · · · , b′m. From this ob-

servation and Assumptions 2 and 3, we can easily verify
the following proposition.

Proposition 1. For cccρ,[n] introduced above, there exist
known positive constants d0 and d′0 such that

‖cccρ,[ρ]‖ ≤ d0, ‖cccρ,[ρ+1,n]‖ ≤ d′0 (12)

Before designing high-gain K-filters based observer and
output-feedback controller, we have to decompose system
(11) appropriately. Let χχχ = [χ1, · · · , χρ]

T = ςςςρ,[1,ρ] and

ηηη = [η1, · · · , ηm]T = ςςςρ,[ρ+1,n]. Then, system (11) can be
divided into the following form:




Σηηη : η̇ηη = Dηηη + cccρ,[ρ+1,n]χ1 + ΦΦΦρ,[ρ+1,n](t,xxx, u)

Σχχχ : χ̇χχ = Aρχχχ+b′meeeρ,ρu+eeeρ,ρη1+cccρ,[ρ]χ1+ΦΦΦρ,[ρ](t,xxx, u)

χ1 = eeeT
1,ρχχχ = y

(13)

where D =

[
−bbb′[m−1, 0]

b′m
, [I, 000[m−1]]

T

]
is Hurwitz ensured

by Assumption 4. So there is a positive definite matrix

Q = QT =

∫ ∞

0

exp(DTt) exp(Dt)dt (14)

which satisfies the Lyapunov equation DTQ + QD = −I.
We have the following lemma for the 2-norm of Q, whose

proof is omitted.
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Lemma 1. For any Hurwitz matrix D with Re(λ(D)) ≤
−d/2 < 0, the matrix Q defined by (14) satisfies ‖Q‖ ≤
n/d.

The following lemma is natural and can be easily proved
with Assumptions 1∼ 3.

Lemma 2. For ∀(t,xxx, u) ∈ R+ × Rn × R and χχχ =
[I 0ρ×m]Tρ · · ·T1xxx ∈ Rρ, there is a known positive con-
stant c′ such that the unknown nonlinearities Φρ,i : R+ ×
Rn × R → R, i = 1, · · · , n of system (7) or system (13)
satisfy

|Φρ,i(t,xxx, u)| ≤ c′(|χ1|+ · · ·+ |χk|), k = min{i, ρ} (15)

3 Output-feedback stabilizing control
design

This section is the core of present paper. We will firstly
construct the appropriate high-gain K-filters based ob-
server, and then design the output-feedback controller by
the backstepping method.

This section turns to output-feedback control design for
system (7) (ρ = n) or system (13) (ρ < n). Since they
are equivalent to system (1), the global asymptotic stabil-
ity of the transformed and original systems can be achieved
simultaneously. This section includes three parts: in Sub-
section 3.1, a novel approach for observer design will be
proposed based on high-gain K-filters for system (7) or the
subsystem Σχχχ of system (13); Subsection 3.2 is restricted
to the case of ρ < n, where a globally asymptotically stabi-
lizing output-feedback controller will be constructed by the
traditional backstepping method[1], and the case of ρ = n
is simple which will be studied in the next section by an
example; in Subsection 3.3, the main result of the paper is
summarized, which shows that the global asymptotic sta-
bility of the closed-loop system can be guaranteed by the
appropriate choice of the design parameters.

3.1 High-gain K-filters and state estimation

For system (7) or the subsystem Σχχχ of system (13)[18],
we introduce the following high-gain K-filters:

{
ξ̇ξξ = Alllεξξξ − lllεy

λ̇λλ = Alllελλλ + eeeρ,ρu
(16)

where ε ∈ (0, 1) is a constant, lllε =

[
l1
ε

,
l2
ε2

, · · · ,
lρ
ερ

]T

, and

Alllε = Aρ + lllεeee
T
1,ρ.

The constant vector lll = [l1, · · · , lρ]
T is chosen to ensure

that matrix Alll = Aρ + llleeeT
1,ρ is Hurwitz. Then, there is

a unique symmetric positive definite matrix Plll satisfying
AT

lll Plll + PlllAlll = −I. Define Iε = diag{1, ε, · · · , ερ−1}. It
can be shown that εAlllε = I−1

ε AlllIε. So matrix Plllε = IεPlllIε

is symmetric positive definite, and satisfies

AT
lllεPlllε + PlllεAlllε = −ε−1I2

ε (17)

This means that Alllε is also a Hurwitz matrix.
Define the state estimate of state χχχ as χ̂χχ = ξξξ + b′mλλλ, and

the state estimation error as χ̃χχ = χχχ− χ̂χχ.
In the following, we will consider the properties of the

state estimation error for the cases of ρ < n and ρ = n,
respectively.

Case 1. When ρ < n, the state estimation error χ̃χχ
satisfies

˙̃χχχ = Alllεχ̃χχ + eeeρ,ρη1 + cccρ,[ρ]χ1 + ΦΦΦρ,[ρ] (18)

To prepare for the backstepping procedure in the next
subsection, we have to rewrite the equation of ẏ. Since the
state χ2 is not available, we need to replace χ2 by χ̃2 +ξ2 +
b′mλ2. Then, we have

ẏ = b′mλ2 + cρ,1y + χ̃2 + ξ2 + Φρ,1 (19)

Till now, the whole system for control design is obtained,
i.e., 




˙̃χχχ = Alllεχ̃χχ + eeeρ,ρη1 + cccρ,[ρ]χ1 + ΦΦΦρ,[ρ]

ξ̇ξξ = Alllεξξξ − lllεy

ẏ = b′mλ2 + cρ,1y + χ̃2 + ξ2 + Φρ,1

λ̇i =
li
εi

λ1 + λi+1, i = 2, · · · , ρ− 1

λ̇ρ =
lρ
ερ

λ1 + u

(20)

Obviously, the study of the globally asymptotic stabiliza-
tion of the above system is equivalent to that of system
(13), as well as the original system (1). So, it is appropri-
ate to consider system (20).

Let us next study the property of the subsystem Σηηη. The
following proposition shows that this subsystem is ISS and
can be regarded as the zero-dynamics of the whole system
(13). The proof of the proposition is provided in Appendix
A.

Proposition 2. For the subsystem Σηηη of system (13),
let Vηηη = ηηηTQηηη. Then, there are known positive constants
d0,1, d0,2, and d0,3, independent of ε, such that

V̇ηηη ≤ −3

8
‖ηηη‖2 + d0,1

(
d′20 + m2c′2ε−(2ρ−2)

)
y2 +

ε−(2ρ−2)d0,2‖Iεχ̃χχ‖2 + ε−(2ρ−2)d0,2‖Iεξξξ‖2 +

ε−(2ρ−2)d0,3

ρ∑
i=2

ε2i−2λ2
i (21)

for any χ̃χχ,ξξξ,ηηη, y, λi, i = 2, · · · , ρ, where d′0 has been speci-
fied in Proposition 1.

The following two propositions play an important role
in control design in the sequent subsections. Specifically,
Propositions 3 and 4 characterize the ISS-like properties of
χ̃χχ and ξξξ of system (20), respectively. Besides, for the sake
of compactness, the proof of Proposition 3 is provided in
Appendix B.

Proposition 3. For the subsystem χ̃χχ of system (20), let
Vχ̃χχ = χ̃χχTPlllεχ̃χχ. Then, there are known positive constants
d0,4∼ d0,7 independent of ε, such that

V̇χ̃χχ ≤ −
(

1

2ε
− d0,4

)
‖Iεχ̃χχ‖2 + d0,5‖Iεξξξ‖2 +

2ε2ρ−1‖Pl‖2‖ηηη‖2 + d0,6y
2 + d0,7

ρ∑
i=2

ε2i−2λ2
i (22)

for any χ̃χχ,ξξξ,ηηη, y, λi, i = 2, · · · , ρ.
Proposition 4. For the subsystem ξξξ of system (20), let

Vξξξ = ξξξTPlllεξξξ. Then, for any ξξξ, y, the following inequality
holds:

V̇ξξξ ≤ − 1

2ε
‖Iεξξξ‖2 +

2‖Plll‖2‖lll‖2
ε

y2 (23)

Proof. Noting that lllε = (1/ε)I−1
ε lll and Plllε = IεPlllIε, we

can show that the time derivative of Vξξξ satisfies

V̇ξξξ = −‖Iεξξξ‖2
ε

− 2ξξξTIεPlllIεlllεy = −‖Iεξξξ‖2
ε

− 2

ε
ξξξTIεPlllllly
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This together with the method of completing square di-
rectly concludes (23). ¤

Case 2. When ρ = n, the state estimation error χ̃χχ
satisfies

˙̃χχχ = Alllεχ̃χχ + ΦΦΦρ,[ρ] (24)

Similarly, we rewrite the equation of ẏ = χ2 + Φρ,1 as ẏ =
b′mλ2 + χ̃2 + ξ2 +Φρ,1 and thus obtain the whole system for
control design:





˙̃χχχ = Alllεχ̃χχ + ΦΦΦρ,[ρ]

ξ̇ξξ = Alllεξξξ − lllεy

ẏ = b′mλ2 + χ̃2 + ξ2 + Φρ,1

λ̇i =
li
εi

λ1 + λi+1, i = 2, · · · , ρ− 1

λ̇ρ =
lρ
ερ

λ1 + u

(25)

3.2 Output-feedback control design

This subsection is devoted to the constructive design of
output-feedback control for system (20) with ρ < n by the
traditional backstepping method, which is presented in a
step-by-step manner.

Step 1. Define V0 = ε2ρ−2Vηηη+Vχ̃χχ+Vξξξ, where Vηηη, Vχ̃χχ, and
Vξξξ have been defined, respectively, in Propositions 2∼ 4.
Let V1 = V0 +(1/2)y2 be the Lyapunov function candidate
for this step.

From Proposition 1 and by the method of completing
square, it is evident that

cρ,1y
2 ≤ d0y

2, yχ̃2 ≤ 1

4ε
‖Iεχ̃χχ‖2 +

1

ε
y2

yξ2 ≤ 1

4ε
‖Iεξξξ‖2 +

1

ε
y2, yΦρ,1 ≤ c′y2 (26)

Then, from Propositions 2∼ 4, (19) and (26), and letting
d′1,1 = d0,2 + d0,4, d′1,2 = d0,2 + d0,5, and dλλλ = d0,3 + d0,7,
we have

V̇1 ≤ −hη(ε)‖ηηη‖2−
(

1

4ε
− d′1,1

)
‖Iεχ̃χχ‖2 −

(
1

4ε
− d′1,2

)
×

‖Iεξξξ‖2 +

(
d′20 d0,1ε

2ρ−2 + m2c′2d0,1 + d0,6 + c′ +

d0 +
2‖Plll‖2‖lll‖2 + 2

ε

)
y2 + dλλλ

ρ∑
i=3

ε2i−2λ2
i +

dλλλε2λ2
2 + b′myλ2 (27)

where hη(ε) = ε2ρ−1
(
(3/8ε)− 2‖Plll‖2

)
.

Choose the virtual controller as

λ∗2 = −1

ε

(
sgn(b′m)

gNbN
L1 + ᾱ1

)
y = −α1(L1)

ε
y (28)

where ᾱ1 =
sgn(b′m)

gNbN
(d′20 d0,1 + m2c′2d0,1 + d0,6 + c′ + d0 +

2‖Plll‖2‖lll‖2 + 2) is clearly a known constant, and L1 ≥ 1 is
a constant to be determined later.

Define z1 = y and z2 = λ2 − λ∗2. Observe that

dλλλε2λ2
2 ≤ 5dλλλε2z2

2 + µz1
1 (L1)y

2 + µχ̃χχ
1 ‖Iεχ̃χχ‖2 + µξξξ

1‖Iεξξξ‖2 (29)

where µz1
1 (L1) = 2dλλλα2

1(L1) and µχ̃χχ
1 = µξξξ

1 = 0 for the
initial assignment of the forthcoming inductive step. Then,

substituting (28) and (29) into (27) results in

V̇1 ≤ − hη(ε)‖ηηη‖2 − h1,1(ε)‖Iεχ̃χχ‖2 − h1,2(ε)‖Iεξξξ‖2−

h1,3(ε, L1)y
2 + dλλλ

ρ∑
i=3

ε2i−2λ2
i + 5dλλλε2z2

2 + b′myz2

(30)

where h1,1(ε) = 1
4ε
− d1,1, h1,2(ε) = 1

4ε
− d1,2, h1,3(ε, L1) =

L1
ε
− d1,3(L1), d1,1 = d′1,1 + µχ̃χχ

1 , d1,2 = d′1,2 + µξξξ
1, and

d1,3(L1) = µz1
1 (L1). In what follows, hi,1(ε,LLL[i−1]) =

1
2i+1ε

− di,1(LLL[i−1]), hi,2(ε,LLL[i−1]) = 1
4ε
− di,2(LLL[i−1]),

hi,3(ε,LLL[i]) = L1−i
ε

− di,3(LLL[i]), hi,4(ε,LLL[i]) = L1−i+1
ε

−
di,4(LLL[i]), hi,j+2(ε,LLL[i]) =

Lj−1

ε
−di,j+2(LLL[i]), j = 3, · · · , i−

1, hi,i+2(ε,LLL[i]) = Li
ε
− di,i+2(LLL[i]), all di,j

′s will be clearly
defined in later steps.

Step 2. Let V2 = V1+(1/2)ε2z2
2 . Then, the time deriva-

tive of V2 satisfies

V̇2 = V̇1 + ε2z2ż2 (31)

By the definition of z2, we have

ż2 =λ3 +

2∑
j=1

γ
λj

2 (L1)ε
−(3−j)λj +

2∑
j=1

γ
ξj

2 (L1)ε
−(3−j)×

ξj + γy
2 (L1)ε

−2y + γ∆
2 (L1)ε

−1(cρ,1y+

b′mλ2 + χ̃2 + Φρ,1) (32)

with specified γλ2
2 (L1) = 0, γξ1

2 (L1) = 0, and γy
2 (L1) = 0

for the initial assignment of the forthcoming inductive step.
Before deriving the virtual controller λ∗3, we should elim-

inate the “undesired” effect of z2 in (31). For this purpose,
by the method of completing square, we have

b′myz2 ≤ bMgM |y||z2| ≤ 1

ε
y2 +

1

4
max{1, b2

Mg2
M}εz2

2 (33)

and the following inequalities




εγ∆
2 (L1)cρ,1yz2 ≤ 1

4
d2
0(γ

∆
2 (L1))

2ε2z2
2 + y2

b′mεγ∆
2 (L1)λ2z2 ≤ 1

ε
y2 +

(
bMgM |γ∆

2 (L1)|+
1

4
b2
Mg2

Mα2
1(L1)(γ

∆
2 (L1))

2

)
εz2

2

εγ∆
2 (L1)χ̃2z2 ≤ 1

8ε
‖Iεχ̃χχ‖2 + 2(γ∆

2 (L1))
2εz2

2

εγ∆
2 (L1)Φρ,1z2 ≤ 1

4
c′2(γ∆

2 (L1))
2ε2z2

2 + y2

(34)

Substituting (32)∼ (34) into (31), we have

V̇2 ≤ −hη(ε)‖ηηη‖2 −
(

h1,1(ε)− 1

8ε

)
‖Iεχ̃χχ‖2 −

h1,2(ε)‖Iεξξξ‖2 −
(

h1,3(ε, L1)− 2

ε
− 2

)
y2 +

dλλλ

ρ∑
i=4

ε2i−2λ2
i + ε2z2

(
2∑

j=1

γ
λj

2 (L1)ε
−(3−j)λj +

2∑
j=1

γ
ξj

2 (L1)ε
−(3−j)ξj + γy

2 (L1)ε
−2y +

ε−1ᾱ2(L1)z2

)
+ dλλλε4λ2

3 + ε2z2λ3 (35)
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where ᾱ2(L1)=5dλλλ+1/4(d2
0+c′2)(γ∆

2 (L1))
2+bMgM |γ∆

2 (L1)|+
2(γ∆

2 (L1))
2 +1/4(b2

Mg2
Mα2

1(L1)(γ
∆
2 (L1))

2 +max{1, b2
Mg2

M}).
Thus, we can choose the virtual controller as

λ∗3 = −ε−1α2(LLL[2])z2 −
2∑

j=1

γ
λj

2 (L1)ε
−(3−j)λj −

2∑
j=1

γ
ξj

2 (L1)ε
−(3−j)ξj − γy

2 (L1)ε
−2y (36)

where α2(LLL[2]) = L2 + ᾱ2(L1) and L2 ≥ 1 is a constant to
be determined later.

Define z3 = λ3 − λ∗3. Similar to Step 1, we should es-
timate dλλλε4λ2

3 by an appropriate function of z1, z2, z3, ξξξ,
and χ̃χχ. Since λ1 = 1/b′m(y − χ̃1 − ξ1), we have λ2

1 ≤
3/(b2

Ng2
N )(y2 + χ̃2

1 + ξ2
1). By this and (29), we have

dλλλε4λ2
3 ≤ 7dλλλε4z2

3 +

2∑
j=1

µ
zj

2 (LLL[2])ε
2j−2z2

j +

µχ̃χχ
2 (L1)‖Iεχ̃χχ‖2 + µξξξ

2(L1)‖Iεξξξ‖2

where µz1
2 (LLL[2]) =

21dλλλ

b2
Ng2

N

(γλ1
2 (L1))

2+7(γλ2
2 (L1))

2µz1
1 (L1)+

7dλλλ(γy
2 (L1))

2, µz2
2 (LLL[2]) = 7dλλλα2

2(LLL[2]) + 35dλλλ(γλ2
2 (L1))

2,

µχ̃χχ
2 (L1) =

21dλλλ

b2
Ng2

N

(γλ1
2 (L1))

2 + 7(γλ2
2 (L1))

2µχ̃χχ
1 , µξξξ

2(L1) =

21dλλλ

b2
Ng2

N

(γλ1
2 (L1))

2+7(γλ2
2 (L1))

2µξξξ
1+max{7dλλλ(γ

ξj

2 (L1))
2, j =

1, 2}.
By substituting this and (36) into (35), we have

V̇2 ≤−hη(ε)‖ηηη‖2 − h2,1(ε, L1)‖Iεχ̃χχ‖2 − h2,2(ε, L1)×
‖Iεξξξ‖2 − h2,3(ε,LLL[2])z

2
1 − h2,4(ε,LLL[2])ε

2z2
2 +

dλλλ

ρ∑
i=4

ε2i−2λ2
i + 7dλλλε4z2

3 + ε2z2z3 (37)

with d2,1(L1) = d1,1 + µχ̃χχ
2 (L1), d2,2(L1) = d1,2 + µξξξ

2(L1),
d2,3(LLL[2]) = d1,3(L1) + 2 + µz1

2 (LLL[2]), and d2,4(LLL[2]) =
µz2

2 (LLL[2]).
Inductive Step. Suppose at step k − 1 (k = 3, · · · , ρ),

there exists a smooth, positive definite, and proper function
Vk−1(ηηη, χ̃χχ,ξξξ, z1, · · · , zk−1) whose time derivative satisfies

V̇k−1 ≤−hη(ε)‖ηηη‖2 − hk−1,1(ε,LLL[k−2])‖Iεχ̃χχ‖2 −

hk−1,2(ε,LLL[k−2])‖Iεξξξ‖2 −
k−1∑
j=1

hk−1,j+2(ε,LLL[k−1])×

ε2j−2z2
j + dλλλ

ρ∑

i=k+1

ε2i−2λ2
i +(2k+1)dλλλε2k−2z2

k+

ε2k−4zk−1zk (38)

where z1 = y, zi = λi−λ∗i , i = 2, · · · , k, and λ∗i are a set of
virtual controllers in the following form:

λ∗i =− ε−1αi−1(LLL[i−1])zi−1−
i−1∑
j=1

γ
λj

i−1(LLL[i−2])ε
−(i−j)λj−

i−1∑
j=1

γ
ξj

i−1(LLL[i−2])ε
−(i−j)ξj − γy

i−1(L1)ε
−(i−1)y (39)

From (39), we can find nonnegative functions µ
zj

i−1(·),
µχ̃χχ

i−1(·), µξξξ
i−1(·), i = 2, · · · , k, j = 1, · · · , i− 1, such that

dλλλε2i−2λ2
i ≤ (2i +1)dλλλε2i−2z2

i +

i−1∑
j=1

µ
zj

i−1(LLL[i−1])ε
2j−2z2

j +

µχ̃χχ
i−1(LLL[i−2])‖Iεχ̃χχ‖2 + µξξξ

i−1(LLL[i−2])‖Iεξξξ‖2 (40)

The dynamics of variable zi (i = 2, · · · , k − 1) can be
immediately computed from (39) as

żi = λi+1 +

i∑
j=1

γ
λj

i (LLL[i−1])ε
−(i+1−j)λj +

i∑
j=1

γ
ξj

i (LLL[i−1])ε
−(i+1−j)ξj + γy

i (L1)ε
−iy +

γ∆
i (LLL[i−1])ε

−(i−1)(cρ,1y + b′mλ2 + χ̃2 + Φρ,1)

In what follows, we will show that the above state-
ments still hold at step k. For this aim, choose Vk =
Vk−1 + (1/2)ε2k−2z2

k, where zk = λk − λ∗k and the virtual
controller λ∗k are smooth functions. For notational conve-
nience and consistency, let λρ+1 = u. Then, computing the
time derivative of Vk, we have

V̇k = V̇k−1 + ε2k−2zkżk (41)

By the definition of zk, we have

żk = λk+1 +

k∑
j=1

γ
λj

k (LLL[k−1])ε
−(k+1−j)λj +

k∑
j=1

γ
ξj

k (LLL[k−1])ε
−(k+1−j)ξj + γy

k(L1)ε
−ky +

γ∆
k (LLL[k−1])ε

−(k−1)(cρ,1y + b′mλ2 + χ̃2 + Φρ,1) (42)

where γ
λj

k (LLL[k−1]), γ
ξj

k (LLL[k−1]), γy
k(L1), and γ∆

k (LLL[k−1]),
j = 1, · · · , k are defined as

γλ1
k (LLL[k−1]) = lk+

k−1∑
j=1

ljγ
λj

k−1(LLL[k−2])+αk−1(LLL[k−1])γ
λ1
k−1(LLL[k−2])

γ
λj

k (LLL[k−1]) = αk−1(LLL[k−1])γ
λj

k−1(LLL[k−2]) + γ
λj−1
k−1 (LLL[k−2]),

j = 2, · · · , k − 1

γ
λk
k (LLL[k−1]) = γ

λk−1
k−1 (LLL[k−2]) + αk−1(LLL[k−1])

γξ1
k (LLL[k−1]) =

k−1∑
j=1

ljγ
ξj

k−1(LLL[k−2])+αk−1(LLL[k−1])γ
ξ1
k−1(LLL[k−2])

γξ2
k (LLL[k−1]) =αk−1(LLL[k−1])γ

ξ2
k−1(LLL[k−2])+γy

k−1(L1)+γξ1
k−1(LLL[k−2])

γ
ξj

k (LLL[k−1]) = αk−1(LLL[k−1])γ
ξj

k−1(LLL[k−2]) + γ
ξj−1
k−1 (LLL[k−2]),

j = 2, · · · , k − 1

γ
ξk
k (LLL[k−1]) = γ

ξk−1
k−1 (LLL[k−2])

γy
k(L1) = αk−1(LLL[k−1])γ

y
k−1(L1)−

k−1∑
j=1

ljγ
ξj

k−1(LLL[k−2])

γ∆
k (LLL[k−1]) = αk−1(LLL[k−1])γ

∆
k−1(LLL[k−2]) + γy

k−1(L1)

From the above equations, we can see that γ
λj

k (·), γ
ξj

k (·),
γy

k(·), and γ∆
k (·), j = 1, · · · , k are continuous functions
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which can be derived recursively from their initial assign-
ment in Step 2, and become constant once the value of
LLL[k−1] is specified.

Before deriving the virtual controller λ∗k+1, we should
eliminate the “undesired” effect of zk in (41). For this
purpose, by the method of completing square, we have

ε2k−4zk−1zk ≤ ε2k−5z2
k−1 +

1

4
ε2k−3z2

k ≤ ε2k−5z2
k−1 +

1

4
max{1, b2

Mg2
M}ε2k−3z2

k (43)

and the following inequalities





εk−1γ∆
k (LLL[k−1])cρ,1yzk ≤ 1

4
d2
0(γ

∆
k (LLL[k−1]))

2ε2k−2z2
k + y2

b′mεk−1γ∆
k (LLL[k−1])λ2zk≤ 1

4
b2
Mg2

M (γ∆
k (LLL[k−1]))

2ε2k−3z2
k+

εz2
2 +

1

ε
y2 +

1

4
b2
Mg2

Mα2
1(L1)×

(γ∆
k (LLL[k−1]))

2ε2k−3z2
k

εk−1γ∆
k (LLL[k−1])χ̃2zk ≤ 2k−1(γ∆

k (LLL[k−1]))
2ε2k−3z2

k+

1

2k+1ε
‖Iεχ̃χχ‖2

εk−1γ∆
k (LLL[k−1])Φρ,1zk ≤ 1

4
c′2(γ∆

k (LLL[k−1]))
2ε2k−2z2

k + y2

(44)
Choose the virtual controller as

λ∗k+1 = −ε−1αk(LLL[k])zk −
k∑

j=1

γ
λj

k (LLL[k−1])ε
−(k+1−j)λj −

k∑
j=1

γ
ξj

k (LLL[k−1])ε
−(k+1−j)ξj − γy

k(L1)ε
−ky (45)

where αk(LLL[k]) = Lk + ᾱk(LLL[k−1]), ᾱk(LLL[k−1]) =

(2k + 1)dλλλ + (1/4)max{1, b2
Mg2

M} + 2k−1(γ∆
k (LLL[k−1]))

2 +

(1/4)(d2
0 + c′2)(γ∆

k (LLL[k−1]))
2 + (1/4)b2

Mg2
M (α2

1(L1) +

1)(γ∆
k (LLL[k−1]))

2, and Lk ≥ 1 is a constant to be deter-
mined later. Note that once the value of LLL[k] is specified,
αk(LLL[k]) is a known positive constant.

Define zk+1 = λk+1 − λ∗k+1 when k < ρ and zρ+1 = 0.
Then, similarly, we have

dλλλε2kλ2
k+1 ≤(2k + 3)dλλλε2kz2

k+1 + (2k + 3)dλλλ(γy
k(L1))

2y2+

(2k + 3)dλλλα2
k(LLL[k])ε

2k−2z2
k + (2k + 3)dλλλ×

max{(γξj

k (LLL[k−1]))
2, j = 1, · · · , k}‖Iεξξξ‖2+

(2k + 3)dλλλ

k∑
j=1

(γ
λj

k (LLL[k−1]))
2ε2j−2λ2

j (46)

Clearly, the last term on the right-hand side of the above
inequality is undesirable and has to be handled. By (40),
we have the following inequality

dλλλ(γ
λj

k (LLL[k−1]))
2ε2j−2λ2

j ≤
(γ

λj

k (LLL[k−1]))
2(2j + 1)dλλλε2j−2z2

j +

(γ
λj

k (LLL[k−1]))
2

j−1∑
i=1

µzi
j−1(LLL[j−1])ε

2i−2z2
i +

(γ
λj

k (LLL[k−1]))
2µχ̃χχ

j−1(LLL[i−2])‖Iεχ̃χχ‖2 +

(γ
λj

k (LLL[k−1]))
2µξξξ

j−1(LLL[i−2])‖Iεξξξ‖2 (47)

Substituting this into (46), we have for k < ρ

dλλλε2kλ2
k+1 ≤(2k + 3)dλλλε2kz2

k+1 +

k∑
j=1

µ
zj

k (LLL[k])ε
2j−2z2

j +

µχ̃χχ
k (LLL[k−1])‖Iεχ̃χχ‖2 + µξξξ

k(LLL[k−1])‖Iεξξξ‖2 (48)

Specially, one can see that since dλλλ

∑ρ
i=ρ+1 ε2i−2λ2

i = 0,
it is unnecessary for Step ρ to take the computation sim-
ilar to (48). However, for the sake of the integrality of
the inductive steps, we let µ

zj
ρ (LLL[ρ]) = 0, j = 1, · · · , ρ,

µχ̃χχ
ρ (LLL[ρ−1]) = 0, and µξξξ

ρ(LLL[ρ−1]) = 0.
Substituting (42)∼ (46) into (41), we obtain

V̇k ≤−hη(ε)‖ηηη‖2−hk,1(ε,LLL[k−1])‖Iεχ̃χχ‖2 − hk,2(ε,LLL[k−1])×

‖Iεξξξ‖2 −
k∑

i=1

hk,i+2(ε,LLL[k])ε
2i−2z2

i + dλλλ

ρ∑

i=k+2

ε2i−2 ×

λ2
i + (2k + 3)dλλλε2kz2

k+1 + ε2k−2zkzk+1 (49)

with




dk,1(LLL[k−1]) = dk−1,1(LLL[k−2]) + µχ̃χχ
k (LLL[k−1])

dk,2(LLL[k−1]) = dk−1,2(LLL[k−2]) + µξξξ
k(LLL[k−1])

dk,3(LLL[k]) = dk−1,3(LLL[k−1]) + 2 + µz1
k (LLL[k])

dk,4(LLL[k]) = dk−1,4(LLL[k−1]) + µz2
k (LLL[k])

dk,i+2(LLL[k]) = dk−1,i+2(LLL[k−1]) + µzi
k (LLL[k]),

i = 3, · · · , k − 1

dk,k+2(LLL[k]) = µ
zk
k (LLL[k])

From the above equations, we can see that dk,i(·), k =
3, · · · , ρ, i = 1, · · · , k + 2 are continuous functions which
can be derived recursively from their initial assignment in
Step 2, and are undoubtedly constant once the value of LLL[k]

is specified. By more detailed analysis, we can see that they
are all positive except dρ,ρ+2(LLL[ρ]) = 0.

At the last step, the design of u is quite similar to that
of other steps, since all the terms containing the factors,
λ2

i , i = 1, · · · , ρ in (49), have already been canceled at Step
ρ − 1. Using the inductive procedure and letting k = ρ in
(45), we can design the controller as

u = λρ+1 = λ∗ρ+1 (50)

Accordingly, letting k = ρ in (49) and noting that
dλλλ

∑ρ
i=ρ+1 ε2i−2λ2

i = 0, zρ+1 = 0, we have

V̇ρ ≤− hη(ε)‖ηηη‖2− hρ,1(ε,LLL[ρ−1])‖Iεχ̃χχ‖2−

hρ,2(ε,LLL[ρ−1])‖Iεξξξ‖2 −
ρ∑

i=1

hρ,i+2(ε,LLL[ρ])ε
2i−2z2

i

(51)

where Vρ(ηηη, χ̃χχ,ξξξ, z1, · · · , zρ) is a positive definite and proper
function defined by

Vρ = V0 +
1

2

ρ∑
i=1

ε2i−2z2
i (52)

3.3 Main results

From (51), we can see that to realize stabilization of the
closed-loop system, the controller designed should ensure
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the negative definiteness of V̇ρ. This can be guaranteed by
choosing positive constants ε and Li such that




3

8ε
− 2‖Plll‖2 > 0

1

2ρ+1ε
− dρ,1(LLL[ρ−1]) > 0

1

4ε
− dρ,2(LLL[ρ−1]) > 0

Li − (ρ + 1− i)

ε
− dρ,i+2(LLL[ρ]) > 0

Lj − 1

ε
− dρ,j+2(LLL[ρ]) > 0

Lρ

ε
− dρ,ρ+2(LLL[ρ]) > 0

(53)

for i = 1, 2 and j = 3, · · · , ρ− 1.
The following lemma shows the existence of positive con-

stants ε and Li satisfying (53). Besides, the choice of such
constants is discussed in the proof of the lemma.

Lemma 3. There are always positive constants Li ≥
1, i = 1, · · · , ρ and 0 < ε < 1 satisfying inequalities (53).

Proof. We prove this lemma by construction.
Firstly, for any specified constants L∗i > 0, i = 1, · · · , ρ−

1 and L∗ρ ≥ 1, choose





Li ≥ L∗i + ρ + 1− i, i = 1, 2
Lj ≥ L∗j + 1, j = 3, · · · , ρ− 1
Lρ ≥ L∗ρ

(54)

Secondly, choose ε such that

0 < ε < ε∗ =min

{
1,

3

16‖Plll‖2 ,
1

2ρ+1dρ,1(LLL[ρ−1])
,

1

4dρ,2(LLL[ρ−1])
,

L∗i
dρ,i+2(LLL[ρ])

, i = 1, · · · , ρ

}

(55)

It is easy to verify that any Li and ε determined by (54)
and (55) satisfy inequalities (53). ¤

The main result of the paper is summarized as follows.
Theorem 1. Consider the output-feedback control

problem of system (1) with ρ < n. Suppose the system sat-
isfies Assumptions 1∼ 4. If lll = [l1, · · · , lρ]

T is chosen such
that matrix Alll = A + llleeeT

1 is Hurwitz, then the closed-loop
system is globally asymptotically stable under the dynamic
output-feedback control (50) with positive constants ε and
Li satisfying (54) and (55).

Proof. First, by observing that ε and Li satisfy (54)
and (55), it is straightforward to deduce from (51) and

(52) that there is a positive constant β such that V̇ρ ≤
−βVρ, which implies that ηηη, εi−1χ̃i, εi−1ξi, and ε2i−2zi

are globally asymptotically stable for i = 1, · · · , ρ, and so
are ηηη, χ̃χχ, ξξξ, and zi since ε is a positive constant. This
together with the fact y = z1 = χ1 = x1 concludes the
global asymptotic stability of y, χ1, and x1, and hence λ1

since λ1 = 1/b′m(y − χ̃1 − ξ1). Then, from (28) and λ2 =
z2+λ∗2, it follows that λ∗2 and λ2 are globally asymptotically
stable. Continuing in the same fashion, (39) and λi = zi +
λ∗i for i = 3, · · · , ρ recursively establish that λλλ is globally
asymptotically stable. By the global asymptotic stability
of ξξξ, λλλ, and χ̃χχ, and χ̂χχ = ξξξ + b′mλλλ, we know that χ̂χχ and hence
χχχ (= χ̂χχ + χ̃χχ) are globally asymptotically stable as well.

Finally, from ςςςρ,[1,ρ] = χχχ,ςςςρ,[ρ+1,n] = ηηη, and the equiva-
lent transformations defined above, we conclude that ςςς, xxx,
and ζζζ are all globally asymptotically stable. ¤

Remark 1. It is easily seen that the design procedure
given in the previous section cannot be unchangeably ap-
plied to the case ρ = n. In fact, there are minor technical
differences between the control design procedures of the
cases ρ = n and ρ < n, and hence the further investigation
on the former case is omitted due to the limitation of space.

4 Concluding remarks

In this paper, the output-feedback stabilization has been
investigated for a class of uncertain nonlinear systems.
After introducing two kinds of linear state transforma-
tions, the control design becomes much natural since the
converted system has known virtual control coefficients
and separated stable zero-dynamics. For the new trans-
formed system, an appropriate high-gain observer based
on K-filters is introduced, and then by the backstepping
approach, the output-feedback controller is successfully de-
signed. It is shown that the global asymptotic stability of
the closed-loop system can be guaranteed by the appropri-
ate choice of the design parameters.

Appendix

In this appendix, we give proofs of Propositions 2 and 3, re-
spectively.

Appendix A Proof of Proposition 2

Proof. Along the trajectories of the subsystem Σηηη, the time
derivative of Vηηη satisfies

V̇ηηη ≤ −‖ηηη‖2 + 2‖Q‖ · ‖cccρ,[ρ+1,n]‖ · ‖ηηη‖ · |χ1|+
2‖ηηη‖ · ‖Q‖ · ‖ΦΦΦρ,[ρ+1,n]‖1 (A1)

For the second term on the right-hand side of the above in-
equality, by Lemma 1 and Proposition 1, we have

2‖Q‖ · ‖cccρ,[ρ+1,n]‖ · ‖ηηη‖ · |χ1| ≤ 1

8
‖ηηη‖2 +

8n2

d2
d′20 y2 (A2)

By the fact 0 < ε < 1, and Lemmas 1 and 2, we know that

2‖ηηη‖ · ‖Q‖ · ‖ΦΦΦρ,[ρ+1,n]‖1 ≤
2mc′n

d
ε−(ρ−1)‖ηηη‖(|χ1|+ |εχ2|+ · · ·+ |ερ−1χρ|)

From this and χ1 = y, χi = χ̃i + ξi + b′mλi, i = 2, · · · , ρ, it
follows that

2‖ηηη‖ · ‖Q‖ · ‖ΦΦΦρ,[ρ+1,n]‖1 ≤
1

2
‖ηηη‖2 +

8m2c′2n2

d2
ε−(2ρ−2)y2 +

8m2c′2n2ρ

d2
ε−(2ρ−2)×

‖Iεχ̃χχ‖2 +
8m2c′2n2ρ

d2
ε−(2ρ−2)‖Iεξξξ‖2 +

8m2c′2n2

d2
ρb2

Mg2
Mε−(2ρ−2)

ρ∑
i=2

ε2i−2λ2
i (A3)

Substituting (A2) and (A3) into (A1), we can get

V̇ηηη ≤ −3

8
‖ηηη‖2 + d0,1(d

′2
0 + m2c′2ε−(2ρ−2))y2 +

ε−(2ρ−2)d0,2‖Iεχ̃χχ‖2 + ε−(2ρ−2)d0,2‖Iεξξξ‖2 +

ε−(2ρ−2)d0,3

ρ∑
i=2

ε2i−2λ2
i (A4)

where d0,1 =
8n2

d2
, d0,2 =

8m2c′2n2ρ

d2
, d0,3 =

8m2c′2n2

d2
ρb2

Mg2
M .

This leads to (21). ¤
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Appendix B Proof of Proposition 3

Proof. The time derivative of Vχ̃χχ along (18) satisfies

V̇χ̃χχ ≤− ‖Iεχ̃χχ‖2
ε

+ 2ερ−1‖Iεχ̃χχ‖ · ‖Plll‖ · ‖ηηη‖+ 2‖Iεχ̃χχ‖×
‖Plll‖ · ‖cccρ,[ρ]‖|y|+ 2‖Iεχ̃χχ‖ · ‖Plll‖ · ‖IεΦΦΦρ,[ρ]‖1 (B1)

We will deal with the last three terms on the right-hand side of
the above inequality. Firstly, by Proposition 1, the second term
and the third term satisfy, respectively,

2ερ−1‖Iεχ̃χχ‖ · ‖Plll‖ · ‖ηηη‖ ≤ ‖Iεχ̃χχ‖2
2ε

+ 2ε2ρ−1‖Plll‖2‖ηηη‖2

2‖Iεχ̃χχ‖ · ‖Plll‖ · ‖cccρ,[ρ]‖ · |y| ≤ ‖Iεχ̃χχ‖2 + d2
0‖Plll‖2y2 (B2)

For the last term, it is easy to show that ‖IεΦΦΦρ,[ρ]‖1 ≤
ρc′(|χ1| + ε|χ2| + · · · + ερ−1|χρ|). Then, noting that χ1 = y
and χi = χ̃i + ξi + b′mλi, i = 2, · · · , ρ, we have

2‖Iεχ̃χχ‖ · ‖Plll‖ · ‖IεΦΦΦρ,[ρ]‖1 ≤
(1 + 2ρ

3
2 c′‖Pl‖)‖Iεχ̃χχ‖2 + 3ρ3c′2‖Plll‖2‖Iεξξξ‖2 +

3ρ2c′2‖Plll‖2y2 + 3ρ3c′2b2
Mg2

M‖Plll‖2
ρ∑

i=2

ε2i−2λ2
i (B3)

Substituting (B2) and (B3) into (B1), we have

V̇χ̃χχ ≤ −
(

1

2ε
− d0,4

)
‖Iεχ̃χχ‖2 + d0,5‖Iεξξξ‖2 +

2ε2ρ−1‖Plll‖2‖ηηη‖2 + d0,6y
2 + d0,7

ρ∑
i=2

ε2i−2λ2
i (B4)

where d0,4 = 2 + 2ρ
3
2 c′‖Plll‖, d0,5 = 3ρ3c′2‖Plll‖2, d0,6 =

(d2
0 + 3ρ2c′2) ‖Plll‖2, d0,7 = 3ρ3c′2b2

Mg2
M‖Plll‖2 are known positive

constants independent of ε. ¤
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