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HHH∞ Measurement-feedback Control for Systems with
Input and Measurement Delays

WANG Hong-Xia1 ZHANG Huan-Shui2

Abstract The paper concentrates on finding the H∞ measurement-feedback control-law for systems with not only an input-delay
but also a measurement-delay. Krein space, together with pseudo-measurements, is introduced so that the reorganizing technique
can be utilized after we convert the original problem into a minimizing one. Finally, we get the desired controller and see that the
separation principle is also applicable to delay systems to some extent.
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Because of the presence of uncertain exogenous distur-
bances and model uncertainties, the H∞ control has in-
trigued many researchers for decades. The study can be
traced back to 1981, when it was originally proposed by
Zames[1]. Research related to the H∞ control stepped into
the new epoch as the state-space idea was introduced by
Doyle[2]. There are abundant results related to the H∞ con-
trol in time domain[3−6] and frequency domain[1, 7−11]. As
a late comer, the time-domain approach gave an impetus to
research the H∞ control problems for time-varying systems,
nonlinear systems[12], delay systems[6, 10, 13−16], stochastic
systems and so on.

However, it seems hard to find results related to the H∞
measurement-feedback control for systems with I/O delays

except a few works[4, 7, 11, 13]. Mirkin[13] and Meinsma[7]

first investigated systems with single I/O delay. Several
years later, they generalized nontrivially the single-delay
study to the multiple I/O delay case[11]. Transfer func-

tions are the key medium[7, 11, 13] to solve the H∞ control
problem. Unfortunately, they are “aliens” for the time-
varying systems. Liu′s idea[4] is applicable to the time-
varying systems, but it is only allowed for systems with the
delay-measurement.

The paper considers the systems with measurement-
delay and input-delay. It needs no transfer function and
can be generalized to deal with time-varying or/and multi-
delay systems.

We shall organize the paper as follows. The underlying
system and problem are presented in Section 1. Section 2
is devoted to achieving an expected quadratic form, which
makes a critical preparation for solving the problem. Sec-
tion 3 works out the problem by means of the indefinite
quadratic form and the reorganizing technique. Section 4
provides a numerical experiment and Section 5 arrives at
some conclusions.

Notations. Throughout the paper, 〈xxx,yyy〉 denotes the
inner product of vector xxx,yyy; col{xxx1,xxx2, · · · ,xxxn} denotes
the column vector formed by stacking all the vectors
xxx1,xxx2, · · · ,xxxn; and 0s denotes the zero matrix of s× s.

1 Problem statement

Consider a linear system described by the following
discrete-time model

xxx(t + 1) = Φxxx(t) + B0uuu0(t) + B1uuu1(td) + Gwww(t) (1)

yyy0(t) = H0xxx(t) + vvv0(t) (2)
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yyy1(t) = H1xxx(td) + vvv1(t) (3)

zzz(t) =




Cxxx(t)
D0uuu0(t)
D1uuu1(td)


 (4)

where td = t − d. In the following, similar denotation will
take the same meaning in the rest paper. xxx(t) ∈ Rn, www(t) ∈
Rp, uuu0(t),uuu1(t) ∈ Rm, vvv0(t), vvv1(t) ∈ Rs, yyy0(t), yyy1(t) ∈
Rs, and zzz(t) ∈ Rr represent the state, input noise, control
inputs, measurement noise, measurement outputs, and the
signal to be regulated, respectively.

For convenience, denote

τ j = τd − j, τ j = τd + j, τ i = τd − i, τ i = τd + i (5)

N j = Nd−j, N j = Nd +j, N i = Nd− i, N i = Nd + i (6)

K41
j =




Kj
0

Kj
1

H0

H1


 , K42

j =




Kj
0 0

Kj
1 0

H0 0
0 H1


 , K21

j =

[
Kj

0

H0

]
(7)

K31
j =




Kj
0

Kj
1

H0


 , H31

j =




Kj
0

H0

H1


 , H32

j =




Kj
0 0

H0 0
0 H1


 (8)

The H∞ control problem under investigation is stated
as: given a scalar γ > 0 and observations {yyy(j)}t

j=0, find
a finite-horizon measurement-feedback control strategy for
(1)∼ (4)

uuui(t) = FFF i(yyy(j) |0≤j≤t), i = 0, 1

such that

sup
S

J(xxx(0),www(t),uuuj(t), vvvj(t)) < γ2 (9)

where

J(xxx(0),www(t),uuuj(t), vvvj(t)) =

‖ zzz ‖2[0,N ]

xxxT(0)Π−1
0 xxx(0)+ ‖ www ‖2[0,N ] + ‖ vvv ‖2[0,N ]

(10)

S = {xxx(0),www(t), vvv0(t), vvv1(s) | 0 ≤ t ≤ N, d ≤ s ≤ N}
yyy(j) = yyy0(j) for 0 ≤ j < d, yyy(j) = col{yyy0(j), yyy1(j)} for
j ≥ d, vvv(j) is totally similar to yyy(j), and Π0 is a given
positive definite matrix, which reflects the uncertainty of
the initial state relative to the energy of the exogenous
input.

Let us start by categorizing the problem into three cases
with the relationship between the delay d and the terminal
time N .
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Case 1: N < d;
Case 2: d ≤ N < 2d;
Case 3: N ≥ 2d.
With the disappearance of uuu1 and yyy1, the problem in

Case 1 is simplified to be a standard H∞ measurement-
feedback control problem for delay-free systems, and can
be solved readily[17]; both Case 2 and Case 3 can be ana-
lyzed by the similar line of arguments, Krein space, and the
reorganizing technique. Therefore, we only need to handle
one of them. Here, let Case 3 be the one to be discussed in
the remainder of the paper.

2 Construction of ideal quadratic form

In this section, we shall make a crucial preparation for
solving the H∞ measurement-feedback control problem on
the basis of the results[16].

For convenience, we first introduce a couple of Riccati
equations[16] as

Pj =ΦTPj+1Φ+Q−ΦTPj+1Γj(Rj +ΓT
j Pj+1Γj)

−1ΓT
j Pj+1Φ

j = N, N − 1, · · · , 0, PN+1 = 0

(11)

P τ
j =ΦTP τ

j+1Φ+Q−ΦTP τ
j+1Γj(Rj +ΓT

j P τ
j+1Γj)

−1ΓT
j P τ

j+1Φ

j = min{d, Nd + 1}, · · · , 0, P τ
Nτ +1 = 0, or P τ

d = Pτ+d

(12)

Obviously, P τ
j = Pj+τ as j ≥ d, where

Q = CTC, Γj =

{
[B0, G] , 0 ≤ j < d
[B0, G, B1] , j ≥ d

Rj =

{
diag{DT

0 D0,−γ2Ip}, 0 ≤ j < d
diag{DT

0 D0,−γ2Ip, DT
1 D1}, j ≥ d

Assume that the above Riccati equations have bounded
solutions, and denote

Mτ
j = Rj + ΓT

j P τ
j+1Γj , Kτ

j = ΦTP τ
j+1Γj(M

τ
j )−1 (13)

throughout the paper.
Remark 1. It should be noted that
1) Despite the same structures of the above two Riccati

equations, they still have different solutions because of dif-
ferent initial values and the range of j.

2) The two equations have the same structures for linear
time invariant (LTI) systems. Nevertheless, for linear time
varying (LTV) systems, they just have similar structure of
the one in [16] but not the same one.

Considering the performance index (9), we define

J∞N = xxxT(0)Π−1
0 xxx(0)+ ‖ vvv ‖2[0,N ] −γ−2JN (14)

where
JN =‖ zzz ‖2[0,N ] −γ2 ‖ www ‖2[0,N ] (15)

It is clear that the H∞ controller uuui(t) satisfies (9) if and
only if it renders that J∞N in (14) is positive for all non-zero
{xxx(0); www(t), vvv0(t), 0 ≤ t ≤ N ; vvv1(t), d ≤ t ≤ N}.

It is not hard to see that (14) is almost the same as (9)
in [16], but the additional term ‖ vvv ‖2[0,N ] is only involved
by the measurement equations; what is more important is
that (6) in [16] and (15) are totally identical. Therefore, in
view of Lemma 7 in [16], (14) is rewritten as

J∞N = xxxT(0)(Π−1
0 − γ−2P0)xxx(0)+ ‖ vvv ‖2[0,N ] −

γ−2
N∑

τ=0

[vvvr(τ)− v̌vvr(τ)]TM̃τ [vvvr(τ)− v̌vvr(τ)] (16)

where
vvvr(τ) = col{uuu(τ), www(τ)} (17)

with

uuu(τ) =

{
col{uuu0(τ),uuu1(τ)}, 0 ≤ τ ≤ Nd

col{uuu0(τ)}, τ > Nd
(18)

v̌vvr(τ) is obtained from vvvr(τ) with www(τ) and uuui(τ)(i = 0, 1)
replaced by w̌ww(τ) = [0m Ip]v̌vv0(τ), ǔuu0(τ) = [Im 0p]v̌vv0(τ), and
ǔuu1(τ) = v̌vv1(τ), respectively, while v̌vvi(τ) is given by

v̌vv0(τ) = −[Fτ
0 (0)]Txxx(τ)−

d∑

k=1

[Fτ
k (0)]TB1ǔuu1(k − 1 + τd) (19)

v̌vv1(τ) = −[0m+p Im]

{
[Fτ

0 (d)]Txxx(τ) +

d∑

k=1

[Fτ
k (d)]TB1ǔuu1(k − 1 + τd)

}
(20)

In (19) and (20),

Fτ
k (t) =





P τ
k [(Φ̄τ

t+1,k)TΓt(M
τ
t )−1 − (Φ̄τ

t,k)TGτ (k)Kτ
t ],

0 ≤ t ≤ k − 1

[In − P τ
k Gτ (k)] Φ̄τ

k,tK
τ
t , k ≤ t ≤ N

(21)
with

Φ̄τ
j = ΦT −Kτ

j ΓT
j , Φ̄τ

j,j = I, Φ̄τ
j,t = Φ̄τ

j · · · Φ̄τ
t−1, t ≥ j

(22)

Gτ (k) =

k∑
j=1

(Φ̄τ
j,k)TΓj−1(M

τ
j−1)

−1ΓT
j−1Φ̄

τ
j,k, Gτ (0) = 0

(23)
and Kτ

t is defined as in (13). A careful observation will
show us that Φ̄τ

j,t is actually the state transition matrix

corresponding to Φ̄τ
j .

Next, we will provide an important parameter M̃τ in
(16).
For 0 ≤ τ ≤ Nd,

M̃τ = ΘT
τ P̄τ+1Θτ + diag{DT

0 D0, D
T
1 D1;−γ2Ip} (24)

For Nd < τ ≤ N ,

M̃τ = ΘT
τ P̄τ+1Θτ + diag{DT

0 D0;−γ2Ip} (25)

In the above, Θτ =

{
diag{B0, B1; G}, 0 ≤ τ ≤ Nd

diag{B0; G}, Nd < τ ≤ N

P̄τ =





[
P̄τ (0, 0) P̄T

τ (1, 0)
P̄τ (1, 0) P̄τ (1, 1)

]
, τ ≤ Nd

P̄τ (0, 0), τ > Nd

(26)

and P̄τ (i, j)(i ≥ j) is given by





P̄τ (0, 0) = P τ
0

P̄τ (1, 0) = P τ
d (Φ̄τ

0,d)T

P̄τ (1, 1) = P τ
d [I −Gτ (d)P τ

d ]
(27)

where Φ̄τ
0,d and Gτ (d) are defined as in (22) and (23), re-

spectively, and P τ
0 and P τ

d can be obtained from (12).
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Let

Rv =

{
Is, 0 ≤ τ < d
diag{Is, Is}, τ ≥ d

(28)

Hτ =

{
H0, 0 ≤ τ < d
diag{H0, H1}, τ ≥ d

(29)

x̄xx(τ) =

{
xxx(τ), 0 ≤ τ < d
col{xxx(τ), xxx(τd)}, τ ≥ d

(30)

yyy(τ) =

{
yyy0(τ), 0 ≤ τ < d
col{yyy0(τ), yyy1(τ)}, τ ≥ d

(31)

Now, (16) allows us to write J∞N as

J∞N = xxxT(0)(Π−1
0 − γ−2P0)xxx(0)−

γ−2
N∑

τ=0

[
uuu(τ)− ǔuu(τ)
www(τ)− w̌ww(τ)

]T

M̃τ

[
uuu(τ)− ǔuu(τ)
www(τ)− w̌ww(τ)

]
+

N∑
τ=0

[yyy(τ)−Hτx̄xx(τ)]TR−1
v [yyy(τ)−Hτx̄xx(τ)] (32)

In order to achieve an ideal representation, we make a

fundamental transformation and then, get the matrix M̂τ

as well as the expected quadratic form as follows:

M̂τ = −γ−2





[
I2m

Ip

]T

M̃τ

[
I2m

Ip

]
,

0 ≤ τ ≤ Nd

[
Im

Ip

]T

M̃τ

[
Im

Ip

]
,

τ > Nd

(33)

J∞N = xxxT(0)(Π−1
0 − γ−2P0)xxx(0) +

N∑
τ=0




www(τ)− w̌ww(τ)
uuu(τ)− ǔuu(τ)

yyy(τ)−Hτx̄xx(τ)




T

×

[
M̂τ

R−1
v

] 


www(τ)− w̌ww(τ)
uuu(τ)− ǔuu(τ)

yyy(τ)−Hτx̄xx(τ)


 (34)

Remark 2. Equation (34) deserves such a troublesome
transformation since it guarantees that we can find the
causal controllers uuu0(τ) and uuu1(τ). Otherwise, only the
casual uuu0(τ) can be obtained.

3 Main results

The main results will be stated in the following section.

Proposition 1. If M̂τ are invertible for any τ , then, it
can be partitioned as

M̂−1
τ =

[
∆−1

τ S̄τ

S̄T
τ (∆̄τ )−1

]
(35)

where ∆−1
τ is p× p.

Remark 3. In order to guarantee that every element in

performance functions as a lever, M̂τ tends to be invertible

in practice. Therefore, the invertibility of M̂τ is reasonable.

Furthermore, we can use (35) to write (34) as

J∞N = xxxT(0)(Π−1
0 −γ−2P0)xxx(0)+

N∑
τ=0




www(τ)− w̌ww(τ)
uuu(τ)− ǔuu(τ)

yyy(τ)−Hτx̄xx(τ)




T

×

[
Qw̃

τ Sτ

ST
τ Qv

τ

]−1



www(τ)− w̌ww(τ)
uuu(τ)− ǔuu(τ)

yyy(τ)−Hτx̄xx(τ)


 (36)

where

Qw̃
τ = ∆−1

τ , 0 ≤ τ ≤ N (37)

Sτ =

{ [
S̄τ 0

]
, 0 ≤ τ < d[

S̄τ 0 0
]
, τ ≥ d

(38)

Qv
τ =

{
diag{∆̄−1

τ , Is}, 0 ≤ τ < d

diag{∆̄−1
τ , Is, Is}, τ ≥ d

(39)

Note that yyy(τ) is the observation of system (1)∼ (4) at time
τ , which can be rewritten as

yyy(τ) =





H0xxx(τ) + vvv0(τ), 0 ≤ τ < d
[

H0 0
0 H1

] [
xxx(τ)
xxx(τd)

]
+

[
vvv0(τ)
vvv1(τ)

]
, τ ≥ d

(40)

3.1 Introduction of Krein space

For a technical reason, we associate the quadratic form
(36) with Krein space state-space model as

XXX(τ + 1) = (Φ−GKτ
w)XXX(τ) + GWWW (τ) + CCC(τ) (41)

[
UUU(τ)
YYY (τ)

]
=

[
K̄τ

Hτ

]
X̄XX(τ) +

[
sssτ (uuu)

0

]
+ V̄VV (τ) (42)

with uuu = uuu(·), where uuu(·) is defined in (18), and

CCC(τ) = B0uuu0(τ) + B1uuu1(τd)−

G[0m, Ip]

d∑

k=1

[Fτ
k (0)]T B1uuu1(k − 1 + τd)

Note that CCC(τ) only has access to the past inputs uuu1(τ −
1), · · · ,uuu1(τ − d), and the current input uuu0(τ).

The rest of the parameters in (41)∼ (42) are shown as

Kτ
w = −[0m, Ip][Fτ

0 (0)]T

K̄τ =





[
Kτ

0 0
Kτ

1 0

]
, 0 ≤ τ ≤ Nd

[Kτ
0 0] , τ > Nd

sssτ (uuu) =

{
col{sss0,τ (uuu), sss1,τ (uuu)}, 0 ≤ τ ≤ Nd

col{sss0,τ (uuu)}, τ > Nd

UUU(τ) =

{
col{UUU0(τ),UUU1(τ)}, 0 ≤ τ ≤ Nd

col{UUU0(τ)}, τ > Nd

(43)

V̄VV (τ) =





col{VVV 0
u(τ),VVV 0

u(τ),VVV 0(τ)}, 0 ≤ τ ≤ d

col{VVV 0
u(τ),VVV 0

u(τ),VVV 0(τ),VVV 1(τ)}, d ≤ τ ≤ Nd

col{VVV 0
u(τ),VVV 0(τ)}, τ > Nd

In these representations,

Kτ
0 = −[Im, 0p][Fτ

0 (0)]T (44)
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Kτ
1 = −[0m+p, Im][Fτ

0 (d)]T (45)

UUU i(τ) = Kτ
i XXX(τ) + sssi,τ (uuu) + VVV i

u, i = 0, 1 (46)

sss0,τ (uuu) = −[Im, 0p]

d∑

k=1

[Fτ
k (0)]TB1uuu1(k − 1 + τd) (47)

sss1,τ (uuu) = −[0m+p, Im]

d∑

k=1

[Fτ
k (d)]TB1uuu1(k − 1 + τd) (48)

The initial state, XXX(0), and the driving and measurement
disturbances, {WWW (τ)} and {V̄VV (τ)}, are Krein space vari-
ables impacting system (41)∼ (42) and obey

〈


XXX(0)
WWW (τ)
V̄VV (τ)


 ,




XXX(0)
WWW (r)
V̄VV (r)




〉
=




(Π0 − γ−2P0)
−1 0

0

[
Qw̃

τ Sτ

ST
τ Qv

τ

]
δτr


 (49)

Proposition 2. Assume that ηηηi = Hξξξi + νννi + µµµ, where
µµµ,νννi, ξξξi, and ηηηi are given constant vector, white noise with
zero mean, state, and measurement, respectively. Then, its
estimation and the corresponding innovation can be written

as η̂ηηi = Hξ̂ξξi + µµµ and ωωωi = H(ξξξi − ξ̂ξξi) + νννi.
The proposition shows that innovation can not be im-

pacted by the constant vector in the measurement.
Taking uuu0 and uuu1 in (36) as pseudo-measurements and

recalling of Chapter 9 in [17] and Proposition 2, we can
now establish the following results about JN

∞.
Lemma 1. The minimum of JN

∞ is in the form of

JN
∞ =

N∑
τ=0

[
uuu(τ)−Kτ ˆ̄xxx(τ | τ − 1)− sssτ (uuu)
yyy(τ)−Hτ ˆ̄xxx(τ | τ − 1)

]T

×

Q−1
ws

(τ)

[
uuu(τ)−Kτ ˆ̄xxx(τ | τ − 1)− sssτ (uuu)
yyy(τ)−Hτ ˆ̄xxx(τ | τ − 1)

]
(50)

where

Kτ =





[
Kτ

0

Kτ
1

]
, 0 ≤ τ ≤ Nd

[Kτ
0 ] , τ > Nd

(51)

ˆ̄xxx(τ | τ − 1) =

{
col{x̂xx(τ |τ − 1)}, 0 ≤ τ < d
col{x̂xx(τ |τ − 1), x̂xx(τd|τ − 1)}, τ ≥ d

(52)

In (50), the matrix Qws(τ) is the covariance matrix of the
innovations

wwws(τ) =





K31
τ

[
XXX(τ)− X̂XX(τ |τ − 1)

]
+ V̄VV (τ),
0 ≤ τ < d

K42
τ

[
XXX(τ)− X̂XX(τ |τ − 1)

XXX(τd)− X̂XX(τd|τ − 1)

]
+ V̄VV (τ),

d ≤ τ < Nd

H32
τ

[
XXX(τ)− X̂XX(τ |τ − 1)

XXX(τd)− X̂XX(τd|τ − 1)

]
+ V̄VV (τ),

Nd ≤ τ ≤ N

(53)

where X̂XX(τ |τ − 1)(X̂XX(τd|τ − 1)) is the projection of

XXX(τ)(XXX(τd)) onto the linear space L
{[

UUU(i)
YYY (i)

]τ−1

i=0

}
.

The estimators x̂xx(τ |τ − 1) and x̂xx(τd|τ − 1) in (52) are
obtained from the projections of xxx(τ) and xxx(τd) onto the

linear space L
{[

uuu(i)
yyy(i)

]τ−1

i=0

}
, respectively.

3.2 Reorganizing innovations

Observing (50) of the minimal value, we realize that the
estimator ˆ̄xxx(τ |τ − 1) and the innovation covariance matrix
Qws(τ) are the key to design of the controller. At this stage,
we face with the problem that the standard Kalman filter
formulation is not applicable to computation of ˆ̄xxx(τ |τ − 1)
and Qws(τ). To conquer it, we shall reorganize the delay-
measurements and define reorganized innovation, which, in
fact, is the core of the innovation analysis method.

In view of (41)∼ (43), it is not hard to find that

L
{[

UUU(i)
YYY (i)

]τ

i=0

}
=





L
{[

UUU(i)
YYY 0(i)

]τ

i=0

}
, 0 ≤ τ < d

L
{[

UUU(i)
YYY f (i)

]τd

i=0

,

[
UUU(i)
YYY 0(i)

]τ

i=τd+1

}
, d ≤ τ ≤ Nd

L
{[

UUU(i)
YYY f (i)

]τd

i=0

,

[
UUU(i)
YYY 0(i)

]Nd

i=τd+1

,

[
UUU0(i)
YYY 0(i)

]τ

i=Nd+1

}
, Nd < τ ≤ N

(54)

where

YYY f (i) =

[
YYY 0(i)

YYY 1(i + d)

]
+

[
H0

H1

]
XXX(i) + VVV f (i) (55)

VVV f (i) = col{VVV 0(i),VVV 1(i + d)}, 〈VVV f (i),VVV f (i)〉 = I2s (56)





〈[
VVV 0

u(i)
VVV 1

u(i)

]
,

[
VVV 0

u(i)
VVV 1

u(i)

]〉
= ∆̄−1

i , 0 ≤ i ≤ Nd

〈VVV u(i),VVV u(i)〉 = ∆̄−1
i , i > Nd

(57)
To avoid confusion, we have to emphasize that just like

UUU(i), the orders of ∆̄−1
i in (57) vary with index i.

Once the delay information is reorganized, it becomes
the delay-free measurement so that we can apply it to de-

sign the controller directly.

[
UUU(i)
YYY f (i)

]
,

[
UUU(i)
YYY 0(i)

]
, and

[
UUU0(i)
YYY 0(i)

]
are the so-called reorganized measurements.

Equations (41), (55), and (43) form a state-space model
without delay. Now, let us define the innovation sequence
associated with the reorganized measurements.

www2(i) =

[
UUU0(N i)
YYY 0(N i)

]
−

[
ÛUU0(N i|N i − 1, Nd, N2d + i)

ŶYY 0(N i|N i − 1, Nd, N2d + i)

]
=

K21
Ni

EEE2(i) +

[
VVV 0

u(N i)
VVV 0(N i)

]
, i = 1, · · · , d (58)

www1(i) =

[
UUU(τ i)
YYY 0(τ i)

]
−

[
ÛUU(τ i|τ i − 1, τ i − 1, τ2d + i)

ŶYY 0(τ i|τ i − 1, τ i − 1, τ2d + i)

]
=

K31
τi

EEE1(i) +




VVV 0
u(τ i)

VVV 1
u(τ i)

VVV 0(τ i)


 , i = 1, · · · , Nτ (59)
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www0(i) =

[
UUU(i)
YYY f (i)

]
−

[
ÛUU(i|i− 1, i− 1, i− 1)

ŶYY f (i|i− 1, i− 1, i− 1)

]
=

K41
i EEE0(i) +




VVV 0
u(i)

VVV 1
u(i)

VVV f (i)


 , i = 0, · · · , τd (60)

with initial estimation value,

[
ÛUU(0| − 1,−1,−1)

ŶYY f (0| − 1,−1,−1)

]
= 0,

and one-step estimation error,

EEE2(i) = XXX(Nd + i)− X̂XX(Nd + i|Nd + i− 1, Nd, N2d + i)

EEE1(i) = XXX(τd + i)− X̂XX(τd + i|τd + i− 1, τd + i− 1, τ2d + i)

EEE0(i) = XXX(i)− X̂XX(i|i− 1, i− 1, i− 1)

In the above equations, X̂XX(j|t, s, r), t ≥ s ≥ r, is the esti-
mation of XXX(j) utilizing the measurement sequence

{[
UUU(i)
YYY f (i)

]r

i=0

,

[
UUU(i)
YYY 0(i)

]s

i=r+1

,

[
UUU0(i)
YYY 0(i)

]t

i=s+1

}

It is easy to verify that elements in the reorganized inno-
vation {wwwi(·)}(i = 0, 1, 2) are mutually uncorrelated.

3.3 Innovation covariance matrix and estimator

In this subsection, we shall provide the general form of
the optimal estimator x̂xx(τ |t, s, r)(t ≥ s ≥ r) and the inno-
vation covariance matrix Qws(τ).

If we denote the covariance matrices of the estimation
error EEEi(j) as P i

j , then, the covariance matrices Qwi(j) of

the innovation wwwi(j) in (58)∼ (60) can be given by

Qw2(j) = K21
j+Nd

P 2
j (K21

j+Nd
)T + diag{∆̄−1

j+Nd
, Is} (61)

Qw1(j) = K31
j+τd

P 1
j (K31

j+τd
)T + diag{∆̄−1

j+τd
, Is} (62)

Qw0(j) = K41
j P 0

j (K41
j )T + diag{∆̄−1

j , I2s} (63)

In the following, we will see that although Qwi(j) depend
on P i

j , they, in turn, help to update P i
j .

Lemma 2. Let Ψτ = Φ + GKτ
w. The error covariance

matrices P i
τ , i = 0, 1, 2, can be calculated, respectively, as

P 0
τ+1 = ΨτP 0

τ ΨT
τ + GQw̃

τ GT −ΨτP 0
τ (K41

τ )T ×
Q−1

w0(τ)K41
τ P 0

τ ΨT
τ , P 0

0 = (Π−1
0 − γ−2P0)

−1 (64)

P 1
i+1 = ΨτiP

1
i ΨT

τi
+ GQw̃

τi
GT −ΨτiP

1
i (H31

τ̄i
)T ×

Q−1
w1(i)H31

τ̄i
P 1

i ΨT
τi

, P 1
0 = P 0

τd+1, i > 0 (65)

P 2
i+1 = ΨNi

P 2
i ΨT

Ni
+ GQw̃

Ni
GT −ΨNi

P 2
i (K21

N̄i
)T ×

Q−1
w2(i)K21

N̄i
P 2

i ΨT
Ni

, P 2
0 = P 1

Nd+1, i > 0 (66)

The proof of Lemma 2 is straightforward and similar to
that of [16], thus, it is omitted.

For i, j ≥ 0, let

R00
τj ,τi

= 〈XXX(τ j),EEE
0(τ i)〉, R01

τj ,i = 〈XXX(τ j),EEE
1(i)〉

R02
τj ,i = 〈XXX(τ j),EEE

2(i)〉, R10
j,τi

= 〈XXX(τ j),EEE
0(τ i)〉

R11
j,i = 〈XXX(τ j),EEE

1(i)〉, R12
j,i = 〈XXX(τ j),EEE

2(i)〉
R20

j,i = 〈XXX(N j),EEE
0(τ i)〉, R21

j,i = 〈XXX(N j),EEE
1(i)〉

R22
j,i = 〈XXX(N j),EEE

2(i)〉

be the cross-covariance matrices of the state XXX(·) and the
state estimation error EEEi(·)(i = 0, 1, 2). Clearly, these
cross-covariance matrices can be calculated directly now.

After having made the above preparation, we give the
explicit expressions for the innovation covariance matrix
Qws(τ) and the optimal estimator x̂xx(τl|τ, τd) via a theorem.

Theorem 1. Considering the state-space model
(41)∼ (42) in Krein space, the innovation covariance ma-
trix Qws is given as

1) For 0 ≤ τ < d,

Qws(τ) = K31
τ Q0

e(K31
τ )T + diag{∆̄−1

τ , Is} (67)

with Q0
e = P 0

τ ;
2) For d ≤ τ ≤ Nd,

Qws(τ) = K42
τ Q1

e(K42
τ )T + diag{∆̄−1

τ , I2s} (68)

with

Q1
e =

[
P 1

d R10
d,τd

(R10
d,τd

)T P̄ 01
τd

]

P̄ 01
τd

= P 0
τd

+ R00
τd,τd

(K31
τd

)TQw0(τd)K31
τd

(R00
τd,τd

)T +

d−1∑
i=1

R01
τd,i(K41

τi
)TQw1(i)K41

τi
(R01

τd,i)
T

3) For τ > Nd,

Qws(τ) = H32
τ Q2

e(H32
τ )T + diag{∆̄−1

τ , I2s} (69)

with

Q2
e =

[
P 2

τ−Nd
R20

τ−Nd,τd

(R20
τ−Nd,τd

)T P̄ 02
τd

]

P̄ 02
τd

= P 0
τd

+ R00
τd,τd

(K31
τd

)TQw0(τd)K31
τd

(R00
τd,τd

)T +

Nτ∑
i=1

R01
τd,i(K41

τi
)TQw1(i)K41

τi
(R02

τd,i)
T +

τ−Nd∑
i=1

R02
τd,i(H31

Ni
)TQw2(i)H31

Ni
(R02

τd,i)
T

Meanwhile, the optimal estimator x̂xx(τl|τ) = x̂xx(τl|τ, τd) (l is
an integer) is updated via the following recursions

1) For k > 0 and N ≥ N2d + k + 1 ≥ 0,

x̂xx(Nd + k + 1|Nd + k, Nd, N2d + k + 1) =

ΨNd+kx̂xx(Nd + k|Nd + k − 1, Nd, N2d + k)+

CCC(Nd + k) + ΨNd+kR22
k,k(K21

N2d+k)TQ−1
w2www

2(k) (70)

x̂xx(Nd + 1|Nd, Nd, N2d + 1) =

ΨNdx̂xx(Nd|Nd − 1, Nd − 1, N2d) + CCC(Nd)+

ΨNdR11
d−1,d−1(K31

N2d
)TQ−1

w1(d1)www
1(d1) (71)

x̂xx(N2d + k + 1|Nd + k, Nd, N2d + k + 1) =

x̂xx(N2d + k + 1|N2d + k, N2d + k, N2d + k)+

R00
N2d+k+1,i(K41

N2d+k+1)
TQ−1

w0www
0(N2d + k + 1)+

d−k−1∑
i=1

R01
N2d+k+1,i(K31

N2d+k+1+i)
TQ−1

w1www
1(i)+

k∑
i=1

R02
N2d+k−1,i(K21

Nd+i)
TQ−1

w2www
2(i) (72)
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2) For k > 0 and Nd ≥ τ2d + k + 1 ≥ 0,

x̂xx(τd + k + 1|τd + k, τd + k, τ2d + k + 1) =

Ψτd+kx̂xx(τd + k|τd + k − 1, τd + k − 1, τ2d + k) +

CCC(τd + k) + R11
k,k(K41

τd+k)TQ−1
w1www

1(k) (73)

x̂xx(τd + 1|τd, τd, τd) =

Ψτdx̂xx(τd|τd − 1, τd − 1, τd − 1) + CCC(τd) +

R00
τd,τd

(K41
τd

)TQ−1
w0www

0(τd) (74)

x̂xx(τ2d + k + 1|τd + k, τd + k, τ2d + k + 1) =

x̂xx(τ2d + k + 1|τ2d + k, τ2d + k, τ2d + k) +

R00
τ2d+k+1,k+1(K41

τ2d+k+1)
TQ−1

w0www
0(τ2d + k + 1) +

d−1∑
i=1

R01
τ2d+k+1,i(K41

τ2d+k+1+i)
TQ−1

w1www
1(i) (75)

3) one-step predict formula is shown as

x̂xx(τ + 1|τ, τ, τ) = Ψτx̂xx(τ |τ − 1, τ − 1, τ − 1) +

CCC(τ) + ΨτR00
τ,τQ−1

w0www
0(τ) (76)

with initial value x̂xx(0| − 1,−1,−1) = 0.
For a simple expression of the optimal estimator, we omit

the time index of innovation covariance matrix, which is
identical with that of the adjacent innovation when it does
not cause confusion.

3.4 Solutions for the HHH∞ measurement control
problem

By the virtue of the discussions in the previous sections,
we shall formulate the H∞ measurement-feedback control-
law and the sufficient and necessary condition thereof.

Theorem 2. Consider the state-space model (1)∼ (4).
For a given γ > 0, a measurement-feedback H∞ controller
uuui(t) = FFF i(yyy(j)|0≤j≤t) (i = 0, 1) that makes (9) hold exists
if and only if

1) Π−1
0 − γ−2P0 > 0;

2) ∆τ > 0 for all τ = 0, 1, · · · , N ;
3) The matrix Qv

τ − Sτ (Qw̃
τ )−1ST

τ has the same inertia
as Qwwws for all τ = 0, 1, · · · , N .

Moreover, for τ ≤ Nd, the central controller is given by

uuu0(τ) = Kτ
0 x̂xx(τ |τ − 1) +

[Im 0m] QuyQ−1
y

(
yyy(τ)−Hτ ˆ̄xxx(τ | τ − 1)

)
+ sss0,τ (uuu)

uuu1(τ) = Kτ
1 x̂xx(τ |τ − 1) +

[0m Im] QuyQ−1
y

(
yyy(τ)−Hτ ˆ̄xxx(τ | τ − 1)

)
+ sss1,τ (uuu)

For τ > Nd, the central controller is given by

uuu0(τ) = Kτ
0 x̂xx(τ |τ − 1) +

QuyQ−1
y

(
yyy(τ)−Hτ ˆ̄xxx(τ | τ − 1)

)
+ sss0,τ (uuu)

where

Quy =





[
(Kτ

0 )T (Kτ
1 )T

]T
P 0

τ HT
0 , 0 ≤ τ < d

[
Kτ

0 P 1
d HT

0 Kτ
0 R10

d,τd
HT

1

Kτ
1 P 1

d HT
0 Kτ

1 R10
τ,τd−1H

T
1

]
, d ≤ τ ≤ Nd

[
Kτ

0 P 1
d HT

0 Kτ
0 R10

τ,τd−1H
T
1

]
, τ > Nd

Qy =





H0P
0
τ HT

0 + Ir, 0≤τ <d
[

H0P
1
d HT

0 H0R
10
d,τd

HT
1

H1(R
10
d,τd

)THT
0 H1P̄

01
τd

HT
1

]
+ I2r, d≤τ≤Nd

[
H0P

2
τ−Nd

HT
0 H0R

20
τ−Nd,τd

HT
1

H1(R
20
τ−Nd,τd

)THT
0 H1P̄

02
τd

HT
1

]
+I2r, τ >Nd

Proof. The sufficient and necessary condition of the ex-
istence of the H∞ measurement-feedback controller uuui(t) =
FFF i(yyy(j)|0≤j≤t)(i = 0, 1) can be referred to [17] directly. As
for the central controller, it will be clear after we make an
LDU decomposition for Qws in (50). ¤

Different from the delay-free case, the present controller
involves something else besides the state-estimation, which
originates from the delay-input joining the original state
equation. Actually, the H∞ state-feedback controller[16]

has already included the additional term besides the state.
Towards the end, let us analyze the relationship between

[4, 16] and the paper. In fact, three of them share similar
ideas to some extent.

Remark 4. Reference [4] is clearly a special case of our
paper, so is its result. In addition, when the perfect and
uncontaminated states can be observed directly, namely,
the estimator of states is accurate, the result of [16] is also
a special case of this paper.

This paper achieves the causal and central H∞ controller
of the time-invariant system with single I/O delay. Es-
pecially, the idea can be extended to the time-varying or
multi-delay systems.

Remark 5. The present approach can be extended to
deal with the multi-delay and vary-time case trivially.

4 Numerical example

In order to display that the present controller is effective,
we still take the model in [18] with respect to the network

congestion control and follow almost all of Zhang′s[16] pa-
rameters.

Generally speaking, at time instant t, the high priority
sources ξt, ξt−1, ξt−hi , and ξt−hi−1, and the queue lengths
qt and qt−hi can be obtained readily. Therefore, we can
introduce measurement equations, such as

y0(t) = HHH0xxx(t) + v0(t) (77)

y1(t) = HHH1xxx(t− h1) + v1(t) (78)

with the single delay h1 = d = 5, HHH0 = [0 1 0], and HHH1 =
[1 0 0].

For a prescribed γ > 0, the H∞ congestion control with
measurement-feedback desires to find source rate v̄1,t so
that

sup
{q0,v̄1,·,w(·),v0(·),v1(·)}

J(q0, v̄1,·−d, w(·), v0(·), v1(·)) < γ2

(79)
where

J(q0, v̄1,·−d, w(·), v0(·), v1(·)) =
∑N

t=0

[
(qt − q̄)2 + (v̄1,t−d − µ)2

]
∑N

t=0 [w(t)2 + v0(t)2 + v1(t)2]
(80)

In practice, the performance (79) aims to keep the queue in
the buffer close to the target length q̄ and the source rate
close to the nominal service rate µ, i.e., control input u1 in
the neighborhood of 0.

The simulation result with respect to Theorem 2 can be
seen in Figs. 1 and 2. It is shown that the controller is
effective. Moreover, the desired performance is achieved.
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Fig. 1 Queue length response under the H∞ controller

Fig. 2 H∞ measurement-feedback controller

5 Conclusion

The paper provides a solution to the H∞ measurement-
feedback control problem for systems with single input-
delay and measurement-delay via introducing pseudo-
measurements as well as Krein space. It is testified that
the reorganizing technique is very effective to conquer the
difficulty aroused by delays. The results also show us that
the solution has almost the same structure as the full-
information control-law, where the states are replaced by
their optimal estimations now. Furthermore, we see that
the present separation principle is slightly different from the
one first presented in [19], and the former is more natural
in the underlying setting. More fortunately, the idea can
be readily extended to the time-varying or multiple delays
cases.
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