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An Improved Adaptive Exponential Smoothing
Model for Short-term Travel Time Forecasting of

Urban Arterial Street
LI Zhi-Peng1 YU Hong2 LIU Yun-Cai3 LIU Fu-Qiang1

Abstract Short-term forecasting of travel time is essential for the success of intelligent transportation system. In this paper,
we review the state-of-art of short-term traffic forecasting models and outline their basic ideas, related works, advantages and
disadvantages of each model. An improved adaptive exponential smoothing (IAES) model is also proposed to overcome the drawbacks
of the previous adaptive exponential smoothing model. Then, comparing experiments are carried out under normal traffic condition
and abnormal traffic condition to evaluate the performance of four main branches of forecasting models on direct travel time data
obtained by license plate matching (LPM). The results of experiments show each model seems to have its own strength and weakness.
The forecasting performance of IASE is superior to other models in shorter forecasting horizon (one and two step forecasting) and
the IASE is capable of dealing with all kind of traffic conditions.
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Urban traffic congestion has been a global issue. The un-
derlying reason is that the capacity of transportation traffic
system is regularly exceeded by traffic demand. There are
three basic strategies to relieve congestion[1]. The first is
to increase the transportation infrastructure. This strat-
egy is very expensive and can only be accomplished in the
long term. The second is to limit the traffic demand or
make traveling more expensive, which will be strongly dis-
approved of by travelers. The third is to focus on efficient
and intelligent utilization of the existing transportation in-
frastructure. This strategy is the best trade-off and gains
more and more attention. Currently, the intelligent trans-
portation system (ITS) is the most promising approach to
implementation of the third strategy.

The success of ITS relies on the accurate forecasting of
future traffic condition rather than historical or current
traffic condition[2]. For example, as predictive informa-
tion becomes more available to the traveling public, bet-
ter decisions can be made that will help spread travel de-
mand over time and space, and thus, reducing the amount
of congestion in urban areas. With the help of predictive
traffic information, the traffic management center can ap-
ply appropriate controlling strategy in advance, instead of
responding to traffic congestion passively.

While forecasting of future traffic condition can be made
for various traffic parameters, such as point speed, lane
occupancy, and traffic volume, travelers most care for travel
time information in making their trip decision. The degree
of congestion can be reasonably defined by the deviation
between travel time under fluent condition and that under
congested condition[3].

There has been much research contributing to the field of
travel time forecasting[4−7]. However, most previous stud-
ies used “indirect” travel time data (e.g., volume, occu-
pancy, and speed), and the travel time is estimated by a

function of these parameters[8]. Even though the general
relation among these parameters has been explored widely,
the coefficients in the function are most likely site specific.
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Moreover, this general relationship may not be consistent
with saturated flow condition and can be affected by in-
terruptions, such as traffic control devices, etc., in urban
environment.

Recently, direct travel time data can be collected
by many emerging advanced techniques, such as image-
processing-based license plate matching (LPM), GPS-based
floating car, and automatic vehicle identification (AVI).
Those advanced techniques make it possible to directly fore-
cast travel time based on the observed travel time data.

The objectives of this research are to evaluate the perfor-
mance of existing forecasting models based on direct travel
time data obtained by LPM technique and to propose an
improved adaptive exponential smoothing model for short-
term forecasting. The paper is organized as follows. First,
a brief introduction of LPM is given in Section 1. Section 2
reviews the state-of-art of short-term traffic forecasting
models and outlines their basic ideas, related works, advan-
tages and disadvantages of each model. After that, an im-
proved adaptive exponential smoothing model is proposed
in Section 3, followed by comparing experiments of vari-
ous models under normal and abnormal traffic condition in
Section 4. Section 5 concludes this paper.

1 Travel time based on licence plate
matching

LPM is one of the main direct approaches to collection
of travel time information. In general, license plate match-
ing techniques consist of collecting vehicular license plate
characters and arrival time at various checkpoints, match-
ing the license plate between consecutive checkpoints and
computing travel time. Many years ago, LPM was carried
out manually and only used in small-scale traffic survey. In
recent years, LPM gained popular and can perform auto-
matically with the advance of image-processing technique
and widespread installation of video detecting devices.

Travel time over an arterial street is in nature a contin-
uous and time-varying random variable, however, for prac-
tical purposes the observed travel time by LPM is often
aggregated and stored in a discrete time interval. Fig. 1
illustrates the process. Each back dot in Fig. 1 is a sample
corresponding to a matched license plate pair and I repre-
sents the I-th time interval . The aggregate mean travel
time of each time interval forms a time series. Then, fore-
casting models use the observed mean travel time data of
the previous time intervals as input and forecast the mean
travel time for discrete future time intervals.
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Fig. 1 Travel time forecasting based on LPM data

2 State-of-art of short-term traffic fore-
casting

There are few published works related to short-term traf-
fic forecasting occuring in the traffic published works be-
fore 1990s[1]. In recent decade, however, the number of
published works concerning short-term traffic forecasting
expands rapidly with the advent of intelligent transporta-
tion system that spurs the demand of traffic forecasting.
This section reviews the main branches of short-term traf-
fic forecasting models and outlines their basic ideas, related
works, advantages and disadvantages of each model.

2.1 Exponential smoothing model

Exponential smoothing is an intuitive forecasting
method that weights the observed time series unequally.
Recent observations are weighted more heavily than remote
observations. The unequal weighting is accomplished by
using one or more smoothing parameters, which determine
how much weight is given to each observation.

Exponential smoothing model is a widely used method
in time series analysis and has been adopted in traffic fore-
casting for decades. [3] provided a comprehensive review
on the application of exponential smoothing in traffic fore-
casting.

The major advantage of exponential smoothing meth-
ods is that they are simple, intuitive, and easily under-
stood. Generally, exponential smoothing is regarded as an
inexpensive technique that gives good forecast in a wide
variety of applications. In addition, data storage and com-
puting requirements are minimal, which makes exponential
smoothing suitable for real-time application.

The major disadvantage of exponential smoothing meth-
ods derives from its basic premise about the model: the
level of time series should fluctuate about a constant level
or change slowly over time. When the time series takes
on an obvious trend, even adaptive exponential smoothing
methods will fail to give good forecasting[3].

To overcome the disadvantage, an improved adaptive ex-
ponential smoothing model is proposed in this paper. De-
tails about the model are given in Section 4.

2.2 ARIMA model

Auto regression integrated moving average model
(ARIMA) is a classical method for time series analysis.
The basic principle of ARIMA is to find the systematic
component of a non-stationary time series by removing the
lag and seasonality to make it stationary[9−10]. When fit-
ting an ARIMA model to traffic time series data, there are
three basic steps, which are used iteratively until a suc-
cessful model is achieved: 1) Model identification: this is
determination of the likely orders of auto regression, dif-
ferencing, and moving average. Often there will be several
plausible models to be examined. 2) Parameter estimation:
once a set of possible models has been selected, parameter

values are determined for each. 3) Diagnostic checking: this
involves both checking how well the fitted model conforms
the data and the use of diagnostic tests that are designed
to suggest how the model should be changed in case of a
lack of good fit. Once a good fitting ARIMA model has
been found by this method, it can be used to make forecast
of the future behavior of the system.

Reference [11] first proposed an ARIMA model for anal-
ysis of freeway travel time series data. References [12−15]
adopted specific ARIMA or seasonal ARIMA models to
make traffic forecasting. Reference [16] investigated the
use of ARIMA for predicting arterial traffic flow.

The advantage of ARIMA model is that there is a sys-
tematic, and iterative methodology for applying the model,
and ARIMA is one of the most mature techniques theo-
retically and practically in time series analysis. Although
ARIMA model performs well in traffic forecasting, the fit-
ting and maintenance of ARIMA models are quite time-
consuming, which is a main obstacle in real-time applica-
tion.

2.3 Non-parameter regression (NPR) model

NPR is a forecasting technique similar to case-based rea-
soning that does not make any rigid assumptions about the
data[17]. In short, the method searches a collection of his-
torical observations for records similar to the current con-
ditions and uses them to estimate the future state of the
system. Unlike the parametric models that compress all
training data into a set of equations through the process
of parameter fitting, NPR retains all possible patterns and
trends of the data and searches through them for past sim-
ilar cases each time a forecast is made. Furthermore, only
enough data to sufficiently describe the underlying process
is required and not knowledge about the system being mod-
eled. No prior knowledge about the system being modeled
is required.

Researchers have proposed many NPR-based
models[18−20]. Reference [2] reviewed the NPR model and
outlined four challenges related to the implementation
of non-parametric regression methods: 1) choice of an
appropriate state space; 2) definition of a distance metric
to determine nearness of historical observations to the
current conditions; 3) selection of a forecast generation
method given a collection of nearest neighbors, and
4) management of the potential neighbors′ database.
Reference [15] enhanced NPR for using in real-time system
by reducing execution time using advanced data structures
and imprecise search and developed a methodology for ap-
plying NPR, similar to the way Box and Jenkins provided
a methodology for conducting time series analysis.

2.4 Artificial neural network (ANN) model

The motivation for using neural network is based on the
factor that the model is capable of handling nonlinear rela-
tionship. In general, ANN consists of three kinds of layers:
an input layer, one or a number of hidden layers, and an
output layer[21]. The output layer is formed by a neuron
that represents the forecasted variable. The input variables
can be assigned to neurons in the input layer. By feeding
the network with training data, relationships between neu-
rons in all layers can be established. These relationships are
defined by the weights given to the connections between the
neurons during the training process.

A review of civil engineering applications of neural net-
works was presented by [22]. Recent research on traffic
forecasting of NN can be referred to [23−26]. In those
studies, emphasis was put on three aspects: the selection
of suitable input variables, the choice of network structure,
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and the determination of training algorithms.
There are two drawbacks for ANN: one is that ANN is

essentially a black box; the other is that its network struc-
ture and the weights between neurons are fixed and cannot
be adjusted adaptively during the forecasting process.

3 Improved adaptive exponential
smoothing model

This section firstly gives a brief introduction to simple
exponential smoothing and adaptive exponential smooth-
ing. Then, an improved adaptive exponential smoothing
model is proposed to overcome the drawbacks of the pre-
vious exponential smoothing model and a comparing ex-
periment is carried out to illustrate the advantages of the
proposed model.

3.1 Simple exponential smoothing (SES)

Exponential smoothing is usually based on the premise
that the level of time series should fluctuate about a con-
stant level or change slowly over time[7]. Under such a
premise, the travel time series y(t) can be described by

y(t) = β(t) + ε(t) (1)

where, β(t) takes a constant at time t and may change
slowly over time, ε(t) is a random variable and is used to
describe the effect of stochastic fluctuation.

Under the model, β(t) is a sound forecast for ŷ(t + τ) at
time t, and forecast is given as

ŷ(t + τ) = β(t) (2)

where τ is the forecasting horizon.
SES applies unequal weights to the time series observa-

tions. Given an estimate of β(t − 1) at the time period
t− 1 and a new observation y(t) at the time period t, SES
updates estimate of β(t) in the following way.

β(t) = αy(t) + (1− α)β(t− 1) (3)

where α is a smoothing parameter between 0 and 1 and it
determines how much weight is attached to each observa-
tion. The more the average level of the process changes,
the more a newly observed time series should influence the
estimate, and thus, the larger the smoothing parameter α
should be.

3.2 Adaptive exponential smoothing (AES)

Sometimes, it is necessary to change the smoothing pa-
rameter α used in exponential smoothing when the rate
at which β changes over time changes. This suggests that
an adaptive smoothing parameter would produce improved
forecasts.

First, we introduce two error signals:
Smoothed error signal

E(t) = re(t) + (1− r)E(t− 1) (4)

Absolute error signal

A(t) = r |e(t)|+ (1− r)A(t− 1) (5)

where e(t) = y(t)− ŷ(t) and r is a parameter.
Based on the above two signals, a tracking signal is con-

structed as
TS(t) =

∣∣∣∣
Et

At

∣∣∣∣ (6)

The tracking signal has some useful characteristics[3]. First,
tracking signal varies between 0 and 1. Second, when the
level of time series keeps stationary and the tracking signal
approaches to 0. However, with the increase of the trend

of the level of time series changes, the tracking signal will
increase. The two characteristics make the tracking signal
an appropriate candidate for adaptive smoothing parame-
ter. With the tracking signal as the smoothing parameter,
the exponential smoothing can be adaptively adjusted to
fit for the pattern of time series.

3.3 Improved adaptive exponential smoothing
(IAES)

When travel time series change rapidly and take on
strong trend because of some abnormal conditions such
as accident or heavy congestion, etc., even adaptive ex-
ponential smoothing methods cannot capture the dynam-
ics of travel time series[3] (see Fig. 4). The reason derivers
from violation of the basic premise about the exponential
smoothing model: the level of time series should fluctuate
about a constant level or change slowly over time.

The idea of the proposed IAES comes from the philoso-
phy of forecasting. Forecasting usually works in the follow-
ing way[9]. First, the historical data are analyzed in order
to identify a pattern that can be used to describes time se-
ries. Then, this pattern is extrapolated, or extended, into
the future in order to prepare a forecast. The validity of
forecasting rests on the assumption that the pattern that
has been identified will continue in the future. A forecast-
ing technique cannot be expected to give good predictions
unless this assumption is valid. If the data pattern that
has been identified does not persist in the future, this indi-
cates that the forecasting technique being used is likely to
produce inaccurate predictions. Then, changes in pattern
of data should be monitored so that appropriate changes in
the forecasting system can be made before the prediction
becoming too inaccurate.

The proposed IAES consists of two models and one de-
tector (see Fig. 2). For the two models, one is used to de-
scribe the pattern of travel time series with level changing
slowly and is named as Model I, the other is used to de-
scribe the pattern of travel time series taking on strong
trend and is named as Model II. The detector monitors the
current pattern of travel time series and determines which
model is used for forecasting.

Fig. 2 Procedure for IAES algorithm

Model I is given by (1) and AES is applied to forecast
for the model.

The Model II has the following form

y(t) = β(t) + φ(t)t + ε(t) (7)

where β(t) and ε(t) have the same meanings as in (1), and
φ(t) represents the rate at which the trend of series changes.

Under the model, forecasting is given in the following
way

ŷ(t + τ) = β(t) + φ(t)∆t (8)

where ∆t is the forecasting step, β(t) is estimated by (3),
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and φ(t) is estimated by

φ(t) = y(t)− ŷ(t) (9)

Detector monitors a time series d(t): the first order differ-
ence of y(t)

d(t) = y(t)− y(t− 1) (10)

If y(t) can be appropriately described by Model I, d(t)
will fluctuate around zero (see Fig. 3: span of 8:30∼ 9:30
and 10:20∼ 11:20). On the contrary, if y(t)s follow Model
II, a number of successive d(t)s will be greater or lower
than zero with significant magnitudes (see Fig. 3: span of
9:30∼ 10:20 and 11:20∼ 12:15). The detector exploits this
characteristic as a rule to choose right model for forecasting:
If the number of successive d(t)s with the same sign exceeds
a certain threshold and their magnitudes also exceed a cer-
tain threshold, then, (8) is used to forecast, otherwise, the
forecasting is switched to (2).

Fig. 3 The first order difference of travel time series (see Fig. 4
for original travel time series)

Fig. 4 shows the results of forecasting of AES and IAES.
From the result, both AES and IAES perform well before
9:30. However, during the span of 9:30∼ 10:30, travel time
changes rapidly with strong trend, and AES fail to trace the
changes. On the contrary, IAES is capable of capturing the
dynamics of travel time successfully.

Fig. 4 The forecasting performances of AES and IAES on
travel time series with strong trend

4 Comparing experiments

4.1 Data preparation

The comparing experiments were based on Zhaojiaobang
Road (see Fig. 5) — an arterial street in Xuhui District,
Shanghai, P.R. China. The distance of this arterial is about
2.5 km. The plate matching data were provided by SEARI

Group Co. Ltd., who is responsible for the traffic surveil-
lance system of Shanghai. The span of the data covers from
Feb. 1 to Feb. 28, 2005.

Fig. 5 Sketch map of testing arterial street, Zhaojiaobang
Road, Shanghai, P.R. China

The row travel time data was firstly preprocessed to re-
move the outlier samples that had singular values larger
than their neighboring samples. Outlier samples usually
correspond to those vehicles that stop midway for a while.
Then, the processed travel time data were accumulated ev-
ery five minutes to form an aggregate mean travel time
series.

Browsing through all dynamic profiles of travel time se-
ries in a month (see Fig. 6), we obviously found that the
profiles fell into two kinds. For most days of the month, the
profiles of travel time changed slowly over time and took on
a similar pattern. However, there were seldom days with
profiles changing acutely and having abnormal larger travel
time in certain time spans. The latter kind of days often
means that there are abnormal traffic conditions such as
accidents or heavy congestion. For example, the day with
abnormal profile in Fig. 6 corresponded to Feb. 2, which was
the day before Spring Festival (the most important festival
in China), and most people would go out for shopping in
that day, so heavy congestion occurred.

Fig. 6 Travel time profiles (For the purpose of clarity, only
four days′ profiles are displayed, including one profile

corresponding to a day with abnormal traffic condition and
three profiles corresponding to days with

normal traffic condition.)

4.2 Comparing forecasting models

The four kinds of forecasting models introduced in Sec-
tion 2 were implemented and compared.

The IAES presented in Section 3 was adopted for expo-
nential smoothing model. For the ARIMA model, ARIMA
(0, 1, 2) was chosen as the appropriate model for our data
after the selecting route presented in Section 2 with the
help of Matlab toolkit ARMASA. The improved NPR al-
gorithm proposed by [19] was used for NPR model. The
choice of state vectors, nearest neighbor searching rule, sim-
ilarity rule, and prediction algorithm were, respectively, ad-
justed for our data. For ANN model, we use a multiplayer
feed-forward neural network presented by [25]. The imple-
mented ANN consisted of three layers. The hidden layer

renyanqing
附注
请核实这些名字是否准确。
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has four nodes as suggested in [25].

4.3 Design of experiments and measurements

Two comparing experiments were carried out.
One experiment aimed at comparing the performance

of the four forecasting models on days with normal traffic
condition. In this experiment, the forecasting horizons in
the range of one step to four steps were studied for each
model. We used 20 days in the 25 days with normal traffic
condition as training set for NPR, ANN, and ARIMA and
the data of the other 5 days were used as the testing set.

The other experiment tested the performance of the four
forecasting models on days with abnormal traffic condition.
In this experiment, the forecasting models trained in the
first experiment were applied to the day with abnormal
traffic condition.

Mean absolute error (MAE) and mean absolute percent-
age error (MAPE) were applied as performance indices.

MAE =

n∑
i=1

|y(ti)− ŷ(ti)|

n
(11)

MAPE =

n∑
i=1

|y(ti)− ŷ(ti)|
y(ti)

n
× 100% (12)

where y(ti) is the observed travel time and ŷ(ti) is the fore-
casting travel time for y(ti).

Fig. 7, Tables 1 and 2 show the forecasting results of the
four models under normal traffic condition. From these
results, it can be found that the forecasting accuracies of
models almost deteriorates with the increase of forecasting
horizon. However, the rate at which the forecasting ac-
curacy of each model reduces is different. The proposed
IAES has the best performance in shorter forecasting hori-
zon (one step and two steps), but rapidly deteriorates with
the increase of forecasting horizon. On the contrary, the
ANN and NPR models perform more stability when the
forecasting horizon gets longer.

Fig. 7 Forecasting results of four comparing models on days
with normal traffic condition

Fig. 8 and Table 3 present the comparative results of the
four models under abnormal traffic condition. Under such
scenario, IAES is overwhelmingly advantageous. The suc-
cess of IAES should owe to its ability to effectively detect
the change of travel time pattern and switch to appropriate
forecasting algorithm. However, other models are trained
with “normal” data, so they fail to give good travel time
forecasting under abnormal traffic conditions. It is interest-
ing to point out that [21] just made use of the deviation of
observed travel time and forecasted travel time by NPR to
automatically detect traffic incident: when the deviation is

larger than a predefined threshold, an alarming signal will
be given for a possible incident.

Table 1 Performance comparison on days with normal traffic
condition in terms of MAPE (%)

Forecasting horizon 1 2 3 4

IAES 9.11 9.72 11.3 13.60

ANN 9.24 9.94 9.83 10.67

NPR 11.04 11.60 12.24 12.40

ARIMA 11.90 13.87 14.42 14.91

Table 2 Performance comparison on days with normal traffic
condition in terms of MAE (s)

Forecasting horizon 1 2 3 4

IAES 21.9 22.72 26.57 32.16

ANN 21.63 23.27 23.03 25.94

NPR 26.25 27.68 29.27 29.55

ARIMA 27.89 33.18 35.27 36.42

Table 3 Performance comparison on days with abnormal
traffic condition (one step forecasting)

IAES ARIMA ANN NPR

MAE (s) 53.25 68.95 104.26 191.95

MAPE (%) 8.06 11.31 13.69 22.45

Fig. 8 Forecasting results of four comparing models on day
with abnormal traffic condition

From the results of experiments, the proposed IAES
takes on two notable advantages: 1) The forecasting per-
formance of IASE is superior to other models in shorter
forecasting horizon; 2) IASE has the ability to deal with all
kinds of traffic conditions.

Generally speaking, each model seems to have its own
strength and weakness and have a sort of typical or optimal
forecasting horizon, and no single model is expected to be
the best in all aspects. So a versatile forecasting model may
lie in the fusion of different models.

5 Conclusion

The purpose of this paper is to evaluate the perfor-
mance of existing forecasting models based on direct travel
time data obtained by LPM. The main contribution of
this paper is threefold. First, a brief review on state-of-
art of short-term traffic forecasting is given with their ba-
sic ideas, related works, advantages and disadvantages of
each mode. Second, an IAES model is proposed, which
overcomes the drawbacks of previous adaptive exponential
smoothing model. Third, the comparative experiments of
four kinds of models were carried out on travel time data
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obtained by LPM. The results of experiments show the fore-
casting performance of IASE is superior to other models in
shorter forecasting horizon (one and two step forecasting)
and the IASE is capable of dealing with abnormal traffic
condition.

However, each model seems to have its own strength and
weakness, and have a sort of typical or optimal forecasting
horizon; no single model is expected to be the best in all
aspects. Our future study will be laid on a versatile fore-
casting model that combines the existing forecasting mod-
els and has good performance on all spans of forecasting
horizons and traffic conditions.
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