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Evaluation Criteria Based on Mutual Information for
Classifications Including Rejected Class

HU Bao-Gang1, 2 WANG Yong1, 2

Abstract Different from the conventional evaluation criteria using performance measures, information theory based criteria present
a unique beneficial feature in applications of machine learning. However, we are still far from possessing an in-depth understanding of
the “entropy” type criteria, say, in relation to the conventional performance-based criteria. This paper studies generic classification
problems, which include a rejected, or unknown, class. We present the basic formulas and schematic diagram of classification learning
based on information theory. A closed-form equation is derived between the normalized mutual information and the augmented
confusion matrix for the generic classification problems. Three theorems and one set of sensitivity equations are given for studying
the relations between mutual information and conventional performance indices. We also present numerical examples and several
discussions related to advantages and limitations of mutual information criteria in comparison with the conventional criteria.
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It is understandable that evaluation criteria (sometimes
equivalent to learning targets) comprise the first task in
studies on machine learning. This task will be simpli-
fied if some criteria are specified with the application re-
quirements. However, from the theoretical point of view,
selections of evaluation criteria are nevertheless an open
problem in machine learning. For better understanding of
the problem, we roughly categorize evaluation criteria into
several groups. Within a type of performance-based cri-
teria, taking classification problems for examples, one can
further divide them as partial performance criterion like
“true positive accuracy”, or overall performance one like
ROC (Receiver operating characteristic) curves. This type
of performance-based criteria can still be grouped as di-
rect measure criteria or indirect measure ones. The direct
measure criteria include classification error, ROC curve, or
computational cost. The indirect measure criteria can be
found as mutual information, class separation margins, or
error bounds. Up to now, most selections of learning cri-
teria are made based on users′ experiences or preferences.
Therefore, a systematic study seems to be necessary in or-
der to explore the subject, including the following two basic
issues:

1) One of the principal tasks in machine learning is to
process data. Can we apply “entropy” or information-based
criteria as a generic measure for dealing with uncertainty
of data in machine learning?

2) What are the relations between information-based cri-
teria (say, mutual information) and the conventional per-
formance criteria (say, classification accuracy)? What are
the advantages and limitations in using information-based
criteria?

This paper will address the second issue. Considering
that information-based criteria have been extensively ap-
plied in the studies of unsupervised learning[1−2], we will
focus on supervised learning, particularly on generic classi-
fication problems which include a rejected class. The main
objectives of this work are to derive new formulas of nor-
malized mutual information from the augmented confusion
matrix and to provide theoretical interpretations of mutual
information criteria in the context of classification prob-
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lems. At the same time, some numerical examples and
computer program are given. Finally, we summarize the
advantages and limitations of mutual information criteria
in classification problems.

1 Related work

In this section, we introduce some existing works related
to the mutual information criteria. At the same time, some
basic equations are given so that readers can follow the new
formulas derived in the next section. Shannon introduced
“entropy” concept into information theory as[3]

H(X) = −
∑

p(x) log2 p(x) (1)

where X is a discrete random variable with probability den-
sity function (PDF) p(x). As the entropy is considered as a
measure of uncertainty of random variable, it is also viewed
as a measure of impurity in data[4]. The mutual informa-
tion is defined as the relative entropy, or mutual entropy[5],
between the joint distribution p(x, y) and the product dis-
tribution

I(X, Y ) =
∑ ∑

p(x, y) log2

p(x, y)

p(x)p(y)
(2)

where X and Y are two random variables, respectively. The
relations between the entropy and mutual information are:

I(X, Y ) = I(Y, X) = H(X)−H(X|Y ) = H(Y )−H(Y |X)
(3)

I(X, X) = H(X) (4)

where H(Y |X) is the conditional entropy, and is defined as

H(Y |X) =
∑

p(x)H(Y |X = x) (5)

Equation (4) shows that any entropy can be considered as
self mutual information. Fig. 1 shows the relationships of
(3) in a context of classifications, where X is replaced by

a target variable T . It was reported[1] that the proposal
of applying mutual information criteria in machine learn-
ing is mostly attributed to the study of Linsker[6]. After
his work, significant investigations have been reported on
the subjects of feature selection/extraction[7−10], indepen-

dent component analysis[11], image registration[12−13], etc.
Haykin[1] systematically summarized the four cases of us-
ing mutual information as an objective function in neural
network studies. Xu[2] and Principe[14] proposed a generic
framework in machine learning for both supervised learning
and unsupervised learning.
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Fig. 1 Relationships between mutual information and entropy
in a context of classification problems, where H (T ) is generally

fixed as a baseline ((a) General case[5] (misclassifications);
(b) Fully dependent T and Y (including exact classifications);

(c) Independent T and Y (misclassifications))

In fact, there exist numerous definitions of information-
based criteria in applications[14]. Among them, one impor-
tant notation is the normalized mutual information[3, 15],
defined as

NI(X, Y ) =
I(X, Y )

H(X)
, NI(Y, X) =

I(Y, X)

H(Y )
(6)

This notation presents another type of “correlation”
measure[3] and sometimes is called as “asymmetric depen-
dency coefficient (ADC)”[15]. However, two definitions in
(6) will produce unequal values due to their asymmetric
property in the definitions. Therefore, [16−17] proposed
normalized mutual information with symmetric property,
such as

NI(X, Y ) = 2
I(X, Y )

H(Y ) + H(X)
, NI(X, Y ) =

I(X, Y )√
H(Y )H(X)

(7)

Quinlan[18−19] proposed a new term called “information
gain” as a criterion for the study of decision tree. The basic
formula of this criterion is given in the following definition
by Mitchell[4]

IG(S, A) = H(S)−
∑

v∈V alues(A)

|Sv|
|S| H(Sv) (8)

where S and A represent the sets of samples and attributes,
respectively, and | · | is a frequency calculation. The first
part on the right side of (8) is entropy with respect to the
sample labels, rather than to the sample data themselves.
The second part is the conditional entropy with respect
to the predication labels. This information gain criterion
presents a principle of forming a decision tree with a simple
structure. However, with the explanation by Quinlan[19],
“information gain is also known as the mutual information
between the test X and the class”. Ding and Wu[20] pro-
posed a term of “entropy decrement of recognition”, which
has the same meaning as mutual information. They also
derived three theorems for studies of entropy-based pattern
recognitions.

In the study on the relationship between mutual informa-
tion and Bayesian errors, Fano′s pioneer work[21] resulted
in the following condition

Pr(Y 6= T ) ≥ H(T )− I(T, Y )− 1

log2(m)
=

H(T |Y )− 1

log2(m)
(9)

where Pr(Y 6= T ) is a Bayesian error and m is a total
number of classes, but notation T is used for classification
problems. This inequality presents a lower bound for the
Bayesian error. And, the upper bound was derived by Hell-
man and Raviv[22]

Pr(Y 6= T ) ≤ H(T )− I(T, Y )

2
=

H(T |Y )

2
(10)

Eriksson[23] pointed out that (10) should be effective only
when Pr(Y 6= T ) ≤ 0.5. In general, it seems more impor-
tant that one can have an exact relation between mutual
information and classification accuracy. In a recent work,
we derived the nonlinear relations between normalized mu-
tual information and the conventional criteria for binary
classification problems[24]. The present work is its exten-
sion of the analysis to classifications on multiple classes by
including a rejected class as a generic approach.

2 Definitions and formulas for classifi-
cation problems

Definition 1. A generic classification problem is de-
fined as a classification, which may assign samples into
a rejected, or unknown, class. Therefore, the three data
sets that are used for training a classifier will be defined
as: input data set {xxxk}n

k=1 ∈ X ⊂ Rd; output data set
{yk}n

k=1 ∈ Y = {1, 2, · · · , m + 1}; and target data set
{tk}n

k=1 ∈ T = {1, 2, · · · , m}, respectively; where n is a
total sample number, m is a total class number, and d is
the dimensions of feature space. When yk = m + 1, it
represents a rejected class.

Remark 1. Different from X in feature space that could
be any type of data, both T and Y represent label informa-
tion as integer sets for hard classifiers. In real applications,
a rejection strategy is often used for improving the accu-
racy of classifiers. For this reason, we define Y to have one
more label than T for a rejected class.

Definition 2. For a generic classification problem, an
augmented confusion matrix is defined by adding one col-
umn for a rejected class onto a conventional confusion ma-
trix in a form as

C =




c11 c12 · · · c1m c1(m+1)

c21 c22 · · · c2m c2(m+1)

...
...

. . .
...

...
cm1 cm2 · · · cmm cm(m+1)


 (11)

where cij represents the sample number of the i-th class
that is classified as the j-th class. The row data corresponds
to the exact classes, and the column data corresponds to
the prediction classes. The last column represents a re-
jected class. The constraints of an augmented confusion
matrix are

Ci =

m+1∑
j=1

cij , Ci > 0, cij ≥ 0, i = 1, 2, · · · , m (12)

where Ci is the total number for the i-th class. The data
for Ci is known in classification problems.
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Definition 3. The empirical PDF of joint distribution
Pe (T, Y ) in classification problems is defined from a fre-
quency means on C as

Pe(T, Y ) =
(cij

n

)
m×(m+1)

i = 1, 2, · · · , m, j = 1, 2, · · · , m + 1 (13)

where n =
∑

Ci is a known constant in classification prob-
lems. Then, the empirical PDFs for the marginal distribu-
tions are

Pe(T ) =

(
Ci

n

)

m×1

, i = 1, 2, · · · , m (14)

Pe(Y ) =

(
1

n

m∑
i=1

cij

)

1×(m+1)

, j = 1, 2, · · · , m + 1 (15)

Remark 2. When the exact PDFs for Y and T are un-
known, one can use the empirical ones for an approximation
study. Table 1 lists all terms in (13)∼ (15). This table will
be helpful for understanding and calculating the empirical
information-based criteria in classification problems.

Modified on the studies by Xu[2] and Principe[14], we
present a schematic diagram of classification learning based
on information theory (see Fig. 2). The objective function
is set as

max NI(T, Y ) = NI(T, f(X,θθθ)) =
I(T, Y )

H(T )
(16)

Fig. 2 Schematic diagram of classifications based on
information theory

The basic interpretations for this objective function are to
design the nonlinear function f , and then, to tune the pa-
rameter vector θθθ for maximizing the correlations between
Y and T . When NI = 1, it represents a full correlation be-
tween Y and T (see Fig. 1 (b)). When NI = 0, it indicates
complete independence between Y and T (see Fig. 1 (c)).
From Fig. 1, one can see that an exact classification is a
process to force I(T, Y ) or H(Y ) to reach the baseline of
H(T ), which is generally unchanged. Theoretically, one
can find out that minimization of normalized conditional
entropy

min NH(T |Y ) =
H(T |Y )

H(T )
(17)

will be fully equivalent to (16). The interpretation for this
objective function is meant to minimize the uncertainty of
T when Y is given. Note that we apply the asymmetric
definitions on NI(T, Y ) and NH(T |Y ) for the considera-
tion of simplicity. Within (16) and (17), H(T ) is usually
known and fixed for representing the uncertainty of the
target data. Contrarily, H(Y ) needs to be updated in each
iteration of learning, which will add extra computational
cost.

In general, when the exact PDFs are unknown, the em-
pirical definitions of entropy and mutual information have
to be used. The empirical entropy of target data is then
given by

He(T ) = −
m∑

i=1

Ci

n
log2

(
Ci

n

)
(18)

We use the following form in calculating the empirical mu-
tual information

Ie(T, Y ) =
∑

T

∑
Y

Pe(T, Y ) log2

Pe(T, Y )

Pe(T )Pe(Y )
(19)

From Table 1 and substitutions of (13)∼ (15) and
(18)∼ (19) into NI expression in (16), one is convenient
to obtain the empirically normalized mutual information
as

NIe(T, Y ) =
Ie(T, Y )

He(T )
=

−

m∑
i=1

m+1∑
j=1

cij log2




cij

Ci

m∑
i=1

(cij

n

)




m∑
i=1

Ci log2

(
Ci

n

) (20)

Remark 3. Equation (20) presents a generic formula for
calculating the empirically normalized mutual information
in classification problems, which includes cases for assign-
ing samples into a rejected class. When using this equation,
a specific operation should be made on removing the sin-
gularity points in numerical studies, which is for imposing
the similar condition H(0) = 0 [3] on (20).

3 Relations between mutual informa-
tion and conventional performance
measures

In this section, we will address the second open issue
discussed in the introduction. The knowledge about the
relations between mutual information and the conventional
performance measures is fundamental from both theoretical

Table 1 Empirical PDFs of the joint distribution Pe(T, Y ), and the marginal distributions Pe(Y ), Pe(T ) in classification problems

Pe(T, Y )
Y

Pe(T )
1 2 · · · m m + 1

T

1 c11/n c12/n · · · c1m/n c1(m+1)/n C1/n

2 c21/n c22/n · · · c2m/n c2(m+1)/n C2/n

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

m cm1/n cm2/n · · · cmm/n cm(m+1)/n Cm/n

Pe(Y )
∑m

i=1 ci1/n
∑m

i=1 ci2/n · · · ∑m
i=1 cim/n

∑m
i=1 ci(m+1)/n 1
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and application viewpoints. For the generic classification
problems concerned in this work, we define accuracy, error
rate, and rejection rate as

A =
1

n

m∑
i=1

cii, E =
1

n

m∑
i=1

m∑

j 6=i

cij , Rej =
1

n

m∑
i=1

ci(m+1)

(21)
Note that in this generic case, the relation among them

is
A + E + Rej = 1 (22)

The other specific performance measures are appeared
in binary classification problems (see Table 2). To follow
the conventional terms in this case, we have a redefinition
as

C =

[
TP FN U1

FP TN U2

]
(23)

where TP is for “true positive”, FP for “false positive”,
FN for “false negative”, TN for “true negative”, and U1

and U2 for the rejected class from C1 and C2 samples, re-
spectively.

Definition 4. In binary classifications, the performance
measure described by single (or dual, or four) independent
variable(s) is called as single- (or dual-, or four-) variable
measure.

Remark 4. When binary classifications without cases
for a rejected class are considered, one will have a confu-
sion matrix formed by four variables. Because C1 and C2

are known as constraints, this matrix will have only two
independent variables. In this situation, any performance
measure can be described by at most two independent vari-
ables. When a rejected class is considered, a performance
measure can be described by at most four independent vari-
ables.

Definition 5. In classifications, the overall performance
measure is defined as a measure, which is able to present
complete information about the classifier′s performance.
For binary classifications without a rejected class, this mea-
sure has to be a dual-variable one and be evaluated from all
operation points on the same classifier. If a rejected class
is considered, the measure needs to be a four-variable one.
Any partial performance measure provides only partial in-
formation of a classifier′s performance, which may not have
sufficient variables or may not evaluate the classifier on all
operation points.

Remark 5. Some measures can change their type de-
pending on their use. Take accuracy measure for example.
When this measure is applied to evaluate classifiers on a

specific operation point, it is considered as a partial per-
formance measure. The performance ranking, say, for two
classifiers, can be changed on other operation points. If this
measure is obtained in a principle of averaging accuracies
on all operation points, it becomes an overall performance
measure.

Remark 6. For binary classifications without a rejected
class, performance evaluations on “True positive rate vs.
False alarm rate”[25] or “Precision vs. Recall” curves will
present an overall measure. However, when considering a
rejected class, “Error rate vs. Rejection rate” curves[5] will
be useful as an overall performance measure.

Remark 7. Classifications intrinsically present a con-
flicting property among some performance measures like
the curves mentioned above. Therefore, a strategy of us-
ing ROC curves or AUC (Area under curve) index[26] will
present an overall performance measure. It apparently re-
mains an open issue to find a sensible and statistical mea-
sure for balancing the conflicting performance measures in
classification problems.

Theorem 1. If a classifier assigns no sample into the
rejected class, when NI(T, Y ) = 1, or H(T |Y ) = 0, the
classifier corresponds to the cases of either an exact clas-
sification (A = 1) or a specific misclassification, which can
be fully corrected by simple exchanges among labels. For a
binary classifier, this misclassification is completely wrong
(A = 0).

Proof. For a classifier without a rejected class, when
NI(T, Y ) = 1 or H(T |Y ) = 0, one can obtain the following
conditions from (20)

cij = Ci, ckj = 0, i = 1, 2, · · · , m, j = 1, 2, · · · , m + 1, k 6= i
(24)

These conditions indicate that within each of the first m
columns, only one element, cij , equals to the class number
Ci, and all other elements are zeros. When j = i for all
columns, it represents an exact classification. When j 6= i,
it indicates there exists a zero on a diagonal element, which
implies a misclassification. In this case, for a binary classifi-
cation, the constraints (12) lead to c12 = C1 and c21 = C2,
which exhibits a completely wrong result (A = 0) in the
classification. From (24), one can see that the exact classi-
fication can be obtained by simple exchanges among labels
for this type of misclassifications. ¤

Theorem 2. When I(T, Y ) = 0, or NH(T |Y ) = 1, the
classifier exhibits a misclassification. One specific case is
that all samples are considered to be one of m classes or a
rejected class.

Table 2 Conventional performance measures and their formulas in binary classifications (C1 is the number of exact positive, C2 is
the number of exact negative, n is the number of total samples, TP is the number of true positive, FP is the number of false

positive, TN is the number of true negative, and FN is the number of false negative.)

Type Independent variable (s) Term Formula

Partial performance

Single

True positive rate (TPR)
TP/C1

(Recall, Hit rate)

True negative rate (TNR) TN/C2

False alarm rate (FAR) FP/C2

Dual

Precision (P ) TP/(TP + FP )

Accuracy (A) (TP + TN)/n

Error rate (E) (FP + FN)/n

Overall performance
Dual

Hit rate-false alarm rate (ROC curve) Area under curve (AUC)

Recall-precision (R-P curve) Area under curve (AUC)

Four Error rate-rejection rate Area under curve (AUC)
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Proof. Apply a counter proof approach. Suppose that
no error exists for the classifier, so that only the diago-
nal elements in C are non-zeros. Applying constraints (12)
will result in cii = Ci. Hence, it will lead to I(T, Y ) = 1 or
NH(T |Y ) = 0, which is against the original assumption in
the theorem. Therefore, at least one non-diagonal element
in C must be non-zero, which forms the following condition

∃cij > 0, i 6= j, i = 1, 2, · · · , m, j = 1, 2, · · · , m + 1 (25)

Equation (25) implies a misclassification. For a special case,
when the following conditions are substituted into (20),

cij = Ci, cik = 0, i = 1, 2, · · · , m, j = 1, 2, · · · , m +1, k 6= j
(26)

one can obtain I(T, Y ) = 0 or NH(T |Y ) = 1. These con-
ditions indicate that only one column in C gives the as-
sociated class numbers to its every element, and the other
columns have zeros for their all elements. ¤

Equation (20) and two theorems above provide specific
properties of classifiers when information-based criteria are
used.

Property 1. When an augmented confusion matrix is
known after classifications, its associated NI and NH will
be uniquely given.

Property 2. When NI or NH is known for a clas-
sifier, one is generally unable to determine its associated
performance accuracy or other conventional measures.

Property 3. When a classifier shows cases of A = 1,
but ci(m+1) = Rej 6= 0, it also gives NI = 1. This property
is not desirable for classifications.

For an error analysis of classification problems, we derive
the following sensitivity equations of mutual information in
binary classifications

∂I

∂TP
=

1

n

[(
log2

TP

TP + FP

)
sgn(TP ) −

(
log2

FN

FN + TN

)
sgn(FN)

]
(27)

∂I

∂TN
=

1

n

[
−

(
log2

FP

TP + FP

)
sgn(FP ) +

(
log2

TN

FN + TN

)
sgn(TN)

]
(28)

∂I

∂U1
=

1

n

[
−

(
log2

FN

FN + TN

)
sgn(FN) +

(
log2

U1

U1 + U2

)
sgn(U1)

]
(29)

∂I

∂U2
=

1

n

[
−

(
log2

FP

TP + FP

)
sgn(FP ) +

(
log2

U2

U1 + U2

)
sgn(U2)

]
(30)

where sgn(·) is a sign function for the reason of H(0) = 0.
Property 4. In a generic binary classification, the sen-

sitivity analysis needs four independent equations due to
the existing four independent parameters. If no cases for a
rejected class, only (27) and (28) are sufficient. The gen-
eral relations among variables are TP + FN + U1 = C1,
FP + TN + U2 = C2.

Property 5. Considering a neighbor around the ex-
act solution for a binary classifier, a misclassification on a

smaller-number label will produce a bigger change of NI
values than on a larger-number label. That is, if TN < TP ,

one will have

∥∥∥∥
∂I

∂TN

∥∥∥∥ >

∥∥∥∥
∂I

∂TP

∥∥∥∥, or

∥∥∥∥
∂I

∂U2

∥∥∥∥ >

∥∥∥∥
∂I

∂U1

∥∥∥∥.

Property 6. Considering a neighbor around the exact
solution for a binary classifier, a misclassification of a sam-
ple will produce a bigger change of NI values than assigning
that sample into a rejected class. That is, it generally has∥∥∥∥

∂I

∂Z

∥∥∥∥ >

∥∥∥∥
∂I

∂Ui

∥∥∥∥, where Z = TP or TN , and i = 1 or 2.

Property 7. Considering a binary classification without
a rejected class, there exist two maximum points, NI = 1,
in the 3D plot of “TPR-TNR-NI” (see Fig. 3), which cor-
respond to the cases of either an exact classification or a
completely wrong misclassification. The local minimum re-
lations below

TP

TP + FP
=

FN

FN + TN
, or

FP

TP + FP
=

TN

FN + TN
(31)

will form the bottom curve, with NI = 0, in the plot. TPR
and TNR are true positive rate (TP/C1) and true nega-
tive rate(TN/C2), respectively. When these diagonal term
variables increase, NI does not show a monotonic relation.
Conditions (31) can be further simplified as

TP = C1 − C1

C2
TN (32)

Fig. 3 3D plot of “TPR-TNR-NI” for a binary classification
without a rejected class

For a binary classifier, we derived a closed-form solution,
NI = G(A, P, R), or the normalized mutual information in
relation to the conventional performance indexes, such as
accuracy, precision, and recall[24]. In the case without con-
sidering a rejected class, this classifier is better to describe
its NI with two independent variables. The previous solu-
tion showed the nonlinear relationship with respect to three
variables, so that one can understand that NI constitutes
a suitable measure to balance the conflicting performance
criteria in a natural way. In order to transform NI, gener-
ally obtained from a single operation point of classifications,
into an overall performance index, we suggest the follow-
ing normalized average mutual information for evaluating
classifiers

NAI(T, Y ) =
1

S

∑
Y

∑
T

p(t, y)I(T, Y ) (33)

where S is a scalar for normalizing the index. Since it aver-
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ages the mutual information values over the feasible ranges
of classifiers in a statistical means, NAI will produce a bet-
ter evaluation result than with an AUC approach, which
applies an evenly averaging scheme.

Theorem 3. The NI criteria defined by Shannon en-
tropy in (1) generally do not show an increasingly mono-
tonic property, whereas the values of the diagonal term
variables are increased from reductions of the off-diagonal
terms on its confusion matrix.

Proof. Theorem 3 can be proved if one can show NI
functions have local minimums with respect to the diagonal
term variables of a confusion matrix. For this purpose, we
propose a confusion matrix in the following form

C =




· · · 0 0 · · ·
0 ci,i ci,i+1 0
0 ci+1,i ci+1,i+1 0
· · · 0 0 · · ·


 (34)

and impose the local minimums relations below in (34):

ci,i

ci,i + ci+1,i
=

ci,i+1

ci,i+1 + ci+1,i+1
, or

ci+1,i

ci,i + ci+1,i
=

ci+1,i+1

ci,i+1 + ci+1,i+1

(35)

From the additivity property of entropy components[3] and
Property 7, one can know that the four given variables in
(34) and (35) present a zero contribution to NI. In other
words, the local minimums exist on NI functions for a con-
fusion matrix described by (34) and (35). Then, NI criteria
may not hold a monotonic property with respect to the di-
agonal term variables, say, ci,i in (34). ¤

Remark 8. Theorem 3 indicates that Shannon-NI cri-
teria have an intrinsic pitfall of a nonmonotonic property
with respect to ci,i, which may not prove rational as a mea-
sure for evaluating qualities of classifiers. Theorem 3 also
demonstrates that the property will also be true when us-
ing the joint histogram matrix or joint distribution matrix
directly, such as in the studies of image registration[12].

4 Numerical examples

In order to understand well the benefits and limitations
of using mutual information criteria in generic classifica-
tion problems, we present some numerical examples in this
section. Table 3 lists ten examples for binary classifica-
tions. Among which, M2∼M6 are adopted from [5], where
they are denoted as Models A∼E, respectively. Although
Wallach[27] calculated the mutual information values for
M2∼M4 (or Models A∼C), the numerical results for M5
and M6 (or Models D and E) were missing. And, it seems
that no formula exists in published works to deal with
mutual information for classifications including a rejected
class.

Table 3 confirms the discussions from [5] about the model
selections, if it is evaluated with respect to information cri-
teria. From M7 and M8, one may consider both models
are equivalent in performance based on the data of A, P ,
and R. However, using NIe data, one can see M8 is a bet-
ter model than M7. This conclusion is compatible to our
intuition in dealing with classification problems, that is, a
misclassification from a small number class will pay more
loss than a large number one. M9 and M10 show the mean-
ing of Property 3 mentioned in Section 3. Intuitively, any
assignment of samples into a rejected class should receive a
loss in NIe, but they do not in M9 and M10. This seems to

be a weakness of the current definition of NI. For overcom-
ing this problem, we propose intuitively to modify (20) by
the summations of the j-th term from 1 to m, rather than
to m + 1, which shows a better, yet desirable, property for
the cases like ci(m+1) = Rej 6= 0.

Table 3 Examples in binary classifications including rejection
samples (C1 = 90, C2 = 10)

Model

[
TP FN U1

FP TN U2

]
A P R Rej NIe

M1

[
90 0 0

0 10 0

]
1.000 1.000 1.000 0.000 1.000

M2

[
90 0 0

10 0 0

]
0.900 0.900 1.000 0.000 0.000

M3

[
80 10 0

0 10 0

]
0.900 1.000 0.889 0.000 0.574

M4

[
78 12 0

0 10 0

]
0.880 1.000 0.867 0.000 0.534

M5

[
74 6 10

0 9 1

]
0.933 1.000 0.822 0.110 0.586

M6

[
78 6 6

0 5 5

]
0.933 1.000 0.867 0.110 0.534

M7

[
90 0 0

1 9 0

]
0.990 0.989 1.000 0.000 0.831

M8

[
89 1 0

0 10 0

]
0.990 1.000 0.989 0.000 0.897

M9

[
90 0 0

0 9 1

]
1.000 1.000 1.000 0.010 1.000

M10

[
88 0 2

0 10 0

]
1.000 1.000 0.978 0.020 1.000

In Table 4, we present classification examples with three
classes. From this table, we can see that mutual infor-
mation criteria are generally quite effective and efficient
in dealing with classification problems for multiple classes,
even for a rejected class. M11 shows to be the best in this
table even if it has a low level of accuracy (A = 15%). Due
to NIe = 1, this classifier is able to achieve an exact solu-
tion by simple exchanges between two labels. M12∼M16
demonstrate the cases of different classifiers with the same
accuracy A = 95%. Models 17 and 18 compare the NIe

values for the cases when two samples are either misclas-
sified or assigned into the rejected class. Model 19 shows
a case of a confusion matrix having local minimums de-
scribed by (34) and (35). Although Model 19 has im-
proved classification accuracy (A = 78 %) based on Model
20 (A = 68 %), the NIe does not show such improvement
but rather presents an undesirable result. One can obtain
the following observations from the given examples:

1) Even for a classifier with multiple classes, a misclas-
sification from a smaller-number label will lead to a bigger
change of NIe values than from a larger-number label.

2) If assigning misclassified samples into a small-number
label, its NIe value of the classifier will receive less impact
than the cases of assigning into a large-number label (see
M13 vs. M14, and M15 vs. M16).

3) Models 19 and 20 confirm that Shannon-NI criteria
may not present a rational measure for assessing qualities
of classifiers due to their nonmonotonic properties.

The first observation is consistent with our intuitions
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and experiences in selections of classifiers. However, the
second one seems to be against the Bayesian principle in
classifications, that is, assigning misclassified samples into
a large-number label will be safer. The third observation
indicates that we need to be cautious when using NI as an
evaluation measure, although it can be rational as an opti-
mization function in those studies of image registration or
feature selection. More examples can be tested for obtain-
ing useful findings. For convenience, in Appendix, we pro-
vide the related program on the open source software Scilab
(http://www.scilab.org) so that readers can examine other
cases by copying directly from the current document and
pasting onto Scilab platform for their uses. When a confu-
sion matrix is given, one can obtain its NIe and accuracy
values easily from the program.

Table 4 Classification examples in three classes

Model C A Rej NIe

M11




0 0 80 0

0 15 0 0

5 0 0 0


 0.15 0.00 1.000

M12




75 0 5 0

0 15 0 0

0 0 5 0


 0.95 0.00 0.887

M13




80 0 0 0

0 15 0 0

1 4 0 0


 0.95 0.00 0.753

M14




80 0 0 0

0 15 0 0

4 1 0 0


 0.95 0.00 0.677

M15




80 0 0 0

1 10 4 0

0 0 5 0


 0.95 0.00 0.811

M16




80 0 0 0

4 10 1 0

0 0 5 0


 0.95 0.00 0.693

M17




79 0 1 0

0 14 1 0

0 0 5 0


 0.98 0.00 0.909

M18




79 0 0 1

0 14 0 1

0 0 5 0


 1.00 0.02 0.977

M19




50 0 0 0

0 24 16 0

0 6 4 0


 0.78 0.00 0.735

M20




50 0 0 0

0 14 26 0

0 6 4 0


 0.68 0.00 0.746

5 Conclusions

In machine learning, evaluation criteria or learning tar-
gets can vary due to the study viewpoints or application
background[28]. In classifier designs, a selection of eval-
uation criteria may influence the performance of the as-
sociated classifiers directly. For example, the least-mean-
squared criteria (or LME) may give a misclassification re-

sult even for linearly separable problems[25]. However, after
a minor change to the same learning criteria, one is able to

achieve an exact solution to the same problems[29]. Up
to now, a selection of evaluation criteria has remained an
open issue in the theoretical studies of machine learning.
Although many investigations are reported in related sub-
jects, a systematic study is needed for dealing with classifi-
cation problems. Information theory will lead to a new di-
rection in machine learning but relations of information en-
tropy to other measures, such as knowledge granularity[30]

and correlation coefficient[31], are fundamental subjects in
the studies. As a preliminary study, this work explored the
relations between mutual information and the conventional
performance measures. We derived theoretical formulas
and interpretations to the generic classifications, which may
include a rejected class. From the results, simple interpre-
tations to the use of mutual information criteria can be
stated below:

The principle behind machine learning of using entropy-
type criteria is to transform disordered data sets into or-
dered data ones. For classification problems, this transfor-
mation is made on label data sets, which is different from
that on feature data sets for clustering problems.

More detailed descriptions about the advantages of using
Shannon-information-based criteria in classification prob-
lems can be summarized as follows:

1) Entropy-type criteria provide classifier designers with
unique information, which will significantly enlarge the
searching range for the potential classifiers, which may be
neglected by using the conventional performance criteria.

2) Entropy-type criteria present a simple and generic
framework of dealing with higher-order stochastic variables
or processes in various applications, including classifica-
tions.

3) Entropy-type criteria produce a single and objective
index for balancing the conflicting performance measures
naturally and globally in classification problems, even in
the cases of assigning samples into a rejected class.

4) The computational complexity of entropy-type crite-
ria is reasonably low for label data, that is, O(m2). There-
fore, these criteria are suitable for classification of prob-
lems.

However, limitations of Shannon-entropy-type criteria
are also observed as:

1) The uncertainty concept from entropy-type criteria is
not a common concern or requirement from most classifier
designers and users.

2) Shannon-entropy-type criteria do not hold monotonic
properties, nor the one-to-one correspondence, to the con-
ventional performance measures.

3) To reach a reasonable evaluation of classifiers, one
still needs to use calculations from the conventional perfor-
mance measures as its assistants.

Appendix. Scilab code used in Tables 3
and 4

// Scilab code for calculating normalized mutual information
// from a given m-by-(m + 1) confusion matrix.
c=[79 0 0 1

0 14 0 1
0 0 5 0];

n=sum(c); // = number of total samples
m=length(c(:,1)); // = number of exact classes
Ci=sum(c,’c’); // = numbers of exact labels
Cp=sum(c,’r’); // = numbers of prediction labels
NI num=0; // = numerator of NI in (20)
NI den=0; // = denominator of NI in (20)
for i=1 : m
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NI den=NI den+Ci(i)*log2(Ci(i)/n);
for j=1 : m+1

if c(i,j) > 0 then
if Ci(i)*Cp(j) > 0 then
NI num=NI num+c(i,j)*log2(c(i,j)/Ci(i)/(Cp(j)/n));

end
end

end
end
NI=-NI num/NI den; // Normalized Mutual Information
if sum(c(1:m,1:m)) > 0 then

A=sum(diag(c))/sum(c(1:m,1:m)) // Accuracy
else

A=0;
end
if length(c(:,1)) < 3 then // Binary classifier

if Cp(1)>0 then
P=c(1,1)/Cp(1) // Precision

else
P=0;

end
R=c(1,1)/Ci(1) // Recall

end
Rej=sum(c(:,m+1))/n // Rejection Rate
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