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A New Distributed Localization Scheme for Wireless
Sensor Networks

KUANG Xing-Hong1, 2 SHAO Hui-He1 FENG Rui3

Abstract Node localization in wireless sensor networks (WSN) is treated as a functional dual of target tracking from a novel
perspective in the paper. Different from the traditional tracking problem in WSN, using the static location-ware node to estimate
the moving target, the mobile node is used to help unknown nodes to accurately discover their positions. A new node localization
scheme virtual beacons-energy ratios localization (VB-ERL) and its refinements for the WSN are presented. In the scheme, the
mobile node moves in the surveillant field based on the Gauss-Markov mobility model and periodically broadcasts the information
packets. Each static unknown node receives the virtual beacons and energy in its sensing range, and estimates its location by finding
the intersection of a set of hyper-spheres. Simulation results show the proposed scheme is efficient.
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One of the critical issues in WSN research is to determine
the physical positions of nodes. This is because: sensed
data are meaningful to most applications only when they
are labeled with geographical position information; posi-
tion information is essential to many location-aware sensor
network communication protocols, such as packet routing
and sensing coverage. It has been a challenging task to de-
sign a practical algorithm for node localization given the
constraints that are imposed on sensors, including limited
power, low cost, etc.[1−2].

The existing localization algorithms can be classified
into two categories: range-based and range-free. Range-
based algorithms exploit range (distance or angle) in-
formation for localization. The range information can
be acquired by different means such as received signal
strength indicator (RSSI), time of arrival (TOA), time-
difference of arrival (TDOA), or arrive of angle (AOA).
The main range-based algorithms include maximum like-
lihood estimation[3], ad hoc positioning system (APS)[4],

SDP-based localization algorithm[5], multidimensional scal-
ing (MDS) algorithms[6−7], etc. They have higher location
accuracy but require additional hardware on sensor nodes.

Range-free algorithms do not need absolute range infor-
mation, the accuracy is less than the range-based but sat-
isfy many applications′ requirements. Typical range-free
algorithms including centroid, DV-Hop[8], amorphous[9],
APIT[10], etc. The authors in [11] proposed a coarse-
grained range-free algorithm to lower the uncertainty of
nodes′ positions using radio connectivity constraints. In
[12], the authors used geometry method to determine the
sensor node′s location based on the cross point of the two
chords in a circle. The range-free algorithms are more
economical, cost-effective, and feasible for the large-scale
WSN.

In the paper, node localization is investigated from a op-
posite perspective by taking it as a functional dual of target
tracking. Different from the traditional tracking problems
using one or more static location-aware sensors to track a
moving target, each location-unaware sensor node discovers
its position assisted by the moving targets.

We propose a new novel node localization scheme
named VB-ERL for the WSN. In the scheme, the mobile
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node moves in the field based on Gauss-Markov mobility
model[13], broadcasts the location packets, and acoustic en-
ergy at regular time intervals. So, the “virtual” beacons are
used instead of deploying the actual stationary anchors.
Each static unknown node passively receives these virtual
beacons with no necessity to reply to the mobile node and
estimates its location based on the received packets. In [14],
a source localization method based on energy-ratio was pro-
posed to track the target. We apply the method to the node
localization. The absolute range measurements are need-
less, and the location estimation is solved by finding the
intersection of a set of hyper-spheres. Here, each hyper-
sphere specifies the likelihood of the unknown node based
on the acoustic energy-ratio of a pair of virtual beacons.
Each unknown node is estimated by minimizing the cost
function using a nonlinear optimization algorithm. Several
refinements, including virtual beacons optimum selection
and weighted centroid method, are introduced for perfor-
mance improvement. This design lets it avoid unnecessary
range estimations as before. Hence, the accuracy can be in-
creased. Simulations show the proposed scheme is efficient.

1 Proposed scheme

1.1 Node localization background

First, we assume: the whole WSN consists of static nodes
and one mobile node; the mobile node knows its location
in the localization instant; the mobile node can move by
itself or other carriers such as robots or vehicles, and has
sufficient energy for broadcasting messages[12].

Instead of deploying the actual anchors (proposed in
many previous works), “virtual” beacons are used in the
proposed scheme. During the localization process, the mo-
bile node moves in the WSN while broadcasting virtual
beacons packets (contains the current coordinates of the
mobile node) periodically. Each unknown node receives
the virtual beacons within its sensing range. At last, the
unknown nodes estimate their locations using the proposed
algorithm based on the received information.

Each virtual beacon acts as a stationary anchor in our
localization. This method has an advantage that it can in-
crease the localization accuracy by having the mobile node
for a longer duration, thereby producing a large number of
virtual beacons. At the same time, the proposed method
eliminates the cost of stationary anchors by not having
them deployed in the WSN actually.

Fig. 1 illustrates the localization scenario. The triangles
denote the received virtual beacons; the curve denotes the
mobility trajectory of the mobile node; and the circle de-
notes the sensing range of the static unknown node.
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Fig. 1 Sensor node localization in WSN

1.2 Virtual beacons trajectory

In the robot localization, the robot can traverse the field
along the predefined trajectory maps. However, there are
substantial differences between the robot localization and
the node localization for WSN because sometimes the mo-
bile node has little or no control of its mobility. Here, the
Gauss-Markov mobility model is adopted. Every unknown
node expects to receive at least 4 noncollinear virtual bea-
cons from the mobile node along the trajectory as long as
the mobile time is appropriate.

The mobility model can be presented by[13]

vk = αvk−1 + (1− α)v̄ +
√

(1− α2)vxk−1 (1)

dk = αdk−1 + (1− α)d̄ +
√

(1− α2)dxk−1 (2)

where vk and dk are the new speed and direction of the
mobile node at time interval k; 0≤ α ≤ 1 is the tuning
parameter used to vary the randomness; v̄ and d̄ are con-
stants representing the mean value of speed and direction
as k →∞; and vxk−1 and dxk−1are random variables from
a Gaussian distribution.

At each time interval, the next location is calculated
based on the current location, speed, and direction of move-
ment. The position is given by

xk = xk−1 + vk−1 × cos(dk−1) (3)

yk = yk−1 + vk−1 × sin(dk−1) (4)

where (xk, yk) is the mobile node′s position at the kth time
interval. The mobile node moves in the field based on such
a mobility model and emits the signal periodically.

1.3 An acoustic model of the mobile node

When the sound is propagating through the air, it is
known as the acoustic energy emitted omni-directionally
from a sound source. It will attenuate at a rate that is
inversely proportional to the distance. Experiment data
confirms the energy decay model in [14]. The measured
energy on the ith unknown node can be expressed as follows

zi = A
/
||XXX − ζζζi||β + ni (5)

where A is a scalar denoting the energy emitted by the
mobile node; XXX is a vector denoting the coordinates of
the unknown node; ζζζi is a vector denoting the coordinates
of the ith virtual beacon; and β (≈ 2) is an energy decay
factor, and ni is measurement noise, modeled as a Gaussian
distribution with (µ, σ2).

Every static unknown node estimates the location based
on the received information using the localization mecha-
nisms in the following.

1.4 Node localization mechanisms

In [14], energy-based collaborative source localization al-
gorithm was proposed to track the moving target. The sen-
sors in the sense field measured the information from the
target, and the fusion center estimated the target location
by minimizing the cost function based on the energy-ratio
of the sensors. Here, we treat the node localization as a
dual function of the target tracking, and use the method in
the node localization application. The virtual beacons act
as actual sensors, whereas the unknown nodes act as the
moving target′s different locations.

Each unknown node estimates its location based on the
received virtual beacons sets [ζζζi(xi, yi); zi] i = 1, 2, · · · , k.
Considering the additive noise term n in (5) by its mean
value µ, each unknown node computes the energy ratio kij

of the ith and the jth virtual beacons from its information
set as follows[14]

kij =

(
zi − µi

zj − µj

)− 1
β

=
||XXX − ζζζi||
||XXX − ζζζj ||

(6)

where XXX denotes the unknown node location; and the other
parameters are the same as before.

If kij = 1, the solution of (6) form a hyper-plane between
ζζζi and ζζζj . However, there is measurement noise existing
between the virtual beacon and each unknown node, then
0 < kij 6= 1. So, all the possible unknown node′s locations
XXX that satisfy (6) reside on a d-dimensional hyper-sphere
described by

||XXX −OOOij ||2 = R2
ij (7)

where the center OOOij and the radius Rij of this hyper-sphere
associated with virtual beacon are given by

OOOij =
ζζζi − k2

ijζζζj

1− k2
ij

, Rij =
kij ||ζζζi − ζζζj ||

1− k2
ij

(8)

Apparently, all the possible locations of the unknown node
reside on the hyper-sphere. When d = 3, it is a sphere,
when d = 2, such a hyper-sphere is a circle. Here, we only
discuss localization in 2D plane, because it can be easily
expanded to the 3D space.

We apply (6)∼(8) which were proved in [14] to the node
localization. Till now, we have obtained the hyper-sphere
functions based on (7) using the ratio of energy readings at
a pair of virtual beacons. So, the potential unknown nodes′

locations can be restricted to a hyper-sphere whose center
and radius are functions of the energy ratio and the two
virtual beacons′ locations. If more virtual beacons received
by the unknown node are used, more hyper-spheres can be
determined. The hyper-spheres must intersect at a small
region that corresponds to the unknown node location[14].
As shown in (6), the absolute range measurement is not
required but the energy-ratio is required for the unknown
node localization. So, this method is robust.

Without noise taken into account, the node location is a
unique point formed by the virtual beacons′ hyper-spheres.
However, with noise taken into account, the unknown node
location is solved as the position that is closest to all the
hyper-spheres and hyper-planes formed by all energy ratios
in the least square sense. Applying the cost function pro-
posed in [14], the unknown node′s location is also solved
by minimizing the following cost function

J =

L1∑

l1=1

(||XXX −OOOl1 || −Rl1)
2 +

L2∑

l2=1

(ΦΦΦT
l2XXX − τl2)

2 (9)
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where ΦΦΦij = ζζζi−ζζζj , τij =
||ζζζi||2−||ζζζj ||2

2
; L1+L2 = L, where

L is the pairs of energy ratios of the virtual beacons for a
unknown node, L1 and L2 are the numbers of hyper-spheres
and hyper-planes, respectively; l1 and l2 indicate the energy
ratios computed between different pairs of virtual beacons
energy readings.

As shown in (9), the function consists of a summation
of several square items. It is a nonlinear least square opti-
mization problem. We can solve it by a least-square anal-
ysis and apply the standard optimization algorithms, such
as the Newton′s method, to minimize the cost function J .

1.5 Enhancements

In order to obtain the optimal estimation results, we
propose several refinements to enhance the estimation per-
formance.

1) Virtual beacons optimum selection. Filter the received
information to obtain the optimum virtual beacons for lo-
calization:

a) Usually, if the mobile node is closer to the unknown
node, the energy readings have higher SNRs. Therefore,
the virtual beacons near the unknown node are chosen to
compute the location because they are more reliable. Some
beacons whose energy readings are approaching to the sense
threshold of the unknown node are discarded.

b) Among the selected energy, when the two energy read-
ings are almost the same (e. g., less than 0.01), we abort any
one of them to reduce the computation burden, and then
the cost function (9) can be replaced by

J = arg min

(
L∑

l=1

(||XXX −OOOl|| −Rl)
2

)
(10)

c) Suppose one unknown node receives N virtual bea-
cons and their acoustic signals, N(N −1)/2 pairs of energy
ratios will be computed based on (6). However, many of
these relationships are actually redundant (e.g., given en-
ergy ratios k1i and k1j , the energy ratio kij is redundant,
and the conclusion has been proved in [14]).

2) The initial estimation point is important for the opti-
mization search algorithm. Here, we introduce the cen-
troid technique which will obtain an initial point closer
to the true location. Given locations of m (m ≥ 4) vir-
tual beacons (ζζζ1, · · · , ζζζm) and corresponding sensing data
(z1, · · · , zm) from the mobile node, each unknown node′s
location can be approximately estimated as a weighted cen-
troid of its received virtual beacons′ locations. Each weight
(w1, · · · , wm) disregarding the noise is characterized by

w1 : · · · : wm =z1 : · · · : zm =
A

||XXX−ζζζ1||β
: · · · : A

||XXX−ζζζm||β
(11)

The location estimate by weighed centroid XXXC is given by:

XXXC =
∑m

i=1 (ζζζi × (wi

/∑m
j=1 wj)). In our nonlinear least

square optimization problem, XXXC is used as the starting
estimation point.

2 VB-ERL localization algorithm

According to the localization mechanism described
above, the whole VB-ERL localization algorithm can be
expressed in Table 1.

Table 1 Localization algorithm

Algorithm: VB-ERL localization algorithm

1 Obtain the optimum virtual beacons

1) The mobile node starts to move in the sensor field based on

the Gauss-Markov mobility model, broadcasts the virtual beacons

and acoustic signal periodically;

2) The unknown nodes receive the virtual beacons, and

record the information [ζζζi(xi, yi); zi];

3) Each unknown node fuses the information when the received

virtual beacons exceed the threshold or the mobile node stop

broadcasting the packets;

4)Each unknown node uses the selected virtual beacons

to take part in self-localization;

2 Compute the initial estimation point

Each unknown node computes the initial estimation point

XC =
m∑

i=1
(ζζζi × (wi

/
m∑

j=1
wj)) for the optimization;

3 Self-localization

Each unknown node executes the optimization algorithm to

minimize the cost function (10)

At last, the residual unknown nodes treat the nodes
which have been localized as new actual anchors.

3 Simulation

3.1 Evaluation scenario

Our simulations were built using the Matlab simulator.
The sensor field for simulation was a square of 100×100m2

where 50 unknown sensor nodes were randomly deployed.
Only one mobile node was used to transverse the field based
on the Gauss-Markov mobility model. In the model, the
initial value of v̄ was 2m/s, d̄ was initially 90◦ but changed
over time according to the edge proximity of the node,
vxk−1 and dxk−1 were random variables from a Gaussian
distribution, α = 0.75. The initial broadcasting interval
was 2 s. The initial moving time of the mobile node was
3 000 s. We assumed that each unknown node′s sensing
rang was about 12m and it could receive the RF beacons
and acoustic energy within 10m reliably. The source en-
ergy was set at A = 5000, and the background noise level
was set at σi = 1 for all nodes in the field[14].

3.2 Evaluation metrics

Three performance metrics were considered for our node
localization. 1) Computation overhead: The proposed
scheme was running in a fully-distributed mode. Each
node in WSN determined its location individual. It did
rely on neighborhoods and it was insensitive to node
density and network topology. The computation complex-
ity was O(n), (n is the number of the unknown nodes).
2) Communication overhead: One major advantage of
the proposed scheme is that no inter-sensor or sensor-
to-mobile node communication was needed. 3) Average
location error: It was the average distance between the
estimated location and the actual location of all sensor
nodes. The average location error can be calculated by Ē =
∑ √

(x
(i)
e − x(i))2 + (y

(i)
e − y(i))2

/
(
∑

unknown− nodes).

In the sub-section, we evaluate the important metric−the
average location error from different aspects.

3.3 Simulation results

Fig. 2 shows the whole mobile node′s trajectory based
on Gauss-Markov mobility model within the WSN field in
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one simulation. Along the trajectory, the mobile node pe-
riodically broadcasts virtual beacons packets. As shown in
Fig. 2, the trajectory is easy to cover the whole field given
appropriate mobile time to the mobile node. The unknown
node is easy to obtain at least 4 noncollinear virtual bea-
cons along the trajectory.

Fig. 3 clearly shows the virtual beacons received by a rep-
resentative node in its sensing range along the trajectory.
All the other unknown nodes are the same. The stars de-
note the virtual beacons broadcasted by the mobile node.
The numbers beside the star denote the order of the virtual
beacons received by the representative unknown node. The
cross point denotes the unknown node.

As shown in Fig. 4, one representative unknown node
estimates its location by finding the intersection of a set
of hyper-spheres generated by the received pairs of virtual
beacons-energy ratios. The dotted circles denote the like-
lihood of the unknown location based on the kij . With
noise taken into account, about 31 hyper-spheres intersect
at a small region that corresponds to the representative
unknown node.

Fig. 2 The trajectory of the mobile nodes in the sensor field

Fig. 3 The virtual beacons of one unknown node

Fig. 4 Node localization using VB-ERL algorithm

Similarly, the others also obtain their locations based on
their own hyper-spheres intersection regions. The whole
final unknown nodes estimation results can be seen from
Fig. 5, where small circles represent the original locations
of sensor nodes, whereas small lines point to the estimated
positions. The final residual unknown node is 0. The aver-
age localization error is about 0.423m using the initial sim-
ulation parameters. So the localization accuracy is about
4%. The localization accuracy is high.

Fig. 5 Estimation results of the whole network

In the following subsections, we vary different parameters
such as: the mobile node′s moving time, speed, and the
beacon′s broadcasting interval, etc. to investigate how the
VB-ERL scheme performs in terms of accuracy.

When moving time passing, more virtual beacons will
be received and the localization accuracy will be improved.
Also, there are more opportunities for some edges′ or
corners′ unknown nodes covered by the virtual beacons
along the trajectory, which leads to less residual unknown
nodes left. As shown in Table 2, the localization accu-
racy improved with increasing of the moving time, and the
residue unknown nodes are decreasing dramatically. The
localization accuracy reaches 1% and the residual unknown
node is zero when the moving time is about 5 000 s.

Table 2 Average error using different moving time

Total moving time (s) 1 000 2 000 3 000 5 000

Average error (/m) 1.024 74 0.430 4 0.121 1 0.095 9

Residue unknown nodes 6 4 1 0

Table 3 Average error using different speeds and intervals

Average speed (m/s) 0.5 1 2 4

beacons interval 4 2 1 0.5

Average error (/m) 0.603 0 0.594 2 0.523 3 0.539 2

Residue unknown nodes 0 1 0 0

Varying mobile node speed is similar to varying the time
between the two beacons. Faster movement leads to less
virtual beacons received by one unknown node in its sensing
range. The increased speed makes the estimated locations
less accurate. To maintain the localization accuracy with
faster mobile node, it is necessary to lower the beacon in-
terval correspondingly. We study the case that the mobile
node sends a beacon at every fixed distance of movement
(e. g. 1 beacon/2 m). Table 3 shows the impact of node
speed and the beacons interval. The average estimation
error is steady at 0.564m with a little fluctuation. The
residual unknown node is almost zero.
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Apparently, in order to increase the localization accuracy
we can prolong the moving time, decrease the interval of
the beacons, etc. However, the computing costs will also
be increasing. There is a tradeoff between the localization
accuracy and the computing cost.

We also conducted extensive simulations comparing the
proposed VB-ERL algorithm with the weighted centroid
algorithm and the constraint algorithms[11] using different
radio ranges. The weighted centroid algorithm takes the
acoustic signal strength weighted mean of the received vir-
tual beacons location as the estimate unknown location:
XXXWC =

∑k
i=1 wiζζζi/

∑k
i=1 wi. Table 4 shows the perfor-

mance for the three localization schemes using 3 different
radio ranges. The average localization accuracy for the
centroid scheme is about 25%. The localization accuracy
has little change with increasing of the radio range. The
location accuracy of the constraint scheme decreases with
larger radio ranges. Its average localization accuracy is
about 19%. However, the location error of VB-ERL is im-
proved slightly with the larger transmission range due to
the more received virtual beacons. The accuracy for VB-
ERL is about 1%∼6% of radio ranges.

Table 4 Average error using different radio range

Radio range 10 15 20

Weighted centroid 26% 25% 25%

Constraint 18% 19% 21%

VB-ERL 6% 2% 1%

The proposed VB-ERL performs the best among the
three algorithms, and the localization accuracy is high. One
of the important reasons is that the proposed VB-ERL does
not require a direct range derived from signal strength but
the energy ratio between the pairs of received energy. The
simulation results validate the conclusion.

4 Conclusions

Node localization in WSN was treated as a functional
dual to the target tracking problem. From the novel per-
spective, the paper proposed a VB-ERL localization scheme
for WSN. Compared with other methods it has the follow-
ing advantages: 1) The localization computation is fully
distributed, there is no limitation to the network topol-
ogy or scalability. It is applicable to large areas of WSN
with arbitrary densities. 2) The virtual beacons eliminate
the need to deploy the actual anchors, which leads to en-
hancement of the localization flexibility. 3) The unknown
node listens passively to the mobile node, no inter-sensor or
sensor-to-mobile node communication is needed, which re-
duces the energy consuming. 4) The localization accuracy
is high.

Future work in our research is to set up a test-bed with
Berkley nodes for the testing of the proposed scheme.
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