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Multi-source Fuzzy Information Fusion Method Based

on Bayesian Optimal Classifier
SU Hong-Sheng1

Abstract To make conventional Bayesian optimal classifier possess the abilities of disposing fuzzy information and realizing the
automation of reasoning process, a new Bayesian optimal classifier is proposed with fuzzy information embedded. It can not only
dispose fuzzy information effectively, but also retain learning properties of Bayesian optimal classifier. In addition, according to the
evolution of fuzzy set theory, vague set is also imbedded into it to generate vague Bayesian optimal classifier. It can simultaneously
simulate the twofold characteristics of fuzzy information from the positive and reverse directions. Further, a set pair Bayesian optimal
classifier is also proposed considering the threefold characteristics of fuzzy information from the positive, reverse, and indeterminate
sides. In the end, a knowledge-based artificial neural network (KBANN) is presented to realize automatic reasoning of Bayesian
optimal classifier. It not only reduces the computational cost of Bayesian optimal classifier but also improves its classification learning
quality.
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Bayesian optimal classifier makes the likelihood of a new
instance to be correctly classified up to maximum by incor-
porating the posterior probabilities of all assumptions for
the same hypothesis space and for the same observed data
and for the same prior probabilities of these assumptions[1].
Bayesian optimal classifier may achieve the best classifi-
cation results from the given data set but the algorithm
possesses the two significant deficiencies. One is that it can
not deal with fuzzy information effectively, the other is that
the computational quantity of the algorithm is very large.
To be able to dispose fuzzy information and retain learning
properties of Bayesian optimal classifier, we develop a novel
Bayesian optimal classifier with fuzzy information embed-
ded. Then according to the evolution of fuzzy set theory,
we respectively construct a vague Bayesian optimal clas-
sifier and set pair Bayesian optimal classifier, which can
be applied to dispose the positive, reverse, and indeter-
minate fuzzy information, and the desired results may be
achieved by weighted average. To reduce the computational
cost of Bayesian optimal classifier, an optional suboptimal
algorithm called Gibbs algorithm[2] is proposed, whose ex-
pected error rate is twice that of Bayesian optimal classifier
at most under certain condition[3]. To reduce the com-
puting quantity of Bayesian optimal classifier further and
realize the automation of reasoning process, we propose
a knowledge-based artificial neural network (KBANN)[1],
which can realize automatic reasoning and dispose fuzzy
information more effectively, the intelligence, robustness,
and ubiquity of Bayesian optimal classifier are therefore
dramatically improved.

1 Neuro-fuzzy logic

1.1 Foundation of fuzzy set[4]

Definition 1. Let V be an object space, ∀x ∈ V, A ⊆ V .
To study whether x belongs to A or not, a characteristic
function µA(x) is defined. Thus x, together with µA(x),
constitutes a coupled pair [x, µA(x)]. Fuzzy subset A in V
may be defined as A = {x, µA(x)|x ∈ V }, where µA(x) is
called as fuzzy membership function of x to A, and µA(x) ∈
[0, 1].
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Let A and B be two fuzzy subsets in V , and µA(x) and
µB(x) be their fuzzy membership functions, respectively.
Then the basic fuzzy operations are defined as follows.

µA∪B(x) = max
x∈V

[µA(x), µB(x)] = µA(x) ∨ µB(x) (1)

µA∩B(x) = min
x∈V

[µA(x), µB(x)] = µA(x) ∧ µB(x) (2)

µÃ(x) = 1− µA(x), x ∈ V (3)

1.2 Logic neuron

Logic neuron, proposed in 1993[5], incudes two types of
neurons, one is the OR neuron, the other is the AND neu-
ron. They are, respectively, defined below.

Definition 2 (OR neuron). First, each input signal is
logically multiplied by its connecting weight, and a logically
additive operation is then implemented. Its mathematical
model is expressed by

y = OR(XXX;WWW ) (4)

where y is the output of the OR neuron, X is the input of
the OR neuron, X ={x1, x2, · · · , xn}, and W is the con-
nection weight vector, W={ω1, ω2, · · · , ωn}, ωi ∈ [0, 1], i =
0, 1, · · · , n. (4) may also be described by

y =

n∨
i=1

[xi ∧ ωi] (5)

Definition 3 (AND neuron). Firstly, each input sig-
nal is logically added by its connecting weight, and a log-
ically multiplicative operation is then implemented. Its
mathematical model is expressed by

y = AND(XXX;WWW ) (6)

where y is the output of the AND neuron, XXX is the in-
put of the AND neuron, XXX = {x1, x2, · · · , xn}, and WWW is
the connection weight vector, WWW = {ω1, ω2, · · · , ωn}, ωi ∈
[0, 1], i = 0, 1, · · · , n. (6) may also be described by

y =

n∧
i=1

[xi ∨ ωi] (7)

In addition, a logical processor (LP) composed of the
above two types of neurons can realize more complex func-
tions.
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2 Bayesian optimal classifier[1]

Definition 4 (Bayesian law). Let P (h) be the prior
probability of the hypothesis h, where h ∈ H, and H is the
hypothesis space. Let P (D) denote the prior probability
of the observed data D, and P (D/h) specify the likelihood
that D can be observed when h occurs, and P (h/D) specify
the likelihood of h occurrence while D is observed. P (h/D)
denotes the posterior probability of h, which reflects the in-
fluence of D on h. Thus, the Bayesian law may be described
as

P (h/D) = P (D/h)P (h)/P (D) (8)

Since D is a constant and independent of h, it follows
that

P (h/D) ∝ P (D/h)P (h) (9)

Thus, while a new instance D occurs, the most possi-
ble classification h ∈ H to it is called maximum posteriori
(MAP) hypothesis. hMAP can be called as MAP hypothesis
only when the following formula holds.

hMAP ←− arg max
h∈H

P (h/D) (10)

Up to now, what we discuss only is which one is its most
possible hypothesis when a new instance D occurs. Actu-
ally, another more interesting problem related to it is which
one is the most possible classification when D occurs. For
the latter, we may simply apply MAP hypothesis to get
possible classification of the new instance, that is,

cMAP = arg max
c∈C

P (C|hMAP) (11)

where C is the classification space of the new instance, c
is its possible classification, c ∈ C, and cMAP is its most
possible classification. But in fact, we still have better al-
gorithm, i.e., Bayesian optimal classifier.

Definition 5 (Bayesian optimal classifier). Let C be
the classification space of the new instance D, c be its likely
classification, c ∈ C, and P (cj/D) represent the probability
that the new instance D is classified as cj . Then

P (cj |D) =
∑

hi∈H

P (cj |hi)P (hi|D) (12)

Then, the optimal classification of the new instance D is
cj because it makes P (cj |D) up to the maximum, i.e.,

arg max
∑

hi∈H

P (cj |hi)P (hi|D), cj ∈ C (13)

The classification system generated by (13) is called
Bayesian optimal classifier. Under same conditions such
as prior probabilities, hypothesis space and observed data,
no other method can do better than it. According to (9),
Bayesian optimal classifier may be described as

arg max
∑

hi∈H

P (cj |hi)P (D|hi)P (hi), cj ∈ C (14)

3 Fuzzy Bayesian optimal classifier

Today, with the evolution of fuzzy set theory, more
and more prior information may be expressed as fuzzy
subjection function, e. g., transformer faults symptom

information[6], etc. Thus, when one fault symptom infor-
mation D occurs, we may use uhi(D) to express the subjec-
tion degree of D to hi. uhi(D) may be understood as the
probability that D belongs to one known symptom type
hi. Clearly, it is fully consistent with P (hi|D) in terms
of numerical value. Hence, we may use uhi(D) to replace
P (hi|D) in (13), then we have

arg max
∑

hi∈H

P (cj |hi)µhi(D), cj ∈ C (15)

Henceforth, for simplicity, we call Bayesian optimal clas-
sifier expressed by (15) as fuzzy Bayesian optimal classifier.

4 Vague Bayesian optimal classifier

Vague set is a natural extension of fuzzy set[7], whose
core thinking is to express the two-faced characteristics of
the positive and reverse of one element. Hence, vague set
can simulate the thinking mode of human beings better,
and tackle more complicated problems.

Definition 6 (Vague Bayesian optimal classifier). Let
two elements A and B be associated by u defined below.

u = a + bi (16)

where a expresses the consistency of two sets to same so-
lution, and b expresses the conflict of two sets to same so-
lution, a, b ∈ [0, 1], a + b = 1, i = −1. After the two terms
on the right-hand side in (16) are weighted by α and β, we
have

u = αa + βbi (17)

where α + β = 1.
Let wij express the connecting strength from the new in-

stance i to the hypothesis j, then the possible classification
of the new instance is

dj = α

n∑
i=1

wijai + β

n∑
i=1

wijbii (18)

Compared with (15), ai as well as bi may be, respectively,
interpreted as a probability whether the new instance be-
longs to the hypothesis hi or not. Thus, Bayesian optimal
classifier finds the maximized dj in the classification space
C, which can be described by

arg max dj , dj ∈ C (19)

5 Set pair Bayesian optimal classifier

On the basis of fuzzy set and vague set, researchers fur-
ther proposed the set pair analysis (SPA) concept[8]. SPA
is considered a new theory to the indeterminate problems
solution. The method has gained a rapid advance since
1980.

To get set pair Bayesian optimal classifier, the indeter-
minate term c requires to be added to the right-side in (16),
then we have

u = a + cj + bi (20)

where j ∈ [−1, 1], i = −1, a, b, and c ∈ [0, 1], and a+b+c =
1.

After the three terms on the right-hand side in (20) are,
respectively, multiplied by α, γ, and β, we get

u = αa + γcj + βbi (21)

where α + γ + β = 1.
According to (18), we then have
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dj = α

n∑
i=1

wijai + γ

n∑
i=1

wijcij + β

n∑
i=1

wijbii (22)

Then, according to (19), we find the maximized dj .

6 KBANN for Bayes optimal classifier

KBANN is a knowledge-based artificial neural network.
In KBANN, an initialized network is firstly constructed.
For each likely instance, the classification given by the net-
works equals that done by field theories. The networks
apply BP learning algorithm to modify its weights so as
to fit in with training samples. It is obvious that if field
theories are fully correct, the initialized assumptions will
be able to classify all samples without modifying again,
otherwise, the initialized assumptions requires modification
to improve their fitting accuracy. The difference between
conventional BP algorithm and KBANN′s lies in that the
former lets the initial weight of the network be very small
stochastic quantities whereas the latter be field theories,
thus, the learning of KBANN will have a nice beginning,
and so its generalized abilities will be stronger. KBANN
may also be used to realize automatic reasoning of Bayesian
optimal classifier. The advantages of applying it lie in that
it can not only dispose fuzzy information but also imple-
ment parallel operation. Thus, with the aid of KBANN,
Bayesian optimal classifier extends its application scope.
Also, it can store field knowledge in the connecting weights
of the network and update them in time from new in-
stances learning. Clearly, it reduces the computational cost
of Bayesian optimal classifier.

Below we take vague Bayesian optimal classifier as an

example. According to (18) and (19), the structure of the
KBANN to realize vague Bayesian optimal classifier may
be designed as shown in Fig. 1.

Seen from Fig. 1, the upper part of the network may
be used to realize the positive classification of all new in-
stances, and the lower part of which may be used to realize
the reverse classification of all new instances. The two parts
are incorporated with in layer 3. Finally, we get the desired
result by logic operation in the output layer. The learning
algorithm of the network comprises two parts: one is delta
law for LP, and the other is increment learning algorithm
of neural networks[9]. Other than conventional BP learning
algorithm, the applied error function here is an improved
squared error function called TANGPROP algorithm[10],
which is expressed by

E =
∑

i

{
(f(xi)− f ′(xi))

2 + µ[(∂f(x)/∂(x)−

∂f ′(x)/∂(x))|x = xi]
2} (23)

In the above equation, xi is the ith instance, f(xi) is the
aim function value, f ′(xi) is the practical output, and µ is a
constant defined by user, which is used to scale the impor-
tance between the fitting training data and the differential
coefficients of the fitting training data. Note that the first
term on the right-side in (23) is the original squared error
function, whereas the second term is a newly added squared
error, which is used to fit in with the differential coefficients
of the training data. Thus, it improves the fitting accuracy
of the training data. Also, since all knowledge is stored in
connecting weights of the network, the learning process of
the network is dynamic.

Fig. 1 KBANN based vague Bayesian optimal classifier
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Likewise, in light of (19) and (22), we may construct the
set pair Bayesian optimal classifier.

7 Examples

There are 296 data samples in all in the diagnostic knowl-
edge base of one transformer, and the fault symptoms and
the relevant fuzzy membership functions are described in
Table 1[11].

According to the positive and negative fuzzy member-
ship functions in Table 1, ai and bi in (18) may be worked
out. Thus, for a fuzzy fault symptom information, we
may work out its positive and reverse influence coefficients.
Fuzzy membership functions here adopt the ascending or
the falling semi-trapezoid distribution, which are, respec-
tively, expressed as µ↑(a, b, x) and µ↓(a, b, x), and described
below.

1) Ascending semi-trapezoid distribution

µ↑(a, b, x) =

{ 0 if x ≤ a
(x− a)/(b− a) if a < x and x ≤ b
1 if x > b

2) Falling semi-trapezoid distribution

µ↓(a, b, x) =

{ 1 if x ≤ a
(b− x)/(b− a) if a < x and x ≤ b
0 if x > b

Based on expert experience and prior knowledge, the
connecting weight wij from symptom i to fault source j
is established in Table 2.

Table 1 Fault symptoms and fuzzy membership functions accordingly

Fault symptom type
Positive fuzzy member- Negative fuzzy member-

ship function (M+) ship function (M−)

C2H2/C2H4 (A1) µ↓(0.08, 0.12, x) µ↑(0.08, 0.12, x)

CH4/H2 (B1) µ↑(0.8, 1.2, x) µ↓(0.8, 1.2, x)

m1 : Three-ratio-code based ϕH2 (x10−6) (C1) µ↑(120, 180, x) µ↓(120, 180, x)

heat fault characteristics ϕC2H2 (x10−6) (D1) µ↑(4, 6, x) µ↓(4, 6, x)

ϕC1+C2 (x10−6) (E1) µ↑(120, 180, x) µ↓(120, 180, x)

Generating gas open type µ↑(0.2, 0.3, x) µ↓(0.2, 0.3, x)

Rate(F1)/(ml/h) close type µ↑(0.4, 0.6, x) µ↓(0.4, 0.6, x)

A1 ∩ B1 ∩ (C1 ∪D1 ∪ E1 ∪ F1)

m2/(mg/L): Water capacity 110 kV downwards µ↑(28, 42, x) µ↓(28, 42, x)

in transformer oil 110 kV upwards µ↑(20, 30, x) µ↓(20, 30, x)

m3: Earth current µ↑(0.196, 0.144, x) µ↓(0.196, 0.144, x)

m4: Three-phase imbalance 1.6MVA downwards µ↑(0.032, 0.048, x) µ↓(0.032, 0.048, x)

coefficient 1.6MVA upwards µ↑(0.016, 0.024, x) µ↓(0.016, 0.024, x)

m5(pC): Local discharge µ↑(300, 900, x) µ↓(300, 900, x)

capacity

C2H2/C2H4 (A2) µ↑(0.08, 0.12, x) µ↓(0.08, 0.12, x)

CH4/H2 (B2) µ↓(0.8, 1.2, x) µ↑(0.8, 1.2, x)

m6 : Three-ratio-code based ϕH2 (×10−6) (C2) µ↑(120, 180, x) µ↓(120, 180, x)

discharge fault characteristics ϕC2H2 (×10−6) (D2) µ↑(4, 6, x) µ↓(4, 6, x)

ϕC1+C2 (×10−6) (E2) µ↑(120, 180, x) µ↓(120, 180, x)

Generating gas open type µ↑(0.2, 0.3, x) µ↓(0.2, 0.3, x)

Rate(F2)/(ml/h) close type µ↑(0.4, 0.6, x) µ↓(0.4, 0.6, x)

A2 ∩ B2 ∩ (C2 ∪D2 ∪ E2 ∪ F2)

m7: Absolute value of the Rated tapping µ↑(0.004, 0.006, x) µ↓(0.004, 0.006, x)

warp of winding

transformation ratio

A < 0.09 µ↓(0.072, 0.018, x) µ↑(0.072, 0.018, x)

m8(CO/CO2) B > 0.33 µ↑(0.264, 0.396, x) µ↓(0.264, 0.396, x)

A ∪ B

m9 Winding absorption µ↓(1.04, 1.56, x) µ↑(1.04, 1.56, x)

Winding polarization index µ↓(1.2, 1.8, x) µ↑(1.2, 1.8, x)
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Table 2 Fault types and connection strengths

Symptom type Fault type wi,j

m1 0.82

m3 d1: Multi-point earth or local short circuit in iron core 0.90

m5 0.19

m6 0.30

m1 0.71

m5 d2: Leak magnetism heating or overheat 0.35

m6 0.29

m1 0.22

m2 d3: Insulating aging 0.27

m8 0.82

m2 d4: Insulating damp 0.72

m9 0.75

m1 0.67

m4 d5: Tapping switch or down-lead fault 0.87

m6 0.23

m5 d6: Suspend discharge 0.90

m6 0.86

m1 0.15

m5 0.75

m6 d7: Winding distortion and circle short 0.68

m7 0.80

m8 0.72

m5 0.90

m6 d8: Circle short and insulation damage 0.52

m7 0.80

m8 0.68

m2 0.42

m5 d9: Encloser discharge 0.90

m6 0.88

m8 0.76

Seen from Tables 1 and 2, the system possesses nine types
of fault symptoms and nine types of fault sources. They
may, respectively, serve as the inputs and outputs of the
KBANN in Fig. 1. Fuzzy membership functions in Table
1 may act as the base functions of fuzzy neurons in the
input layer. For fuzzy subjection degrees of m1 and m6

in Table 1, we may adopt LP to generate them. Connect-
ing strength WWW in Table 2 may serve as prior weights from
input layer to classification space. The two parameters α
and β in the third layer may be modified in the process of
learning. Thus, we may use the model in Fig. 1 to realize
the fault diagnosis of the transformer. The overall process
is described as follows.

1) Applying LP to realize the fuzzy subjection degrees
of m1 and m6.

To get the subjection degree of m1, we must calculate
µA1∩B1∩(C1∪D1∪E1∪F1). According to (5) and (7), there
are two steps needed to complete it.

First, applying the OR neuron to realize µC1∪D1∪E1∪F1.
Hence, in (5) let xi equal µC1, µD1, µE1, and µF1, respec-
tively, ωi = 1; then

µH =

4∨
i=1

[xi ∧ ωi] =

4∨
i=1

[xi ∧ 1] = µC1∪D1∪E1∪F1 (24)

Second, applying the AND neuron to realize µA1∩B1∩H .
Therefore, in (7), let xi equal µA1, µB1, and µH , respec-

tively, ωi = 0. Then

µm1 =

3∧
i=1

[xi ∨ ωi] =

3∧
i=1

[xi ∨ 0] = µA1∩B1∩H =

µA1∩B1∩(C1∪D1∪E1∪F1) (25)

According to the above two steps, LP of calculating the
fuzzy subjection degree of m1 is shown in Fig. 2. Clearly,
for m6, we also can calculate its fuzzy subjection degree in
the same manner.

Fig. 2 LP for fuzzy subjection degree of m1
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2) The weight vector WWW
Fig. 1 indicates a fully-connected neural network struc-

ture. The field knowledge in Tables 1 and 2 may act as the
initial weight values of the network. If prior information
in Tables 1 and 2 is fully correct, it will be unnecessary
to train the network and will become necessary otherwise.
For simplicity, here, we set u = 0 in (23).

3) The weights of the positive and reverse instances
In general, the weight of the positive inference is larger

than that of the reverse inference. Hence, we set α = 0.85,
and β = 0.15 in (18). They can be modified in the process
of learning.

Example. The data (×10−6) of the dissolved gas
analysis (DGA) in one transformer are described by
ϕ(H2) = 70.4, ϕ(CH4) = 69.5, ϕ(C2H6) = 28.9, ϕ(C2H2) =
10.4, ϕ(C2H4) = 241.2, ϕ(CO) = 704, and ϕ(CO2) = 3350,
the unbalanced coefficient of the winding is described by
0.019, and the earth current of the iron core is described by
0.1A. The ratios between the characteristic gases are cal-
culated by ϕ(C2H2)/ϕ(C2H4) = 0.043, ϕ(CH4)/ϕ(H2) =
0.99, ϕ(C2H4)/ϕ(C2H6) = 8.35, ϕ(CO)/ϕ(CO2) = 0.21,
and the three-ratio-code is, therefore, calculated as 002.
However, the code does not exist in the three-ratio-code ta-
ble. It is, therefore, difficult to identify the fault type of the
transformer. However, using our method, through fuzzy
operation, we have M+ = 0.475/m1+0.083/m3+0.375/m4,
and M− = 0.525/m6 + 0.917/m3 + 0.625/m4 + 1/m8.
Suppose that the prior knowledge in Tables 1 and 2 is
fully correct, according to the networks model in Fig. 1,
set α = 0.85, and β = 0.15. The likelihood of each
fault occurrence is then calculated by d1 = 0.249, d2 =
0.275, d3 = 0.064, d4 = 0, d5 = 0.495, d6 = −0.033, d7 =
−0.055, d8 = −0.159, and d9 = −0.1833. According to
(19), since d5 = max{di, i = 1, 2, · · · , 9}, the most likely
diagnostic result is d5, i.e., tapping switch or down-lead
fault. Finally, fielded practical checking proves the correct-
ness of the diagnostic result. This result is fully consistent
with that in [11], however, here the applied approach is
quite different. And also, the experiment result shows that
the proposed method can not only work out the occurrence
probabilities of all likely faults but also gives out those of all
unlikely faults, and it, therefore, sees problem more fully.
The flaw is that the experiment result covers more data,
which makes problem analysis become complex.

8 Conclusion

Bayesian optimal classifier based on fuzzy set theory can
deal with the fuzziness and indetermination of the observed
information, and effectively tackle the “bottle neck” puz-
zle in fuzzy knowledge acquisition. Meanwhile, it provides
a multi-source fuzzy information fusion method based on

Bayesian optimal classifier. In theory, fuzzy membership
function itself represents a sort of prior information simi-
lar to prior probability, hence, the combination of the two
is feasible. And also, the paper applies neural networks to
simulate Bayesian optimal classifier and verifies the correct-
ness of the proposed model. This will be a new orientation
for automatic computing.
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