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Clutter-based Test Statistics for Automatic
Track Initiation

KENNEDY Hugh Lachlan1

Abstract Two test statistics based on clutter characteristics are derived. A tentative track is confirmed when the track-is-on-
clutter hypothesis is rejected. A constant and known false track rate results when the assumptions of the null hypothesis are true.
The first test statistic is based on the clutter density. A high probability of target detection is resulted when the expected distance to
the nearest target peak is less than the expected distance to the nearest clutter peak. The second test statistic is based on the clutter
amplitude. A high probability of target detection is resulted when the expected amplitude of the target peak is greater than the
expected amplitude of clutter peaks. The behavior of the clutter-based test statistics is compared with the target visibility method,
using simulated data. All track initiation methods are applied using a track updater based on probabilistic data association (PDA),
extended to incorporate peak amplitude information, which is available.
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In operational wide-area surveillance systems — for ex-
ample, those described in [1 − 4] — automatic track initi-
ation is required to reduce operator workload and increase
overall system effectiveness. Automatic track initiation is
the process whereby tracks on targets are promptly pre-
sented to the operator for assessment, without manual in-
tervention. A tentative track is started on all target-like
peaks and automatically maintained by the tracking sub-
system (the tracker). These tracks are only confirmed and
displayed when the track confidence exceeds a nominated
upper threshold; tracks with a confidence below a nomi-
nated lower threshold are deleted. The ability of the tracker
to discriminate between true and false tracks determines
the average false track rate, the average track initiation (or
establishment) delay, and the average number of tracks held
in the tracking database (thus the computational load).

Probabilistic data association (PDA) — which was ini-
tially formulated in [5], developed and customized in pa-
pers such as [6 − 7], and recently reviewed in [8 − 9] —
is well-suited to wide-area surveillance systems where the
clutter (or false peak) density is typically high, the proba-
bility of target detection low, the scan (or revisit) rate low,
the surveillance volume large, and the measurement noise
high. In these environments, PDA-based trackers provide
robustness at a low computational cost, along with reduced
development and maintenance costs due to their relative
simplicity.

In [10], PDA was extended to incorporate automatic
track initiation (and termination), by considering the
target-is-not-observable event, in addition to the all-
associated-peaks-are-clutter event of the original PDA for-
mulation. The idea has since been developed further, with
observability replaced by visibility[7], perceivability[11], and
existence[12]. Collectively, these approaches are sometimes
referred to as integrated PDA (IPDA). In [13], a fixed-lag
smoother is used to refine the estimate of existence; while
in [14], the approach is reformulated using an interacting
multiple model. State estimation and existence estimation
are tightly coupled in IPDA — the gain of the tracking filter
is influenced by the existence probability, whereas the ex-
istence probability is determined by the target probability
density relative to the clutter density. Other PDA-based
and non-PDA-based track initiation schemes are described
in [15− 16] and [17− 23], respectively.
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In this paper, track initiation schemes based purely on
clutter statistics are presented. The problem is formulated
as a hypothesis test, with the null hypothesis being that
the track is on clutter. A track is confirmed when the null
hypothesis is rejected. When the assumptions underlying
the null hypothesis are true, a constant and known false
track confirmation probability results – the size of the test;
furthermore, approaching the track initiation problem in
this way has the potential to reduce track initiation de-
lays on targets when the prior assumed measurement noise
and process noise distributions (as defined in the R and
Q matrices) are inappropriate or when the state estimates
are poor. The methods are also suitable for use in legacy
systems employing non-Bayesian trackers[24−25].

Three filters for the automatic initiation of tracks in clut-
ter are described in Section 1. After a brief overview of the
target visibility filter, two clutter-only methods are pre-
sented. The first is based on the spatial distribution (den-
sity) of the clutter peaks; the second is based on the signal
strength (amplitude) of the clutter peaks. The parameters
of the clutter population are estimated and any track on
peak sequences that are unlikely to be due to clutter are
confirmed. Test statistics are evaluated using the nearest
peak to associate with the track on each update, over the
recent history of the track. The power of the tests, i.e., the
achieved true track confirmation probability, depends on
the target peak characteristics. The amplitude test is pow-
erful when the mean signal strength of target detections is
significantly greater than the mean signal strength of the
false detections; the density test is powerful when the ex-
pected distance to the nearest target peak is less than the
expected distance to the nearest clutter peak. The track
initiation filters are applied to tracks managed by PDA-
based update algorithms, which are outlined in Section 2.
It is important to note that, unlike the target visibility
track initiation method, the clutter-based track initiation
methods do not influence the behavior of the underlying
track update algorithm in any way. This decoupling has a
number of desirable effects, which are discussed in Sections
4 and 5.

1 Track initiation filters

1.1 Target visibility filter

The automatic track initiation technique described in
[7, 10, 26] is briefly presented here as a reference IPDA im-
plementation. During a given update of a given track, the
prior probability of target visibility pv (k |k − 1), estimated
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recursively from previous scans, is used to weight the peak-
is-due-to-target events of the current scan k. The posterior
value of pv (k |k ) is then updated using Bayes′ rule. The
value of pv is propagated forward in time, from one scan to
the next, using a Markov chain,

pv(k |k − 1) = ∆pv(k − 1 |k − 1) + ∆̄(1− pv(k − 1 |k − 1))
(1)

with the elements ∆ and ∆̄ corresponding (respectively)
to the probability that the target remains, and becomes,
visible. The Markov chain effectively prevents pv from be-
coming locked at zero or unity during the recursion, thus
ensuring that it remains responsive to new data. Track con-

fidence p
[26]
cv is used for all track confirmation and deletion

decisions; it is a smoothed representation of pv,

pcv (k) = (1− ωc) pv (k |k ) + ωcpcv (k − 1) (2)

where ωc is an arbitrarily or empirically chosen smooth-
ing parameter, with no statistical or probabilistic basis. A
tentative track is confirmed when pcv ≥ pcon.

1.2 Clutter density filter

It is assumed that clutter detections are produced by
a Poisson process, so that the probability that M clutter
peaks are contained with in a given volume V is given by

pD (M ; ρ, V ) =
(ρV )M exp (−ρV )

M !
(3)

where the parameter ρ is the unit occurrence rate. Dis-
tances between consecutive Poisson events are distributed
as an exponential variable. This relationship is used to
solve queuing problems arising in information systems[27].
When applied to the problem at hand and used to model
the clutter-free volume Vg, with a clutter density of ρ, the
exponential distribution takes the following form:

fD (Vg; ρ) = ρ exp (−ρVg) (4)

Here, Vg is the (ellipsoidal) clutter-free space around the
predicted measurement location, enclosed by the nearest
associated peak. It is computed using

Vg = VcD
m

√
|S| (5)

where S is the innovation covariance matrix; Vc is the vol-
ume of the unit sphere in the m-dimensional measurement
space, computed using

Vc =
π

m
2

Γ
(

m
2

+ 1
) (6)

and D is the Mahalanobis distance, computed using

D =
√

µtS−1µ (7)

In the above equation, µ is the innovation vector, of length
m, with the superscript t denoting its transpose. It is the
difference between the predicted value of the target mea-
surement and the observed value of the nearest target mea-
surement. It is assumed that the parameter ρ is known but
not necessarily constant from scan to scan. In practice, it
is usually estimated by dividing the number of peaks gen-
erated in a given scan Ns, which is assumed here to be
large, by the surveillance volume of the sensor Vs (see [28]
for an alternative approach). As a result of the relationship

between the gamma and chi-squared distributions[29], (4)
yields the following test statistic:

2ρVg ∼ χ2 (2) (8)

If a tentative track is initiated at k = 0, and updated using
the nearest detection over the next K consecutive scans,
then from the reproductive property of chi-squared vari-
ables, the following relationship holds if the track is only
updated by clutter peaks:

ZD (k)= 2

K∑

k=1

ρ (k) Vg (k) ∼ χ2 (2K) (9)

where the k indices denote the scan dependence of ρ and
Vg. The null hypothesis (H0D ) is rejected if ZD (k) exceeds
a specified confirmation threshold λD, where λD is selected
to give the desired size αD, using the inverse chi-squared
cumulative density function (CDF). The p-value of the test
is used as a measure of track confidence on the k-th scan,

pcD (k) =

∫ ZD(k)

0

χ2 (Z; v) dZ (10)

where v is the degree of freedom.

1.3 Clutter amplitude filter

The amplitude (in dB), or signal-to-noise ratio (SNR),
of clutter peaks above the detection threshold is assumed
to be distributed as an exponential variable (for empirical
suitability and analytical convenience),

fA (a; θA, amin) =
1

θA − amin
exp

{
− a− amin

θA − amin

}
(11)

where fA is the probability density function (PDF) of the
distribution; amin is the SNR of the detection threshold,
as applied by the peak detector; θA is the average SNR
of the portion of the clutter population that is above the
detection threshold, and a is the SNR of the clutter peak
(amin ≤ a ≤ ∞).

Consequently, the following statistic is distributed as a
chi-squared variable, with 2 degrees of freedom:

2
a− amin

θA − amin
∼ χ2 (2) (12)

If a tentative track is initiated at k = 0, then receives K
updates, and all associated peaks are due to clutter, then
from the reproductive property of chi-squared variables, the
following statistic results are obtained:

2

K∑
k=1

{a (k, n′k)− amin}
θA − amin

∼ χ2 (2K) (13)

where k is the scan index and n′k is the index of the nearest
associated peak during the kth scan. Similarly, if the SNR
of all other peaks (also assumed to be due to clutter) in
each scan are summed then

2

K∑
k=1

Ns∑
n=1,n6=n′

k

{a (k, n)− amin}

θA − amin
∼ χ2 (2K (Ns − 1)) (14)

where Ns is the number of detections received in each scan.
The amin parameter is a system configuration parameter,
its value is therefore known; the θA parameter is unknown
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and is difficult to estimate when Ns is small, however, it is
assumed to be constant over the K scans. It is eliminated
when (13) is divided by (14) and a test statistic that is
distributed as Snedecor′s F variable results when the two
equations are divided by their respective degrees of free-
dom. The following holds when the null hypothesis is true:

ZA (k) = (N − 1)

K∑
k=1

{a(k,n′k)−amin}
K∑

k=1

Ns∑
n=1,n 6=n′

k

{a(k,n)−amin}
, with

ZA (k) ∼ F (2K, 2K (Ns − 1)) (15)

The null hypothesis (H0A) is rejected if ZA (k) exceeds a
specified confirmation threshold λA, where λA is selected
to give the desired size αA, using the inverse F cumulative
CDF. The p-value of the test is used as a measure of track
confidence on the kth scan,

pcA (k) =

∫ ZA(k)

0

F (Z; v1, v2) dZ (16)

where v1 and v2 are the degrees of freedom.

1.4 Clutter filter selection and application

To simplify the notation in the derivation of ZA, it has
been assumed that the number of detections in each scan
is constant, although this need not be the case. In both
clutter-based methods, after the creation of a tentative
track, the analysis window length is allowed to grow up to
a maximum length of Kmax; thereafter, a sliding window is
used.

The clutter density filter only yields a low and false track
production rate when the spatial clutter distribution is spa-
tially uniform and uncorrelated from scan to scan. An ac-
ceptable probability of true track promotion is only ob-
tained if the expected distance to the target peak, from the
predicted peak location, on each update, on average, is less
than the expected distance to the nearest clutter peak.

The clutter amplitude filter only yields a low false track
production rate if the incidence of high-amplitude clutter
peaks is spatially and temporally uncorrelated. A satisfac-
tory probability of true track promotion is only realized if
the average amplitude of target peaks is greater than the
average amplitude of clutter peaks.

Both clutter filters may be applied simultaneously and
independently where the aforementioned peak conditions
prevail. A tentative track is promoted if both or either test
is rejected. Either clutter filter can be used with any of the
track update filters described in the next section, as the
track update and track confidence methods are independent
of each other.

2 Track update filters

2.1 PDA

The un-normalized (parametric) PDA event probabilities
are evaluated using

β′0 = (1− pdpg) ρ (17)

and

β′i = pdgD (zzzi; ŷyy, S) (18)

where ŷ is the predicted target peak location, S is the in-
novation covariance matrix, zzzi is the location of the ith
associated peak, and gD is the target likelihood function (a

multivariate Gaussian) in spatial coordinates[5]. The nor-
malized PDA event probabilities are then evaluated using

βi =
β′i

Ng∑
i′=0

β′i′

, i = 0, · · · , Ng (19)

The subscript i is used to index the event probabilities, with
positive indices referring to the i-th associated peak and
i = 0 corresponding to the all-associated-peaks-are-clutter
event, which is assumed either to be due to an absent target
detection or a target peak that is detected but is beyond
the limits of the association gate. The parameters pd and
pg correspond to the probability that the target peak lies
above the detection threshold, and the probability that the
peak lies within the association gate, respectively. Here,
pd is a known constant and pg is computed using the limit
of the ellipsoidal association gate. Following the approach
taken in [30], the Ng nearest peaks are always used (i.e. a
variable gate size).

The un-normalized event probabilities are weighted by
a factor fD (Nc) which is formed from the product of uni-
form probability density functions and a Poisson probabil-
ity mass function, i.e.,

fD (Nc) =

(
1

Vg

)Nc

×
(

(ρVg)Nc

Nc!
exp (−ρVg)

)
(20)

The argument Nc is the number of clutter peaks assumed
in the event hypothesis, i.e., Nc = Ng − 1, for the i > 0
hypotheses, where one of the peaks is assumed to be due
to a target, and Nc = Ng for the i = 0 hypothesis, where
all peaks are assumed to be due to clutter. After dividing
all hypotheses by fD (Ng), only a factor of ρ/Ng remains
in the i = 0 hypothesis in (18).

2.2 PDA with target visibility

As [10], the PDA event space is extended to include track
initiation and termination as follows:

β′−1 = (1− pv) ρ (21)

β′0 = pv (1− pdpg) ρ (22)

and

β′i = pvpdgD (zzzi; ŷyy, S) (23)

then

βi =
β′i

Ng∑
i′=−1

β′i′

, i = −1, · · · , Ng (24)

In the above expressions, pv represents the prior proba-
bility of target visibility (from previous recursions), i.e.,
pv (k |k − 1); the posterior probability of target visibility is
then evaluated using pv (k |k ) = 1− β−1. PDA with target
visibility is equivalent to PDA when pv is fixed at unity.

2.3 PDA with target visibility and amplitude in-
formation

Previous studies have shown that the consideration of
amplitude information, SNR or signal strength, in a track-
ing algorithm has the potential to improve overall perfor-
mance of PDA-based tracking filters[9, 31−34]. The extent of
the benefits of course depends on the expected excess SNR
of the target peaks relative to the clutter peaks. Based
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loosely on the approach taken in [30], SNR is incorporated
into the PDA-with-target-visibility framework using

β′−1 = (1− pv) ρ

Ng∏
j=1

fA (aj ; θA, amin) (25)

β′0 = pv (1− pdpg) ρ

Ng∏
j=1

fA (aj ; θA, amin) (26)

and

β′i = pvpdgD (zzzi; ŷyy, S) gA

(
ai; µ̂A, s2

A

) Ng∏

j=1,j 6=i

fA (aj ; θA, amin)

(27)
then

βi =
β′i

Ng∑
i′=−1

β′i′

, i = −1, · · · , Ng (28)

or upon rearranging and dividing all events by the product
of all fA functions:

β′′−1 =
(1− pv)

pvpd
(29)

β′′0 =
(1− pdpg)

pd
(30)

and

β′′i =

(
gD (zzzi; ŷyy, S)

ρ

)
·
(

gA

(
ai; µ̂A, s2

A

)

fA (ai; θA, amin)

)
(31)

then

βi =
β′′i

Ng∑
i′=−1

β′′i′

, i = −1, · · · , Ng (32)

where fA is the clutter likelihood function (an exponen-
tial) in the amplitude coordinate – see (11) – and gA is the
target likelihood function (a Gaussian) in the amplitude

coordinate[30], with the parameters µ̂A and s2
A being the

predicted mean and the innovation variance, respectively.
The un-normalized and normalized event probabilities are
dimensionless. For notational, mathematical, and compu-
tational simplicity, amplitude is separated from the spatial
variables and is updated in parallel; furthermore, ampli-
tude information is not used during the peak association
process; therefore, the dimension of S (thus zzz and ŷyy) is the
same for all PDA implementations described here. The fil-
ter is factored in this way because it allows the PDA event
structure to be reused without modification. The spatial
and amplitude dependence of the clutter and target likeli-
hood functions (f and g) are denoted using the D and A
subscripts, respectively. Two likelihood functions are used
to exploit information in the independent spatial and am-
plitude coordinates. Use of the Poisson probability mass
function and the uniform probability density function as
prior clutter distributions, which is central to the PDA for-
mulation – see (1) and (2) in [16] – are only valid over the
spatial coordinates; introduction of the amplitude coordi-
nate would violate the assumption of clutter homogeneity.

3 Simulations

A series of Monte Carlo simulations were performed to
investigate the track initiation performance of the clutter
density and clutter amplitude methods, relative to the tar-
get visibility method. The simulations were performed in
two groups (I and II). Peak SNR was disregarded in Group
I simulations and considered in Group II simulations.

Clutter peaks were (pseudo-) randomly generated using
a uniform PDF in two continuous spatial (x, y) coordi-
nates, which results in a Poisson-distributed clutter field
(not proven here) when Ns is large. As per the assumed
model, the SNR of clutter peaks above the detection thresh-
old was generated using an exponential distribution. The
limits of the surveillance area are defined by the parameters
xmax, xmin, ymax, and xmin. A single target is moved, at
a (nominally) constant velocity, from the point (xbeg, ybeg)
to (xend, yend) over the Krun scans of each run, with a scan
rate of ∆T . The SNR of target peaks was generated ac-
cording to a Gaussian distribution N (µA, σA). For a given
mean target SNR (µA), the variance (σ2

A) was set to give
the specified probability of detection (pd), which remained
fixed for all scans in all simulations. Zero target amplitude
process noise (σ′A) was used in the simulations and filters.
Zero-mean Gaussian measurement noise (with a standard
deviation of σx and σy) was added to all target peaks above
the detection threshold. On each update, the true target
velocity was randomly perturbed by zero-mean Gaussian
process noise (with a standard deviation of σ′x and σ′y).
The initial covariance of the 1st derivative estimates was
set equal to the square of the initial target velocity in each
dimension. The parameters of a four dimensional state
space xxx = [x, ẋ, y, ẏ]T were estimated using a two dimen-

sional measurement space zzz = [x, y]T.
The simulation parameters were as follows: Krun = 50,

∆T = 1 s, pd = 0.8, xmax = 20 km, xmin = 10 km,
ymax = 200 km, xmin = 100 km, σx = b (xmax − xmin),
σy = b (ymax − ymin), σ′x = b′ (xmax − xmin), σ′y =
b′ (ymax − ymin), b′ = 1/1 000, amin = 5dB, and θA =
10dB. Track initiation performance in a range of differ-
ent conditions was examined with the number of clutter
peaks, measurement noise factor, and mean target SNR se-
lected from Ns = {25, 50, 100}, b = {1/100, 1/50, 1/25},
and µA = {10 dB, 15 dB, 25 dB}. In Group I simulations,
µA was fixed at 10 while Ns and b varied; in Group II
simulations, Ns was fixed at 50 while b and µA varied.

Three target scenarios (Targ. Type) were examined in
each simulation group: absent target (None), slow target
present (Slow), and fast target present (Fast). The target-
present simulations were used to characterize track initia-
tion delays, while the target-absent simulations were used
to characterize false track rates. On the initial scan (k = 1),
where the target was present, a single tentative track was
started on the target peak (the target was always detected
on the first scan); when the target was absent, a single ten-
tative track was started on a randomly selected peak. In
the latter case, the state covariance matrix P was initial-
ized using the average velocity of the slow and fast targets.
The slow- and fast-target scenarios were used to explore
the affect of target speed on track initiation delay. In both
cases the target started (in km) at (17, 170), then nomi-
nally, i.e., without added process noise, moved to (11, 110)
in the fast-target case (approx. Mach 3) and (15, 115) in
the slow-target case (approx. Mach 1), over the duration
of the run.

In an attempt to understand the variables affecting track
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initiation performance, a variety of simulation parameter
combinations were investigated. Each scenario was re-
peated 1 000 times using an incremented random number
seed.

Track deletion logic was not implemented; therefore the
track either remained in the tentative state or was con-
firmed. If on the last scan of the run, the target was not
located within the 99% probability limits of an elliptical as-
sociation gate, centered on the track and defined using the
measurement noise covariance matrix (R), then the (tenta-
tive or confirmed) track was labeled as divergent. Use of
the innovation covariance matrix (S) is inadequate for this
purpose because it is typically large for divergent tracks
(due to a large P matrix). The average track confirmation
scan (Avg. Conf. Scan), which is an indication of the track
initiation delay (Trk. Init. Del. = Conf. Scan-1), the num-
ber of confirmed tracks (Num. Conf.) and the number of
divergent tracks (Num. Div.) were determined for each fil-
ter, for each run (see Tables 1 and 2). In the target-present
scenarios, only confirmed tracks that were not divergent
were included in the number of confirmed tracks count and
the average track confirmation scan metric.

In Group I simulations, the peak set of a given scenario
was processed, in turn, using the target visibility filter
(Vis.) then the clutter density filter (Den.). These track
initiation filters were implemented using the track update
filters described in Sections 2.2 and 2.1, respectively. In
Group II simulations, the peak set of a given scenario
was processed, in turn, using: 1) the target visibility filter
(Vis.); 2) the clutter density filter (Den.) and the clutter
amplitude filter (Amp.) with track confirmation declared
when either hypothesis is rejected (Den.|Amp.); 3) the
clutter density filter (Den.) and the clutter amplitude
filter (Amp.) with track confirmation declared when both
hypotheses are rejected on a given scan (Den. and Amp.).
The track initiation filters were supported by the track
update filters described in Section 2.3 with pv held at
unity for the clutter filters. The clutter filters were applied
in parallel and independent of each other. A “loose” and
“tight” test is applied when the clutter filters are combined
using 2) and 3), respectively. The target visibility filter
parameters were: pv (1 |1) = 0.5, pcv (1) = 0.5, pcon = 0.7,
ωc = 0.75, ∆ = 0.99, and ∆̄ = 0.01. The clutter filter
parameters were: αD = αA = 0.01 and Kmax = 25.
The track update filter parameters used were: Ng = 4,
R = diag

([
σ2

x, σ2
y

])
,

H =

(
1 0 0 0
0 0 1 0

)
, F =




1 ∆T 0 0
0 1 0 0
0 0 1 ∆T
0 0 0 1


 ,

and

Q =

diag
([(

1
2
σ′x∆T 2

)2
,
(
σ′x∆T

)2
,
(

1
2
σ′y∆T 2

)2
,
(
σ′y∆T

)2
])

;

RA = σ2
A, HA = 1, FA = 1, and QA = σ

′2
A = 0. Modeling

error sensitivity was not investigated.
The process of filter parameter selection/tuning was as

follows: Using Group I data (without SNR), the param-
eters of the clutter density filter were arbitrarily set and
the total number of false tracks generated noted over 1 000
repetitions, of the target absent scenario with Ns = 50 and
b = 1/50. The parameters of the target visibility filter were
then adjusted to minimize the average track initiation de-

lay, when processing the slow target scenario with Ns = 50
and b = 1/50, constrained so that number of false tracks
generated in the target absent scenario with Ns = 50 and
b = 1/50 approximately equaled the number of false tracks
generated by the clutter density filter. The track initiation
filter parameters established in this way were then used
for the remaining scenarios. The Group I parameters were
used, without modification, to process the Group II data.

Table 1 Group I simulation results1

Targ. Ns b Filter Avg. Num. Num.

type conf. conf. div.

scan

None 25 1/100 Vis. 14 32 1000

None 25 1/100 Den. 16 95 1000

None 25 1/50 Vis. 14 72 1000

None 25 1/50 Den. 16 94 1000

None 25 1/25 Vis. 14 133 1000

None 25 1/25 Den. 21 103 1000

None 50 1/100 Vis. 13 66 1000

None 50 1/100 Den. 14 92 1000

None 50 1/50 Vis. 14 101 1000

None 50 1/50 Den. 20 107 1000

None 50 1/25 Vis. 16 149 1000

None 50 1/25 Den. 18 110 1000

None 100 1/100 Vis. 11 86 1000

None 100 1/100 Den. 19 103 1000

None 100 1/50 Vis. 13 157 1000

None 100 1/50 Den. 17 126 1000

None 100 1/25 Vis. 19 161 1000

None 100 1/25 Den. 21 115 1000

Slow 25 1/100 Vis. 4.5 998 2

Slow 25 1/100 Den. 4.2 997 3

Slow 25 1/50 Vis. 6.1 989 11

Slow 25 1/50 Den. 5.9 991 9

Slow 25 1/25 Vis. 9 970 23

Slow 25 1/25 Den. 11 977 21

Slow 50 1/100 Vis. 5.3 985 14

Slow 50 1/100 Den. 5 988 12

Slow 50 1/50 Vis. 7.6 964 34

Slow 50 1/50 Den. 7.8 973 26

Slow 50 1/25 Vis. 13 781 206

Slow 50 1/25 Den. 19 765 154

Slow 100 1/100 Vis. 6.6 965 35

Slow 100 1/100 Den. 6.2 969 31

Slow 100 1/50 Vis. 9.6 839 155

Slow 100 1/50 Den. 13 884 107

Slow 100 1/25 Vis. 14 308 676

Slow 100 1/25 Den. 22 306 482

Fast 25 1/100 Vis. 5.3 974 26

Fast 25 1/100 Den. 4.7 984 16

Fast 25 1/50 Vis. 6.8 932 68

Fast 25 1/50 Den. 6.9 970 30

Fast 25 1/25 Vis. 9.6 700 297

Fast 25 1/25 Den. 14 836 148

Fast 50 1/100 Vis. 6.2 904 96

Fast 50 1/100 Den. 6.1 946 54

Fast 50 1/50 Vis. 8.4 729 269

Fast 50 1/50 Den. 11 848 150

Fast 50 1/25 Vis. 10 158 840

Fast 50 1/25 Den. 23 356 575

Fast 100 1/100 Vis. 7.3 695 304

Fast 100 1/100 Den. 9.3 851 145

Fast 100 1/50 Vis. 9.6 246 753

Fast 100 1/50 Den. 19 524 461

Fast 100 1/25 Vis. 8 1 999

Fast 100 1/25 Den. 27 12 969

1µA fixed at 10 dB, SNR information ignored
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Table 2 Group II simulation results2

Targ. µA b Filter Avg. Num. Num.

Type Conf. Conf. Div.

Scan

None NA 1/100 Vis. 7.3 7 1000

None NA 1/100 Den.|Amp. 20 161 1000

None NA 1/100 Den.&Amp. 28 1 1000

None NA 1/50 Vis. 6.2 17 1000

None NA 1/50 Den.|Amp. 17 191 1000

None NA 1/50 Den.&Amp. 17 4 1000

None NA 1/25 Vis. 9.8 33 1000

None NA 1/25 Den.|Amp. 20 184 1000

None NA 1/25 Den.&Amp NA 0 1000

Slow 25 1/100 Vis. 4.4 998 2

Slow 25 1/100 Den.|Amp. 3 998 2

Slow 25 1/100 Den.&Amp. 5.5 998 2

Slow 25 1/50 Vis. 5 998 2

Slow 25 1/50 Den.|Amp. 3.5 998 2

Slow 25 1/50 Den.&Amp. 7.8 998 2

Slow 25 1/25 Vis. 6.1 998 2

Slow 25 1/25 Den.|Amp. 5.5 1000 0

Slow 25 1/25 Den.&Amp. 18 978 0

Slow 15 1/100 Vis. 5.4 991 9

Slow 15 1/100 Den.|Amp. 4.2 996 4

Slow 15 1/100 Den.&Amp. 8.3 996 4

Slow 15 1/50 Vis. 7.9 994 6

Slow 15 1/50 Den.|Amp. 5.6 996 4

Slow 15 1/50 Den.&Amp. 11 996 4

Slow 15 1/25 Vis. 12 897 81

Slow 15 1/25 Den.|Amp. 11 974 24

Slow 15 1/25 Den.&Amp. 22 894 24

Slow 10 1/100 Vis. 5.9 976 22

Slow 10 1/100 Den.|Amp. 5.1 993 7

Slow 10 1/100 Den.&Amp. 28 449 7

Slow 10 1/50 Vis. 10 903 82

Slow 10 1/50 Den.|Amp. 7.8 984 16

Slow 10 1/50 Den.&Amp. 28 362 16

Slow 10 1/25 Vis. 18 515 395

Slow 10 1/25 Den.|Amp. 18 837 121

Slow 10 1/25 Den.&Amp. 31 140 121

2Ns fixed at 50

4 Discussion

On the one hand, the IPDA method is desirable because
the filter gain is reduced (due to the lower weighting of
the peak-is-due-to-target events) as target visibility falls, so
that tracks maintain their current heading in clutter during
periods of reduced signal strength; on the other hand, the
method is undesirable during track initiation in stressful
conditions and during maneuvers because the tracking filter
does not have the gain required to remove position and/or
velocity bias. Use of the target visibility filter reduces the
number of confirmed tracks and increases the number of
divergent tracks relative to the clutter density filter. This
behavior is most apparent in the more stressful scenarios in
Table 1 (i.e. fast target, Ns ≥ 50 and b ≥ 1/50). In these
cases, the target visibility filter results in faster track initia-
tion than the clutter density filter, on average (as indicated

by Avg. Conf. Scan); however, this is because most of the
target visibility tracks diverge, whereas clutter density fil-
ter tracks struggle for many scans but manage to follow the
target and eventually get confirmed. Fig. 1 shows that the
target visibility filter is much less likely to confirm tracks
after the first 10 scans, in one of the more challenging sce-
narios. The average track confirmation scan is increased as
a result. In the less stressful scenarios the behavior of the
filters is similar, although less pronounced.

Fig. 1 Aggregate results (1 000 repetitions) for a stressful

scenario (Targ. Type = Fast, Ns = 100, b = 1/50)

The tendency of the target visibility filter to suppress
poor tracks on targets also acts to suppress false tracks on
weakly correlated sequences of clutter peaks (and delete
them quickly). The results in Table 1 show that the num-
ber of false tracks produced by the clutter density filter is
approximately constant (around 100), in all target-absent
scenarios; while the false track rate of the target visibil-
ity filter depends on the scenario parameters. Further-
more, use of prior target models by the target visibility
filter consistently results in a lower false track rate in the
low measurement noise scenarios (b = 1/100) and a higher
false track rate in the high measurement noise scenarios
(b = 1/25), for all clutter densities (Ns = 25, 50, and 100),
when compared with the clutter density filter. Without ex-
ception, the number of false tracks generated by the target
visibility filter increases with the clutter density, for any
given level of measurement noise.

Use of average confirmation delays obscures a significant
difference between the clutter filters and the target visibil-
ity filter – use of a smoothing factor (ωc) of 0.75 makes it
impossible for a track to be confirmed before third scan;
the limit increases as the smoothing factor increases, even
if all of the nearest associated peaks coincide with the pre-
dicted peak location during the life of the tentative track.
The clutter filters permit track confirmation on any scan,
except for k = 1 (the initiation scan). As a consequence,
average track initiation delays for the clutter density filter
are less than the target visibility filter, in the benign sce-
narios with low measurement-noise (b = 1/100) and slow
targets. The different track confirmation behavior at low
scans is evident in Fig. 1.

The use of amplitude information in the Group II simula-
tions results in a five- to ten-fold reduction in the number of
false tracks generated by the target visibility filter (compar-
ing Table 1 with Table 2). Similar reductions in the number
of divergent true tracks, when the average target SNR is
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significantly greater than the clutter (µA ≥ 15 dB), were re-
alized for all track initiation methods, due to the enhanced
operation of the PDA-based track updater; however, the
number of divergent tracks produced by the clutter initi-
ation methods (Den.|Amp. and Den. & Amp.) remain
less than or equal to the number generated by the tar-
get visibility method in all Group II scenarios. Use of the
Den.|Amp. track initiation logic nearly doubles the false
track rate but reduces the track initiation delays, relative
to the corresponding Group I results; whereas the Den. &
Amp. test all but eliminates false tracks, at the expense of
significantly longer track initiation delays, especially in the
low SNR scenarios (µA = 10dB).

Supplementary simulations were performed to verify that
the probability of false track confirmation in the target ab-
sent scenarios, on any given scan, is approximately equal
to the size of the clutter density test. This relationship
is not reflected in the results of Tables 1 and 2. The
absent target scenario with 100 clutter peaks was modi-
fied so that the track confirmation was only applied on
the last scan of the run, in an attempt to eliminate scan-
dependent correlations. Runs with a maximum of 2 to 50
scans were created; each was repeated 1 000 times using a
size of 0.01. If the clutter has been correctly modeled, and
the filters/simulations correctly implemented, then the to-
tal number of confirmed tracks in Fig. 2 should be approx-
imately equal to 0.01×1 000, on every scan. The agreement
should improve as the number of clutter peaks and repe-
titions increases. If there is a slight bias towards zero at
high scans, it is due to edge effects, i.e., as tentative tracks
wander beyond the limits of sensor coverage, the expected
distance to the nearest clutter peak increases, making false
track confirmation less likely. The analysis was repeated
for the clutter amplitude test (see Fig. 3).

Two clutter-based test statistics have been defined in
this paper. Their suitability in a given application depends
on the extent to which the clutter distributions satisfy the
assumptions of the null hypothesis and the expected power
of the test (as discussed in the opening paragraph of Section
1). In practice, the assumption of clutter uniformity is
more likely to be met when the parameters of the clutter
statistics are estimated in the local vicinity of each track,
rather than over the entire surveillance volume. Where
appropriate, both clutter tests are applied separately and
independently of each other.

Fig. 2 The number of confirmed (false) tracks produced by

the clutter density filter is compared with the theoretically

expected values

Fig. 3 The number of confirmed (false) tracks produced by

the clutter amplitude filter is compared with the theoretically

expected values

The fact that the clutter filters only use the nearest as-
sociated peak, whereas the PDA filter uses many nearest
peaks, may appear to be suboptimal; however, regardless of
the track initiation technique used, a PDA track is unlikely
to follow a target when the target peak is not the nearest
peak, most of the time; therefore, use of the nearest peak
is a justifiable simplification.

5 Conclusions

Due to the coupling between the track initiation filter
and the track update filter, the target visibility method
tends to suppress both true and false tentative tracks on
weakly correlated peak sequences. The suitability of the
target visibility filter relative to the clutter density and
clutter amplitude filters, therefore, depends on the cost of
a type I error (false track confirmed) relative to the cost of
a type II error (true track not confirmed), where “cost” is
a user defined system requirement. The clutter filters do
not influence the behavior of the track update filter and,
unlike the target visibility filter, the false track rate does
not depend on the clutter density or the parameters of the
track update filter; consequently, the clutter filters yield a
constant (and known) false alarm rate when the conditions
assumed under the null hypotheses are true. The clutter
density and clutter amplitude filters, respectively, result
in fast true track initiation when the expected distance to
the nearest target peak is less than the expected distance
to the nearest clutter peak and when the expected target
peak SNR is greater than the expected clutter peak SNR.
It is shown that the use of peak amplitude information has
the potential to enhance the track initiation performance of
all methods, when the expected target SNR is significantly
greater than the average clutter SNR. Like all model-based
techniques, the effectiveness of the clutter-based methods
in any given application will be determined by the extent to
which the underlying statistical assumptions of the models
are satisfied.
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