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Comparison of Single-point and Two-point Difference

Track Initiation Algorithms Using Position

Measurements
MALLICK Mahendra1 LA SCALA Barbara2

Abstract We consider the problem of initializing the tracking filter of a target moving with nearly constant velocity when position-
only (1D, 2D, or 3D) measurements are available. It is known that the Kalman filter is optimal for such a problem, provided it
is correctly initialized. We compare a single-point and the well-known two-point difference track initialization algorithms. We
analytically show that if the process noise approaches zero and the maximum speed of a target used to initialize the velocity variance
approaches infinity, then the single-point algorithm reduces to the two-point difference algorithm. We present numerical results that
show that the single-point algorithm performs consistently better than the two-point difference algorithm in the mean square error
sense. We also present analytical results that support the conjecture that this is true in general.
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Track initiation is an essential component of all track-
ing algorithms, but one that has received little attention.
For situations where the dynamic and measurement models
are linear and appropriate Gaussianity and independence
assumptions hold, it is well-known that the Kalman fil-
ter (KF) is optimal in the minimum mean squared error
sense[1−2]. However, this result requires that the mean of
the initial state estimate is equal to the mean of the initial
state, and its associated error covariance matrix is equal to
the true initial covariance. In practice, this is rarely the
case. Ideally, any initial transients introduced by incorrect
initialization will quickly be eliminated, but this cannot be
guaranteed. The effect of such errors on Kalman filters for
general problems have been examined in [3 − 5] and more
recently, with a focus on target tracking, in [6].

There are additional factors to be considered for target
tracking problems. In real-world radar tracking problems,
the measurements are range and azimuth in the 2D case,
and range, azimuth, and elevation in the 3D case. Unbiased
position measurements and associated measurement covari-
ances can be derived from these radar measurements[7], but
the associated measurement errors are no longer Gaussian.
For the ground target tracking problem using the ground
moving target indicator (GMTI) radar sensor, the 3D posi-
tion of a target can be estimated using the GMTI range and
azimuth measurements, sensor position, and terrain data[8].
A similar situation occurs in the video tracking problem.
The 3D position of a ground target can be estimated using
the target centroid pixel location, intrinsic and extrinsic
camera parameters, and terrain data[9]. Similarly, the er-
rors in the 3D position estimate of the target for the GMTI
and video tracking problems are not Gaussian. This lack of
Gaussianity will also have an impact on the performance of
the filter and can potentially exacerbate any initialization
errors. This is demonstrated in [10], which considers the
problem of target tracking with long range radars.

In this paper, we compare two track initiation algo-
rithms, the single-point (SP) method[11−12] and the two-
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point difference (TPD) method[2], using position-only mea-
surements in 1D, 2D, or 3D. We assume that the target
motion is described by the nearly constant velocity model
(NCVM)[2]. Then, the SP algorithm initiates the track
using the first position measurement and sets the veloc-
ity components to zero. The maximum possible speed of
the target is used, in addition to the measurement covari-
ances, to initialize the associated covariance matrix[11−12].
A KF is then used to process subsequent position measure-
ments. In contrast, the TPD algorithm[2] uses information
on the first two measurements alone to initialize the filter.
This estimate represents the maximum likelihood estimate
for Gaussian position errors. We demonstrate numerically
that the SP method has a smaller mean square error ma-
trix (MSEM) than the TPD for a 3D radar target tracking
problem. We conjecture that this result holds analytically.
We analytically show that, if the process noise approaches
zero and the maximum speed of a target used to initial-
ize the velocity variance approaches infinity, then the SP
algorithm reduces to the TPD algorithm.

The organization of the paper is as follows. Section 1 de-
scribes the target dynamic and measurement models. Sec-
tion 2 presents the SP and TPD track initiation algorithms.
The bias and the MSEM of the two estimators at the sec-
ond observation time are discussed in Section 3. Section 4
establishes the relationship between the two track initiation
algorithms analytically. Finally, Sections 5 and 6 present
numerical results and conclusions.

Let n (1, 2 or 3) denote the dimension of the target
position. We use I and 0n to represent the n × n identity
matrix and null matrix, respectively. A general m× n null
matrix is denoted by 0m×n.

1 Dynamic and measurement models

We consider the NCVM in n dimensions and use the
discretized continuous-time dynamic model[2]. Then, the
position pppk ∈ RRRn and velocity vvvk ∈ RRRn of a target define
target state xxxk ∈ RRR2n at time tk

xxxk =
[

pppT
k vvvT

k

]T
(1)
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The continuous-time NCVM is formally described by
[2, 13− 14]

dxxx(t)

dt
= Axxx(t) + Gw̃ww(t) (2)

where

A =

[
0n I

0n 0n

]
(3)

G =

[
0n

I

]
(4)

w̃ww(t) =




w̃1(t)
...

w̃n(t)


 (5)

For the NCVM, w̃i(t) in (5) represents a zero-mean white
noise acceleration along the i-th axis with power spectral
density qi, i = 1, · · · , n[2]. Axis 1, 2, and 3 correspond to
the X, Y , and Z axes, respectively. We assume that w̃i(t)
and w̃j(t) for i 6= j are uncorrelated. Thus, we have

E[w̃i(t)] = 0, i = 1, · · · , n (6)

E[w̃i(t)w̃
T
j (t)] = δijδ(t− τ)qi, i, j = 1, · · · , n (7)

where the δ with the suffixes is a Kronecker delta and the
δ with the argument is a Dirac delta. Discretization of the
continuous-time NCVM in (2) at measurement times {tk}
yields[2, 14]

xxxk = Fk,k−1xxxk−1 + wwwk,k−1, k = 2, 3, · · · (8)

where Fk,k−1 and wwwk,k−1 are the state transition matrix
and integrated process noise for the time interval [tk−1, tk],
respectively[2, 14]

Fk,k−1 = F (tk, tk−1) = exp(A∆k) =

[
I I∆k

0n I

]
(9)

wwwk,k−1 =

∫ tk

tk−1

F (tk, t)Gw̃ww(t)dt (10)

∆k = tk − tk−1 (11)

Since {w̃j(t)} are zero-mean, white, and uncorrelated,
wwwk,k−1 is zero-mean, white, and Gaussian with covariance
Qk,k−1 (process noise covariance matrix)

wwwk,k−1 ∼ N (02n×1, Qk,k−1) (12)

Using (7) and (10), we can show that

E[wwwk,k−1www
T
l,l−1] = δklQk,k−1 (13)

For n = 3,

Qk,k−1 =
(14)




1

3
q1∆

3
k 0 0

1

2
q1∆

2
k 0 0

0
1

3
q2∆

3
k 0 0

1

2
q2∆

2
k 0

0 0
1

3
q3∆

3
k 0 0

1

2
q3∆

2
k

1

2
q1∆

2
k 0 0 q1∆k 0 0

0
1

2
q2∆

2
k 0 0 q2∆k 0

0 0
1

2
q3∆

2
k 0 0 q3∆k




We assume that qi is the same for each coordinate axis, i.e.,

qi = q, i = 1, · · · , n (15)

Then

Qk,k−1 = q




1

3
I∆3

k
1

2
I∆2

k

1

2
I∆2

k I∆k


 (16)

The position measurement model is[2]

zzzk = Hxxxk + nnnk = pppk + nnnk, i = 1, 2, · · · , N (17)

H =
[

I 0n

]
(18)

where nnnk is a zero-mean white Gaussian measurement noise
with covariance Rk with

E[nnnk] = 0, E[nnnknnn
T
l ] = δklRk, k, l = 1, 2, · · · , N (19)

Note that, if radar (range, azimuth) or (range, azimuth,
elevation) measurements with additive Gaussian measure-
ment noises are used, then the measurement noise associ-
ated with the converted Cartesian measurements is zero-
mean but not Gaussian[7].

The state at time t2, according to (8), is described by

xxx2 = Fxxx1 + www (20)

where F = F2,1 is the state transition matrix and www =
www2,1 is the zero-mean white Gaussian integrated process
noise[2, 14] with covariance Q = Q2,1 for the time interval
[t1, t2]

F =

[
I TI

0 I

]
(21)

T = t2 − t1 (22)

www ∼ N (0, Q) (23)

Using (16) and (22), we get

Q =

[
a3I a2I

a2I a1I

]
(24)

where

am =
qT m

m
, m = 1, 2, 3 (25)

Substitution of (1) and (21) in (20) gives

xxx2 =

[
ppp2

vvv2

]
=

[
ppp1 + Tvvv1

vvv1

]
+

[
wwwp

wwwv

]
(26)

where

www =

[
wwwp

wwwv

]
(27)

wwwp ∼ N (000, a3I) (28)

wwwv ∼ N (000, a1I) (29)

E[wwwpwww
T
v ] = a2I (30)

From (26), we get

ppp2 = ppp1 + Tvvv1 + wwwp (31)

vvv2 = vvv1 + wwwv (32)
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2 Track initialization algorithms

We assume that the initial state xxx1 at time t1 is a Gaus-
sian random variable with mean x̄xx1 and covariance P1,

xxx1 ∼ N (x̄xx1, P1) (33)

Thus, in a given Monte Carlo simulation, xxx1 assumes a
value

xxx1 = x̄xx1 + eee1 (34)

where eee1 is a zero-mean Gaussian random variable with
covariance P1, i.e.

eee1 ∼ N (0, P1) (35)

Writing the state in terms of position and velocity, we have

[
ppp1

vvv1

]
=

[
p̄pp1

v̄vv1

]
+

[
eee1p

eee1v

]
(36)

We assume that the errors in the position and velocity are
uncorrelated,

eee1p ∼ N (0, P1p), eee1v ∼ N (0, P1v) (37)

P1 =

[
P1p 0

0 P1v

]
(38)

Let x̂xx2|2 and P2|2 denote the state estimate and co-
variance at t2 after processing the measurements {zzz1, zzz2}.
Next, we present the TPD and SP track initialization algo-
rithms in Sections 2.1 and 2.2, respectively.

2.1 TPD track initialization algorithm

The TPD track initialization algorithm[2] approximates
the initial track state using the first two position measure-
ments as follows

x̂xxTPD
2|2 =

[
zzz2

1

T
(zzz2 − zzz1)

]
(39)

The initial state error covariance is computed assuming
there is no process noise, which yields

P TPD
2|2 =


 R2

1

T
R2

1

T
R2

1

T 2
(R1 + R2)


 (40)

2.2 SP track initialization algorithm

In the SP algorithm[11−12], the track is initialized at t1
by

x̂xx1|1 =

[
zzz1

0n×1

]
(41)

where the position component of the state is set equal to
the position measurement, and the velocity component is
set to zero. The covariance corresponding to x̂xx1|1 is given

by[11−12]

P1|1 =

[
R1 0n

0n dI

]
(42)

d =
v2
max

3
(43)

where vmax is the maximum possible speed of a target.
Thus, vmax represents the a priori information. Next, the

KF algorithm is used for prediction and update at t2. It
can be shown that the updated state estimate and its error
covariance are given by

x̂xxSP
2|2 =

[
zzz1 + K1(zzz2 − zzz1)

K2(zzz2 − zzz1)

]
(44)

P SP
2|2 =

[
A1 −A1S

−1A1 A2 −A1S
−1A2

A2 −A2S
−1A1 A3 −A2S

−1A2

]
(45)

where K is the Kalman gain given by

K =

[
K1

K2

]
=

[
A1S

−1

A2S
−1

]
(46)

and S is the innovation covariance

S = A1 + R2 (47)

and

A1 = R1 + (T 2d + a3)I (48)

A2 = (Td + a2)I (49)

A3 = (d + a1)I (50)

3 Bias and mean square error

The covariances calculated by the TPD and SP track
initiation algorithm are given by (40) and (45), respectively.
We assume that (8) (or (20) at t2) and (33) ∼ (38) describe
the correct dynamic model and prior distribution for the
system. Then, we calculate the bias error and MSEM for
the two track initialization algorithms relative to the truth
model. The MSEM represents the actual error for each
track initiation algorithm. We show that the covariances in
(40) and (45) are different from the corresponding MSEMs.

The error in x̂xx2|2 is defined by

x̃xx2|2 = xxx2 − x̂xx2|2 (51)

3.1 TPD track initialization algorithm

Use of (39) in (51) gives

x̃xxTPD
2|2 = xxx2 −

[
zzz2

1

T
(zzz2 − zzz1)

]
= (52)

xxx2 −
[

Hxxx2 + nnn2

1

T
(Hxxx2 + nnn2 −Hxxx1 −nnn1)

]
=

[
ppp2

vvv2

]
−

[
ppp2 + nnn2

1

T
(ppp2 + nnn2 − ppp1 −nnn1)

]
=

[ −nnn2

vvv2 − 1

T
(ppp2 − ppp1)−

1

T
(nnn2 −nnn1)

]

From (31), we get

1

T
(ppp2 − ppp1) = vvv1 +

1

T
wwwp (53)

which with (32) gives

x̃xxTPD
2|2 =

[ −nnn2

vvv2 − vvv1 − 1

T
wwwp − 1

T
(nnn2 −nnn1)

]
= (54)

[ −nnn2

wwwv − 1

T
wwwp − 1

T
(nnn2 −nnn1)

]
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Using the zero-mean properties of the measurement noise
and process noise, we get

E[x̃xxTPD
2|2 ] = 02n×1 (55)

Thus, the TPD estimator is unbiased.
Let ΣTPD

2 denote the MSEM of the TPD track initiation
error. Then

ΣTPD
2 = E[x̃xxTPD

2|2 (x̃xxTPD
2|2 )T] = (56)


 R2

1

T
R2

1

T
R2

1

T 2
(R1 + R2) +

a3

T 2
I + a1I − 2a2

T
I


 =


 R2

1

T
R2

1

T
R2

1

T 2
(R1 + R2) +

qT

3
I + qTI − qTI


 =


 R2

1

T
R2

1

T
R2

1

T 2
(R1 + R2) +

1

3
qTI




Comparison of (40) and (56) shows that, the position co-
variance and position-velocity covariance agree. However,
the velocity component of the MSEM has an additional
term 1

3
qTI compared with the TPD calculated covariance,

which arises due to neglecting the process noise.
In [6], it is argued that a more accurate two-point based

initialization method is to use x̂xxTPD
2|2 and ΣTPD

2 as the ini-
tial state estimate and its associated error covariance, re-
spectively. This initialization scheme is the solution to

arg min
xxx2

([
zzz2

zzz1

]
−

[
Hxxx2

Hxxx1

])T

W

([
zzz2

zzz1

]
−

[
Hxxx2

Hxxx1

])

(57)
where W is a symmetric, positive definite weighting matrix
chosen so that the solution to (57) minimizes

E[(xxx2 − x̂xx2)(xxx2 − x̂xx2)
T|xxx2] (58)

In this formulation, xxx2 is treated as a random variable. In
[6] this method is termed optimal Bayesian weighted least
squares initialization.

3.2 SP based track initialization algorithm

Substitution of (44) into (51) gives the error in the SP
initiated track state at time t2

x̃xxSP
2|2 = xxx2 − x̂xxSP

2|2 = (59)
[

ppp2

vvv2

]
−

[
zzz1 + K1(zzz2 − zzz1)

K2(zzz2 − zzz1)

]
=

[
p̃pp2|2
ṽvv2|2

]

Use of (17) in (59) gives

x̃xxSP
2|2 =

[
ppp2 − (I −K1)(ppp1 + nnn1)−K1(ppp2 + nnn2)

vvv2 −K2(ppp2 + nnn2) + K2(ppp1 + nnn1)

]
(60)

Thus,

p̃pp2|2 = (I −K1)ppp2 − (I −K1)ppp1 − (I −K1)nnn1 −K1nnn2 =

(61)

(I −K1)(ppp2 − ppp1)− (I −K1)nnn1 −K1nnn2

From (31), we have

ppp2 − ppp1 = Tvvv1 + wwwp (62)

Substitution of (62) into (61) gives

p̃pp2|2 = T (I −K1)vvv1 + (I −K1)(wwwp −nnn1)−K1nnn2 = (63)

T (I −K1)(v̄vv1 + eee1v) + (I −K1)(wwwp −nnn1)−K1nnn2

Taking the velocity component of x̃xxSP
2|2 from (59) and

using (26) and (62), we get

ṽvv2|2 = vvv1 + wwwv −K2(ppp2 − ppp1) + K2(nnn1 −nnn2) = (64)

vvv1 + wwwv −K2(Tvvv1 + wwwp) + K2(nnn1 −nnn2) =

(I − TK2)vvv1 + wwwv + K2(nnn1 −nnn2 −wwwp) =

(I − TK2)(v̄vv1 + eee1v) + wwwv + K2(nnn1 −nnn2 −wwwp)

Therefore,

E[x̃xxSP
2|2 ] =

[
E[p̃pp2|2]
E[ṽvv2|2]

]
=

[
T (I −K1)v̄vv1

(I − TK2)v̄vv1

]
(65)

Thus, the SP initialization state estimate x̂xxSP
2|2 at t2 is biased

in both the position and velocity components.
Using (63) and (64), the MSEM for the SP track initia-

tion error is

ΣSP
2 =

[
E[p̃pp2|2p̃pp

T
2|2] E[p̃pp2|2ṽvv

T
2|2]

E[p̃ppT
2|2ṽvv2|2] E[ṽvv2|2ṽvv

T
2|2]

]
(66)

where

E[p̃pp2|2p̃pp
T
2|2] = T 2(I −K1)(v̄vv1v̄vv

T
1 + P1v)(I −K1)

T+ (67)

(I −K1)(a3I + R1)(I −K1)
T + K1R2K

T
1

E[ṽvv2|2ṽvv
T
2|2] = (I − TK2)(v̄vv1v̄vv

T
1 + P1v)(I − TK2)

T+ (68)

a1I − a2(K2 + KT
2 )+

K2(R1 + R2 + a3I)KT
2

E[p̃pp2|2ṽvv
T
2|2] = T (I −K1)(v̄vv1v̄vv

T
1 + P1v)(I − TK2)

T+ (69)

a2(I −K1)− a3(I −K1)K
T
2 −

(I −K1)R1K
T
2 + K1R2K

T
2 = E[p̃ppT

2|2ṽvv2|2]

4 Relationship between SP and TPD
algorithms

The SP track initiation algorithm is Bayesian in nature
in the sense that it uses the correct dynamic model involv-
ing the process noise and prior information of the max-
imum speed of a target to specify the prior velocity co-
variance. Second, the SP track initiation algorithm uses
the optimal KF steps to process zzz2. In contrast, the TPD
initiation algorithm is non-Bayesian (maximum likelihood
(ML) for Gaussian measurement errors or weighted least
square (WLS) for converted Cartesian measurements) in
nature. The state estimate and corresponding covariance
are purely dependent on the measurements and associated
covariances.

While the SP track initiation algorithm leads to a biased
estimate for x̂xx2|2 in contrast to the unbiased TPD estimate,
this does not necessarily mean it is of lower quality. Typ-
ically, bias or lack of it is considered an important feature
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of an estimator. However, the mean square error of an es-
timator is also an important factor in estimator selection.
It can be shown[15] that a biased estimator may have lower
estimation variability than an unbiased one. In particular,
it is often the case that a Bayesian estimator, i.e., one that
makes use of all available a priori information and which
also minimizes the mean square error is biased[15]. We con-
jecture that the track initiation problem considered here is
one such example. That is, we believe that

ΣTPD
2 − ΣSP

2 (70)

is a positive semi-definite matrix. The proof of the result
is the subject of future work.

However, in this section, we show that as the process
noise approaches zero and the maximum speed vmax ap-
proaches infinity, the SP algorithm approaches the TPD
algorithm. That is, when there is no a priori information
on the target′s speed and process noise is neglected, the
two methods are identical. Thus, the differences between
the two methods arise from the use of a priori information
and correct dynamic model in the SP approach.

We first show that the SP estimate is unbiased in the
limit. Note, when the process noise approaches zero (e. g.,
q → 0 or am → 0, m = 1, 2, 3), then using (46) ∼ (50),
we get

lim
q→0

K1 = (R1 + T 2dI)(R1 + R2 + T 2dI)−1 (71)

lim
q→0

K2 = Td(R1 + R2 + T 2dI)−1. (72)

Thus, when the process noise approaches zero and the max-
imum speed approaches infinity (d →∞), we have

lim
q→0
d→∞

K1 = lim
d→∞

(R1 + T 2dI)[R1 + R2 + T 2dI]−1 = (73)

lim
d→∞

[
1

T 2d
(R1 + R2) + I

]−1

= I (74)

and

lim
q→0
d→∞

K2 =

[
d1

T
(R1 + R2) + TI

]−1

=
1

T
I (75)

Therefore,

lim
q→0
d→∞

x̂xxSP
2|2 = lim

q→0
d→∞

[
zzz1 + K1(zzz2 − zzz1)

K2(zzz2 − zzz1)

]
= (76)

[
zzz2

1

T
(zzz2 − zzz1)

]

Comparison of (76) with (39) proves that as the process
noise approaches zero and the maximum speed approaches
infinity, the SP algorithm state estimate approaches the
TPD algorithm state estimate at time t2 and hence is un-
biased.

In the Appendix, we show that when the process noise
approaches zero and the maximum speed approaches infin-

ity,

lim
q→0
d→∞

[P SP
2|2 ]11 = R2 (77)

lim
q→0
d→∞

[P SP
2|2 ]12 =

1

T
R2 (78)

lim
q→0
d→∞

[P SP
2|2 ]22 =

1

T 2
(R2 + R1) (79)

Comparison of (76) ∼ (78) with (40) proves that as the
process noise approaches zero and the maximum speed ap-
proaches infinity, the covariance of the SP algorithm ap-
proaches that of the TPD algorithm at time t2.

5 Numerical simulation and results

We consider a target in 3D with the NCVM. Each com-
ponent q of the power spectral densities[2, 14] of the white
noise acceleration process noise is chosen to have the same
value. We used three values for q, (0.5, 1.0, 2.0) m2s−3. A
radar sensor measures the range, azimuth, and elevation of
the target with measurement error standard deviations of
10 m, 1.0 degree, and 1.0 degree, respectively. The mea-
surement time interval is 2 s. We converted the range, az-
imuth, and elevation measurements to unbiased Cartesian
position measurements and calculated the corresponding
covariances using the algorithm in [7]. Then, we compared
the two track initiation algorithms using these converted
Cartesian measurements and associated covariances using
500 Monte Carlo simulations for each value of q. Figs. 1 and
2 show the root sum (sum over the x, y, and z components)
square position and velocity errors at t2 for q = 1.0m2s−3.
The results are similar for q = 0.5 and 2.0m2s−3. Figs. 1
and 2 show that the root sum square (RSS) position and
velocity errors from the SP initiation algorithm are consis-
tently lower than those from the TPD initiation algorithm.
Specifically, the RSS velocity errors from the SP initiation
algorithm are significantly lower than those from the TPD
initiation algorithm.

Fig. 1 Root sum square (RSS) position errors from 500 Monte

Carlo runs at t2 from the single-point (SP) and two-point

difference (TPD) track initiation algorithms, using

q=1.0m2 s−3
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Fig. 2 Root sum square (RSS) velocity errors from 500 Monte

Carlo runs at t2 from the single-point (SP) and two-point

difference (TPD) track initiation algorithms, using

q = 1.0m2 s−3

We calculated the MSEM at each observation point (k =
2, 3, · · · , 50) using the SP and TPD initiation algorithms
for q = 0.5, 1.0, 2.0m2 s−3. The MSEM at each observation
point is calculated using 500 Monte Carlo runs. The traces
of the MSEMs at the observation points k = 2, 3, · · · , 50
are presented in Figs. 3 ∼ 5 for three different values of the
process noise power spectral density. The ratio of the traces
of the MSEMs for the TPD and SP algorithms at t2 for
each value q = 0.5, 1.0, or 2.0m2 s−3 is 2.823. We observe
that the trace of the MSEM for the SP initiation algorithm
is lower than that from the TPD initiation algorithm for
the first ten observation points. The traces for these two
algorithms become the same afterwards. Thus, if a small
number of measurements are available, then it is desirable
to use the SP initiation algorithm for higher track initiation
accuracy.

The ratio of the traces of the MSEMs from the SP and
TPD track initiation algorithms, using q = 1.0m2 s−3 is
presented in Fig. 6. The results are similar for the other
two values of q.

Fig. 3 Comparison of the trace of the MSEM from the SP and

TPD track initiation algorithms, with q = 0.5m2 s−3

Fig. 4 Comparison of the trace of the MSEM from the SP and

TPD track initiation algorithms, with q = 1.0m2 s−3

Fig. 5 Comparison of the trace of the MSEM from the SP and

TPD track initiation algorithms, with q = 2.0m2 s−3

Fig. 6 Ratio of the traces of the MSEMs from the SP and

two-point difference TPD track initiation algorithms, using

q = 1.0m2 s−3
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6 Conclusion

We have compared the single-point (SP) and two-point
difference (TPD) algorithms for initiating a track using
the first two position measurements assuming that the dy-
namic model of the target is the nearly constant velocity
model. We have analytically established a connection be-
tween these two algorithms. We have shown that, if the
process noise approaches zero and the maximum speed of
a target used to initialize the velocity variance approaches
infinity, then SP algorithm reduces to the TPD algorithm.
That is, the differences between the two algorithms are due
to the use of additional information in the SP method. The
two methods are equivalent when this information is un-
used or unavailable. As a result, we conjecture that the
SP algorithm has a lower mean square error than the more
commonly used TPD method. This conjecture is supported
by our numerical results from 500 Monte Carlo runs with
different levels of process noise. These results show that
the SP algorithm with a KF performs consistently better
than the TPD algorithm in the mean square error sense.
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Appendix

Limiting values of P SP
2|2

Recall that the state error covariance matrix for the SP
algorithm at time t2 is given by

P SP
2|2 =

[
A1 −A1S

−1A1 A2 −A1S
−1A2

A2 −A2S
−1A1 A3 −A2S

−1A2

]
(A-1)

where S is the measurement innovation covariance and

A1 = R1 + (T 2d + a3)I (A-2)

A2 = (Td + a2)I (A-3)

A3 = (d + a1)I (A-4)

and

am =
qT m

m
, m = 1, 2, 3 (A-5)

Therefore,

lim
q→0

A1 = R1 + T 2dI (A-6)

lim
q→0

A2 = TdI (A-7)

lim
q→0

A3 = dI (A-8)

According to the matrix inversion lemma[1]

(A+BCBT)−1 = A−1−A−1B(BTA−1B +C−1)−1BTA−1

(A-9)
Setting B = I, this reduces to

(A + C)−1 = A−1 −A−1(A−1 + C−1)−1A−1 (A-10)

Applying (A-10) to S in (47) we get

S−1 = (A1 + R2)
−1 = A−1

1 −A−1
1 (A−1

1 + R−1
2 )−1A−1

1

(A-11)

Using (A-11) in (45), we get

[P SP
2|2 ]11 = A1 −A1S

−1A1 = (A-12)

A1 −A1[A
−1
1 −A−1

1 (A−1
1 + R−1

2 )−1A−1
1 ]A1 =

A1 − [I − (A−1
1 + R−1

2 )−1A−1
1 ]A1 =

A1 − [A1 − (A−1
1 + R−1

2 )−1] =

(A−1
1 + R−1

2 )−1

Thus,

lim
q→0
d→∞

[P SP
2|2 ]11 = lim

q→0
d→∞

(A−1
1 + R−1

2 )−1 = (A-13)

(R−1
2 )−1 = R2

Similarly, for the cross-covariance component, we get

[P SP
2|2 ]12 = A2 −A1S

−1A2 = (A-14)

A2 −A1[A
−1
1 −A−1

1 (A−1
1 + R−1

2 )−1A−1
1 ]A2 =

A2 − [I − (A−1
1 + R−1

2 )−1A−1
1 ]A2 =

A2 −A2 + (A−1
1 + R−1

2 )−1A−1
1 A2 =

(A−1
1 + R−1

2 )−1A−1
1 A2

Thus

lim
q→0
d→∞

[P SP
2|2 ]12 = lim

q→0
d→∞

(A−1
1 + R−1

2 )−1A−1
1 A2 = (A-15)

lim
d→∞

R2(T
2dI)−1(TdI) =

1

T
R2

Finally, using (A-6) in (A-11), we have

lim
q→0

S−1 = (R1 + R2 + T 2dI)−1 (A-16)

Combining (A-7), (A-8) and (A-16), we find

lim
q→0
d→∞

[P SP
2|2 ]22 = lim

q→0
d→∞

A3 −A2S
−1A2 = (A-17)

lim
d→∞

dI − T 2d2(R1 + R2 + T 2dI)−1 =

lim
d→∞

dI − T 2d2(T−2d−1)(I + C)−1 =

lim
d→∞

dI − d(I + C)−1

where

C =
1

T 2d
(R1 + R2) (A-18)

Applying the matrix inversion lemma in we get

(I + C)−1 = I − (I + C−1)−1 (A-19)

Substitution of (A-18) and (A-19) into (A-17) gives

lim
q→0
d→∞

[P SP
2|2 ]22 = lim

d→∞
dI − dI + d(I + C−1)−1 = (A-20)

lim
d→∞

(
1

d
I +

1

d
C−1)−1 =

[T 2(R1 + R2)
−1]−1 =

1

T 2
(R1 + R2)
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