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An Improved Control Algorithm of High-order
Nonlinear Systems

DUAN Na1 XIE Xue-Jun1, 2 LIU Hai-Kuan1

Abstract This paper designs an improved output-feedback controller from the viewpoint of reducing the control effort at the
premise of maintaining the desired control performance for a concrete example. The output-feedback controller guarantees the globally
asymptotical stability of the closed-loop system by introducing a new rescaling transformation, adopting an effective reduced-order
observer, and choosing ingenious Lyapunov function and appropriate design parameters. Simultaneously, from both the theoretical
analysis and a concrete example, smaller critical values for gain parameter and rescaling transformation parameter are obtained to
effectively reduce the control effort and the rate of change of controller than the design of the related papers.
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Consider the following high-order nonlinear systems

ζ̇ζζ = FFF 0(ζζζ,ηηη, v)

η̇i = ηpi
i+1 + θθθTfff i(ζζζ,ηηη, v), i = 1, · · · , n− 1

η̇n = vpn + θθθTfffn(ζζζ,ηηη, v)

y = η1 (1)

where v ∈ R, y ∈ R, ηηη = (η1, · · · , ηn) ∈ Rn, ζζζ ∈ Rr, and θθθ
are the control input, output, system state, unmodelled dy-
namics, and unknown parameter vector, respectively. FFF 0(·)
and fff i(·) are nonlinear vector functions with the corre-
sponding dimensions. pi, i = 1, · · · , n, are positive odd
numbers. When pi = 1, by using backstepping method and
combining backstepping method with the other methods,
such as small-gain theorem, the dynamic signal, and chang-
ing supply function, etc, the design of stabilizing controller
has achieved remarkable development in recent years[1−3].

When pi ≥ 1, Lin first gave a new feedback design tool
called adding a power integrator and studied systematically
a series of control problems for system (1) in [4]. Com-
pared with global stabilization by state-feedback, output-
feedback stabilization is much more challenging. When
n = 2, pn = 1, and ζ = 0, for a class of system (1) whose
Jacobian linearization is neither controllable nor observ-
able, the output-feedback controller was studied in [5−6]
by introducing a one-dimensional nonlinear observer. For
the more general system (1) with ζ = fi = 0, i = 1, · · · , n,
p1 = · · · = pn−1, and pn = 1, Yang and Lin not only over-
came the obstacle caused by unobservability of the Jaco-
bian linearization of high-order system, but also provided
an iterative design way to choose the gain parameter for
general high-gain observer[7]. Furthermore, by introducing
a rescaling transformation ingeniously, the designed gain
parameter in [8] guaranteed the globally asymptotical sta-
bility of the closed-loop systems.

However, as one studies the above high-order nonlinear
systems, the high order pi, the high nonlinearities in them-
selves, the repeated use of some inequalities in the design of
output-feedback controller, and the interaction between the
observer gain parameters and the rescaling transformation
parameters will unavoidably lead to a large control effort
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and a large rate of change of the controller. Naturally, one
may ask the following interesting question:

How to reduce the control effort at the premise of main-
taining the desired control performance, e.g., asymptotical
stability?

To our knowledge, there are few results on the study for
this question. In this paper, we will take a concrete system
as an example to answer the question. In Section 1, the
design of controller is given by exactly following the same
method as that in [8]. In Section 2, by introducing a new
rescaling transformation and choosing Lyapunov function
ingeniously, an improved output-feedback controller is de-
signed to guarantee the globally asymptotical stability of
the closed-loop system. Furthermore, we give a compari-
son of two control schemes in terms of both the theoretical
analysis and a concrete example. Comparing with the de-
sign in [8], by choosing the design parameter flexibly, we
obtain the smaller critical values for gain parameter and
rescaling transformation parameter, which provides more
tradeoff (or degree of freedom) between the control effort
and the control performance, and thus, reduces the control
effort and the rate of change of controller more effectively.

Notations. The following notations will be used
throughout the paper. R+ denotes the set of all non-
negative real numbers. For the variables x1, x2, · · · , xn,
x̄xxi , (x1, · · · , xi), i = 2, · · · , n. ‖xxx‖ denotes the Euclidean
norm for vector xxx. Ci denotes the set of all functions with
continuous i-th partial derivatives.

1 A motivating example

Without loss of generality, we firstly give the design
of output-feedback controller by following exactly the de-
sign procedure in [8] for the following interconnected
systems:

ζ̇ζζ = FFF 0(ζζζ, η1, v)

η̇1 = ηp
2 + f1(ζζζ, η1)

η̇2 = v + f2(ζζζ, η1)

y = η1 (2)

where ζζζ ∈ Rr, (η1, η2)
T ∈ R2, v ∈ R, and y ∈ R are

the system unmodeled dynamics, state, control input and
output, respectively. FFF 0(·) : Rr × R × R → Rr and fi :
Rr ×R → R (i = 1, 2) are C0 functions, p ≥ 1 is any odd
number. We need the following assumptions in this paper.

Assumption 1. There is a C2 Lyapunov function
U0(ζζζ), which is positive definite and proper, such that for
any (ζζζ, η1, v) ∈ Rr ×R×R,
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∂U0

∂ζζζ
FFF 0(ζζζ, η1, v) ≤ −‖ζζζ‖p+1 + a0|η1|p+1, a0 > 0

Assumption 2. There exists a real constant c ≥ 0, such
that the continuous functions fi(ζζζ, η1), i = 1, 2; fi(ζζζ, η1),
i = 1, 2 satisfy

|fi(ζζζ, η1)| ≤ c(‖ζζζ‖p + |η1|p)

Example 1. To compare the following two control
schemes, for (2), one chooses

F0 = −ζ + f0(ζ, η1, v), f0 =
1

3
η1 cos(ζv),

f1 = f2 =
1

100
(ζ3 + η3

1), p = 3, r = 1 (3)

Clearly,

|f1| = |f2| ≤ c(|ζ|3 + |η1|3), c = 0.01 (4)

satisfies Assumption 2. Choosing U0(ζ) = ζ4 and ap-
plying Lemma A1 in Appendix, it is easy to prove that
∂U0

∂ζ
F0 = 4ζ3

(
−ζ +

1

3
η1 cos(ζv)

)
≤ −4ζ4+3ζ4+3−4η4

1 ≤
−ζ4 +a0η

4
1 , thus, Assumption 1 is satisfied with a0 = 0.02.

We first introduce the rescaling transformation (3.3) in
[8]:

x1 = η1, x2 =
η2

M1/3
, u =

v

M4/3
(5)

where M ≥ 1 is design parameter. By (2), (3) and (5) are
changed into

ζ̇ = −ζ + g0(ζ, x1, u)

ẋ1 = Mx3
2 + g1(ζ, x1)

ẋ2 = Mu + g2(ζ, x1)

y = x1 (6)

where g0 = f0,g1 = f1, and g2 =
f2

M1/3
. Choosing the

first Lyapunov function Û0(ζ) = kMU0, one has
˙̂
U0 ≤

M(−c00ζ
4 + c10x

4
1), where k ≥ c00, c10 ≥ ka0.

The design of output-feedback controller is divided into
two steps. In Step 1, one supposes that the unmeasured
states are available for measurement, and a partial state-
feedback controller is designed by combining a power inte-
grator with backstepping technique. Then, by constructing
a reduced-order observer with the gain parameter being de-
termined later, using the certainty equivalence principle in
[9], an output-feedback controller is designed.

Step 1. Setting ξ1 = x1 − x∗1, x
∗
1 = 0, constructing Lya-

punov function U1(ζ, ξ1) = Û0 +
1

2
ξ2
1 , choosing

x∗2 = −a1ξ1, a1 = (c11 + c10 + γ1 + c)
1
3 (7)

and using (4)∼ (6) and Lemma A1 in Appendix, one gets

U̇1 ≤ M(−c00ζ
4 + c10x

4
1 + ξ1(x

3
2 − x∗32 ) + ξ1x

∗3
2 ) +

ξ1g1 ≤ M(−c00ζ
4 + c10ξ

4
1 + ξ1(x

3
2 − x∗32 ) +

ξ1x
∗3
2 + cξ4

1 + ε1ζ
4 + γ1ξ

4
1) =

M(−c01ζ
4 − c11ξ

4
1 + ξ1(x

3
2 − x∗32 )) (8)

where γ1 = 4−4 · 33ε−3
1 c4, ε1 > 0, c01 = c00 − ε1 > 0, and

c11 > 0 are design parameters.

Then, setting ξ2 = x2 − x∗2 = x2 + a1ξ1, by (4) and (6),

one obtains ξ̇2 = M(u+a1x
3
2)+(a1g1+g2), and |a1g1+g2| ≤

(c+ca1)(|ζ|3 + |ξ1|3). By choosing U2(ζ, ξ1, ξ2) = U1 + 1
2
ξ2
2 ,

from (8), it follows

U̇2 ≤ M(−c01ζ
4 − c11ξ

4
1 + ξ2(u− x∗3) +

ξ2x
∗
3 + ξ1(x

3
2 − x∗32 ) +

|ξ2|(c + ca1)(|ζ|3 + |ξ1|3) + a1ξ2x
3
2) (9)

By (7) and Lemmas A1 and A2 in Appendix, there exist
positive real numbers ε2i(i = 1, 2, 3, 4) satisfying

ξ1(x
3
2 − x∗32 ) = ξ1

(
(ξ2 − a1ξ1)

3 − (−a1ξ1)
3) ≤

ξ1ξ
3
2 + 3a2

1ξ
3
1ξ2 ≤ ε21ξ

4
1 + γ21ξ

4
2

(c + ca1)|ζ|3|ξ2| ≤ ε22ζ
4 + γ22ξ

4
2

(c + ca1)|ξ1|3|ξ2| ≤ ε23ξ
4
1 + γ23ξ

4
2

a1ξ2x
3
2 ≤ a1|ξ2||ξ2 − a1ξ1|3 ≤
4a1|ξ2|(|ξ2|3 + a3

1|ξ1|3) ≤
ε24ξ

4
1 + γ24ξ

4
2 (10)

where

γ21 = 3 · 4− 4
3 ε
− 1

3
210 +

37

44
ε−3
211a

8
1

γ2i =
33

44
(c + ca1)

4ε−3
2i , i = 2, 3

γ24 = 4a1 + 27a16
1 ε−3

24 (11)

ε21 = ε210 + ε211, ε210 and ε211 are positive numbers.
Choosing the partial state-feedback controller

x∗3 = −(a2ξ2)
3 = −(b1x1 + b2x2)

3, b1 = a1a2

b2 = a2 = (c22 + γ21 + γ22 + γ23 + γ24)
1
3 (12)

and substituting (10) into (9) leads to

U̇2 ≤ M(−c02ζ
4 − c12ξ

4
1 − c22ξ

4
2 + ξ2(u− x∗3)) (13)

where c02 = c01 − ε22 > 0, c12 = c11 − ε21 − ε23 − ε24 > 0,
and c22 > 0 are design parameters.

Step 2. However, since η2 and x2 are unknown, a
reduced-order observer is given below. Introducing an un-
measured variable z2 = x2 − Lx1, where the gain constant
L ≥ 1 is to be determined later, by (6), one obtains

ż2 = Mu−MLx3
2 + g2 − Lg1 (14)

from which, we construct the reduced-order observer

˙̂z2 = Mu−MLx̂3
2 (15)

where x̂2 is the estimate of x2 with

x̂2 = ẑ2 + Lx1 (16)

By (12), (16), and the certainty equivalence principle, we
obtain the realizable output-feedback controller

u = −(b1x1 + b2x̂2)
3 (17)

Defining e2 = x2− x̂2 = z2− ẑ2, by (14) and (15), one gets

ė2 = −ML(x3
2 − x̂3

2) + g2 − Lg1 (18)
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According with (12), (17), e2 = x2− x̂2, and Lemma A1 in
Appendix, (13) is changed into

U̇2 ≤ M(−c02ζ
4 − c12ξ

4
1 − c22ξ

4
2 + ξ2((b1x1 + b2x2)

3 −
(b1x1 + b2x̂2)

3) =

M(−c02ζ
4 − c12ξ

4
1 − c22ξ

4
2 + a3

2ξ2(ξ
3
2− (ξ2 − e2)

3))≤
M(−c02ζ

4 − c12ξ
4
1 − c22ξ

4
2 + 3a3

2ξ
3
2e2 + a3

2ξ2e
3
2) ≤

M(−c02ζ
4 − c12ξ

4
1 − c22ξ

4
2 + (ε31 + ε32)ξ

4
2 +

(γ31 + γ32)e
4
2) (19)

where

γ31 =
37

44
ε−3
31 a12

2 , γ32 = 3 · 4− 4
3 ε
− 1

3
32 a4

2 (20)

and ε3i(i = 1, 2) are positive real numbers. Choosing

W (e2) =
1

2
e2
2, by e2 = x2 − x̂2 and (18), one has

Ẇ = −MLe2(x
3
2 − x̂3

2) + e2(g2 − Lg1) =

M

(
−Le2((e2 + x̂2)

3 − x̂3
2) +

(e2g2 − Le2g1)

M

)
(21)

Using (4), (6), and Lemmas A1 and A3 in Appendix, there
are positive real numbers ε4i(i = 1, 2, 3, 4), such that

−Le2((e2 + x̂2)
3 − x̂3

2) =

L(−((e2 + x̂2)− x̂2)((e2 + x̂2)
3 − x̂3

2)) ≤ −L

4
e4
2

∣∣∣∣
1

M
Le2g1

∣∣∣∣ ≤
1

M
Lc|e2|(|ζ|3 + |ξ1|3) ≤

ε41ζ
4 + ε42ξ

4
1 +

L4

M4
(γ41 + γ42)e

4
2

∣∣∣∣
1

M
e2g2

∣∣∣∣ ≤ c|e2|(|ζ|3 + |ξ1|3) ≤

ε43ζ
4 + ε44ξ

4
1 + (γ43 + γ44)e

4
2 (22)

Substitutes (22) into (21) leads to

Ẇ ≤M

(
(−Le2((e2+x̂2)

3−x̂3
2))+

∣∣∣∣
1

M
Le2g1

∣∣∣∣+
∣∣∣∣

1

M
e2g2

∣∣∣∣
)
≤

M

(
(ε41 + ε43)ζ

4 + (ε42 + ε44)ξ
4
1 −

(
L

4
− γ43 − γ44 − L4(γ41 + γ42)

M4

)
e4
2

)
(23)

where γ4i = 4−4 · 33ε−3
4i c4, i = 1, 2, 3, 4 are positive real

numbers. Lastly, considering

V (ζ, ξ1, ξ2, e2) = U2(ζ, ξ1, ξ2) + W (e2) =

kMU0 +
1

2
ξ2
1 +

1

2
ξ2
2 +

1

2
e2
2 (24)

and choosing the parameters

M ≥ M∗
1 = max{1, L(γ41 + γ42)

1
4 }

L ≥ L∗1 = 4(γ31 + γ32 + γ43 + γ44 + 1 + c3) (25)

c00 > ε1 + ε22 + ε41 + ε43, k ≥ c00, c10 ≥ ka0

c11 > ε210 + ε211 + ε23 + ε24 + ε42 + ε44

c22 > ε31 + ε32, c3 > 0 (26)

and using the definitions of c01 and c11 in (8), ε21 in (11),
c02, c12, and c22 in (13), (19), (23), and (24), one gets

V̇ ≤ M

(
− c02ζ

4 − c12ξ
4
1 − c22ξ

4
2 + (ε41 + ε43)ζ

4 +

(ε42 + ε44)ξ
4
1 + (ε31 + ε32)ξ

4
2 −(

L

4
− γ31 − γ32 − γ43 − γ44 − L4 (γ41 + γ42)

M4

)
e4
2

)
≤

M(−c0ζ
4 − c1ξ

4
1 − c2ξ

4
2 − c3e

4
2) (27)

and

c0 = c00 − ε1 − ε22 − ε41 − ε43 > 0

c1 = c11 − ε210 − ε211 − ε23 − ε24 − ε42 − ε44 > 0

c2 = c22 − ε31 − ε32 > 0

c3 > 0 (28)

Thus, the output-feedback controller consisting of (5), and
(15)∼ (17) guarantees the globally asymptotical stability
of the closed-loop system (2), (3), (5), and (15)∼ (17).

Remark 1. In this example, it is easy to obtain the
following relationship

a1 in (7)
(11)−→ γ21(a

8
1), γ22(a

4
1), γ23(a

4
1), γ24(a

16
1 )

(12)−→
a2, b1, b2

(20)−→ γ31(a
12
2 ), γ32(a

4
2)

(25)−→ L∗1, M
∗
1 and L, M

(15)−→ ẑ2
(16)−→ x̂2

b1,b2,(5) and (17)−→ v (29)

Generally speaking, because of the high-order p = 3 of
(2), the nonlinearities in f1 and f2, and the repeated use
of Lemmas A1∼A3 in Appendix in the design procedure
of output-feedback controller, from (29) it is easy to find
that when a1 > 1 and a2 > 1, γ2i(i = 1, 2, 3, 4), γ31, γ32

will lead to the large critical values L∗1 and M∗
1 of the gain

parameter L2 and rescaling transformation parameter M ,
which further lead to the large control effort and the rate
of change of the controller. In the next section we will give
an improved method to reduce L∗1 and M∗

1 .

2 Design and analysis of an improved
output-feedback controller1

Example 2. For the same system as in Example 1,
one firstly introduces a new rescaling transformation

x1 = η1, x2 =
η2

M1/3
, u =

v

k0M4/3
(30)

where M ≥ 1 is the design parameter. By (30), (2) and (3)
are changed into

ζ̇ = −ζ + g0(ζ, x1, u)

ẋ1 = Mx3
2 + g1(ζ, x1)

ẋ2 = Mk0u + g2(ζ, x1)

y = x1 (31)

where gi(i = 0, 1, 2) are the same as those in Example 1.

For Û0(ζ) = kMU0, it is easy to get
˙̂
U0 ≤ M(−c00ζ

4

+c10x
4
1), where k ≥ c00, c10 ≥ ka0. Similar to Example

1, we also have two steps to design the output-feedback
controller.

1 For the sake of simplicity and the consistency of comparison, in

this section, we use the same signals as those in Example 1, although

their concrete expressions may be different.
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Step 1. First, suppose that η2 and x2 are available to
measurement. Setting ξ1 = x1 − x∗1, x

∗
1 = 0, choosing

U1(ζ, ξ1, k1) = Û0 +
1

2
k1ξ

2
1 and

x∗2 = −a1(k1)ξ1, a1(k1) =

(
(c11 + c10 + γ1)

k1 + c

) 1
3

(32)

by (4), (30), (31), and Lemma A1 in Appendix, one arrives
at

U̇1 ≤ M
(−c00ζ

4 + c10ξ
4
1 + k1ξ1(x

3
2 − x∗32 ) + k1ξ1x

∗3
2

)
+

k1ξ1g1 ≤ M
(−c01ζ

4 − c11ξ
4
1 + k1ξ1(x

3
2 − x∗32 )

)
(33)

where parameters c01 = c00− ε1 > 0, γ1 = 4−4 · 33ε−3
1 c4k4

1,
ε1 > 0, and c11 > 0 will be determined later.

Then, setting ξ2 = x2 − x∗2 = x2 + a1ξ1, by (4) and (31),

one gets ξ̇2 = M(k0u+a1x
3
2)+(a1g1+g2), and |a1g1+g2| ≤

(c+ca1)(|ζ|3 + |ξ1|3). Choosing U2(ζ, ξ̄ξξ2, k̄kk2) = U1 +
1

2
k2ξ

2
2 ,

by (33), one obtains

U̇2 ≤ M(−c01ζ
4 − c11ξ

4
1 + k2k0ξ2(u− x∗3) +

k2k0ξ2x
∗
3 + k1ξ1(x

3
2 − x∗32 ) +

k2|ξ2|(c + ca1)(|ζ|3 + |ξ1|3) + a1k2ξ2x
3
2) (34)

Similar to (10), there exist positive real numbers ε2i(i =
1, 2, 3, 4) satisfying

k1ξ1(x
3
2 − x∗32 ) ≤ ε21ξ

4
1 + γ21(k1)ξ

4
2

(c + ca1)k2|ζ|3|ξ2| ≤ ε22ζ
4 + γ22(k1, k2)ξ

4
2

(c + ca1)k2|ξ1|3|ξ2| ≤ ε23ξ
4
1 + γ23(k1, k2)ξ

4
2

a1k2ξ2x
3
2 ≤ ε24ξ

4
1 + γ24(k1, k2)ξ

4
2 (35)

where

γ21(k1) = 3 · 4− 4
3 ε
− 1

3
210k

4
3
1 +

37

44
ε−3
211a

8
1k

4
1

γ2i(k̄kk2) =
33

44
(c + ca1)

4ε−3
2i k4

2, i = 2, 3

γ24(k̄kk2) = 4a1k2 + 27a16
1 ε−3

24 k4
2 (36)

ε21 = ε210 + ε211, ε210 and ε211 are positive real numbers.
Choose

x∗3 = −(a2(k0, k̄kk2)ξ2)
3 = −(b1(k0, k̄kk2)x1 + b2(k0, k̄kk2)x2)

3

b1 = a1a2, b2 = a2

a2(k0, k̄kk2) = (c22 + γ21 + γ22 + γ23 + γ24)
1/3 (37)

Substituting (35) and (37) into (34) yields

U̇2 ≤ M
(−c02ζ

4 − c12ξ
4
1 − c22ξ

4
2 + ξ2(u− x∗3)

)
(38)

where c02 = c01 − ε22 > 0, c12 = c11 − ε21 − ε23 − ε24 > 0,
k2k0 = 1, and c22 > 0 are some parameters to be deter-
mined.

Remark 2. There are two points to be emphasized.
1) There do exist such constants k0, k1, k2 and a1, a2 such

that (38) holds. For example, that k0 = k1 = k2 = 1 is ex-
actly the design procedure of Example 1.

2) The purpose of introducing k0, k1, and k2 is to con-
trol the values of γ1 and γ2i(i = 1, 2, 3, 4) effectively, such
that a2, b1, and b2 in (37) are as small as possible, and
thus, the critical values of gain parameters and rescaling
transformation parameters can be reduced effectively.

Step 2. Since η2 and x2 are unmeasurable, one has to
design a reduced-order observer. Introducing the unmea-
surable variables z2 = x2 − Lx1, one has

ż2 = Mk0u−MLx3
2 + g2 − Lg1 (39)

where the gain L ≥ 1 is the parameter to be determined.
Choose the following observer

˙̂z2 = Mk0u−MLx̂3
2 (40)

where

x̂2 = ẑ2 + Lx1 (41)

Defining e2 = x2 − x̂2 = z2 − ẑ2, by (39) and (40), one
arrives at

ė2 = −ML(x3
2 − x̂3

2) + g2 − Lg1 (42)

Choosing W (e2, k3) =
1

2
k3e

2
2, one obtains

Ẇ = Mk3

(
−Le2

(
(e2 + x̂2)

3 − x̂3
2

)
+

(e2g2 − Le2g1)

M

)

(43)
Similar to (22), by Lemmas A1 and A3 in Appendix, there
exist positive real numbers ε4i(i = 1, 2, 3, 4) satisfying

−k3Le2

(
(e2 + x̂2)

3 − x̂3
2

) ≤ −k3L

4
e4
2

∣∣∣∣
1

M
k3Le2g1

∣∣∣∣ ≤
k3

M
Lc|e2|(|ζ|3 + |ξ1|3) ≤

ε41ζ
4 + ε42ξ

4
1 +

L4

M4
(γ41(k3) + γ42(k3))e

4
2

∣∣∣∣
1

M
k3e2g2

∣∣∣∣ ≤ ck3|e2|(|ζ|3 + |ξ1|3) ≤

ε43ζ
4 + ε44ξ

4
1 + (γ43(k3) + γ44(k3))e

4
2 (44)

where γ4i(k3) = 4−4 · 33ε−3
4i c4k4

3(i = 1, 2, 3, 4) are positive
real numbers. Substituting (44) into (43) results in

Ẇ ≤ M

(
(ε41 + ε43)ζ

4 + (ε42 + ε44)ξ
4
1 −

(
k3L

4
− γ43 − γ44 − L4(γ41 + γ42)

M4

)
e4
2

)
(45)

Similar to (17), the output-feedback controller is con-
structed as

u = −(b1(k0, k̄kk2)x1 + b2(k0, k̄kk2)x̂2)
3 (46)

Similar to (19), (38) is changed into

U̇2 ≤ M(−c02ζ
4 − c12ξ

4
1 − c22ξ

4
2 + (ε31 + ε32)ξ

4
2 +

(γ31 + γ32)e
4
2) (47)

where

γ31(k0, k̄kk2) =
37

44
ε−3
31 a12

2 , γ32(k0, k̄kk2) = 3 · 4− 4
3 ε
− 1

3
32 a4

2 (48)

and ε3i(i = 1, 2) are positive real numbers. Considering

V (ζ, ξ̄ξξ2, e2, k0, k̄kk3) = U2(ζ, ξ̄ξξ2, k0, k̄kk2) + W (e2, k3) =

kMU0 +
1

2
k1ξ

2
1 +

1

2
k2ξ

2
2 +

1

2
k3e

2
2 (49)
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and choosing the parameters

M ≥ M∗
2 = max

{
1, L(γ41 + γ42)

1
4

}

L ≥ L∗2 =
4(γ31 + γ32 + γ43 + γ44 + 1 + c3)

k3
(50)

and cii(i = 0, 1, 2), c10 and c3 in (26), by (45), (47), and
(49), one has

V̇ ≤ M(−c0ζ
4 − c1ξ

4
1 − c2ξ

4
2 − c3e

4
2) (51)

and c0, c1 and c2 are the same as those in (28), c3 > 0
is parameter to be determined. From (49) and (51), we
immediately obtain the main result in this paper.

Theorem 1. Consider system (2) and (3). By appro-
priately choosing the design parameters ci,i(i = 0, 1, 2), c3,
kj(j = 0, 1, 2, 3), M∗

2 and L∗2, when M ≥ M∗
2 , L ≥ L∗2, the

output-feedback controller (30), (40), (41), and (46) guar-
antees that the closed-loop system consisting of (2), (3),
(30), (40), (41), and (46) is globally asymptotically stable.

Remark 3. Similar to (29) in Example 1, one can
obtain the following relationship

a1(k1) in (32)
(36)−→ γ21(a

8
1, k1), γ22(a

4
1, k̄kk2), γ23(a

4
1, k̄kk2),

γ24(a
16
1 , k̄kk2)

(37)−→ a2(k0, k̄kk2), b1(k0, k̄kk2), b2(k0, k̄kk2)

(48)−→ γ31(a
12
2 ), γ32(a

4
2)

(50)−→ L∗2, M
∗
2 and L, M

(40)−→
ẑ2

(41)−→ x̂2
b1,b2,(30) and (46)−→ v (52)

From the above relationship, it is easy to see that the criti-
cal values L∗2 and M∗

2 will be reduced recursively by choos-
ing ki(i = 0, 1, 2, 3) flexibly, γ2i(i = 1, 2, 3, 4), a2(k0, k̄kk2),
b1(k0, k̄kk2), b2(k0, k̄kk2); γ31(a

12
2 ) and γ32(a

4
2); This implies

that the larger ranges of L and M (see (50)) can be pro-
vided, thus, more tradeoff (or degree of freedom) between
control effort and control performance can be achieved.

3 Simulation and comparison

We compare the control effort of the above two control
schemes.

In Example 1, choosing the design parameters c10 = 0.1,
c00 = 5, c11 = 15, c22 = 5.2, c3 = 1, k = 5, ε1 = 0.1,
ε210 = 3, ε211 = 8.98, ε22 = 2.6, ε23 = 0.01, ε24 = 2.8,
ε31 = 5, ε32 = 0.1, ε41 = ε43 = 1, and ε42 = ε44 = 0.1, (26)
holds. By (28), one gets c0 = 0.3, c1 = 0.01, c2 = 0.1, and
c3 = 1. By (7), (11), (12), and (20), one has a1 = 2.472 2,
a2 = 133.793 6, b1 = 330.768 0, b2 = a2 = 133.793 6,
γ21 = 16.789 7, γ22 = 8.722 4 × 10−9, γ23 = 0.153 3,
γ24 = 2.395 0 × 106, γ31 = 2.248 7 × 1024, and γ32 =
3.261 7× 108. Using (25), one obtains L∗1 = 8.994 6× 1024

and M∗
1 = 2.883 2× 1023.

In Example 2, choosing the same parameters as those in
Example 1, and k0 = 1 000, k1 = 0.1, k2 = 0.001, and k3 =
100, by (28), one gets c0 = 0.3, c1 = 0.01, c2 = 0.1, and c3 =
1. Applying (32), (36), (37) and (48), one has a1 = 5.325 2,
a2 = 1.867 6, b1 = 9.945 2, b2 = a2 = 1.867 6, γ21 = 0.778 1,
γ22 = 9.605 0× 10−20, γ23 = 1.688 2× 10−12, γ24 = 0.535 6,
γ31 = 123.032 6, and γ32 = 12.382 7. Furthermore, by (50),
it is easy to obtain L∗2 = 9.759 6 ¿ 8.994 6 × 1024 = L∗1,
and M∗

2 = 31.283 9 ¿ 2.883 2× 1023 = M∗
1 .

In Example 2, for the initial values ζ(0) = 5, η1(0) =
−0.1, η2(0) = 1.5, ẑ2(0) = 1.53, and L = 9.76, and
M = 31.29, Fig. 1 gives the responses of the closed-loop
system (2), (3), (30), (40), (41) and (46). In Example 1,
one chooses the same initial value as those in Example 2,
and L = 8.994 6×1024, M = 2.883 2×1023. Fig. 2 gives the
comparison of the control efforts between Example 1 and
Example 2.

Fig. 1 The responses of the closed-loop system (2), (3), (30), (40), (41), and (46)
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Fig. 2 The comparison of the control efforts between
Examples 1 and 2

Fig. 1 verifies the effectiveness of the improved control
scheme. Fig. 2 demonstrates that the control effort and the
rate of change of the controller in Example 1 are too large!

4 Conclusion

Comparing with the design in [8], the improved con-
troller provides more tradeoff between the control effort and
the control performance, such as Example 2, L2 ≥ L∗2 =
9.759 6, L∗2 ¿ L∗1, M ≥ M∗

2 = 31.283 9, and M∗
2 ¿ M∗

1 ,
and thus, reduces the control effort and the rate of the
change of the controller more effectively.

An important problem under investigation is that, on
the premise of |υ| ≤ a, for some special nonlinear functions
fi(ζζζ,ηηη, v), i = 1, · · · , n, how to find the maximum variation
neighborhood on the design parameters in a unified way for
system (1), where a > 0 is a constant.

Appendix
Lemma A1. Let x and y be real variables. Then for any

positive integers m, n and positive real number a, there is a
positive real number d, such that

axmyn ≤ d|x|m+n +
n

m + n

(
m + n

m

)−m
n

a
(m+n)

n d−
m
n |y|m+n

Lemma A2. For any positive real numbers x1, · · · , xn and
p, one has

(x1 + · · ·+ xn)p ≤ max{np−1, 1}(xp
1 + · · ·+ xp

n)

Lemma A3. For all x and y ∈ R and any odd positive
integer p, the following inequality holds:

−(x− y)(xp − yp) ≤ − 1

2p−1
(x− y)p+1
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