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Stability Analysis for Memristive Recurrent Neural
Network and Its Application to Associative Memory

Gang Bao1 Yuanyuan Chen1 Siyu Wen1 Zhicen Lai1

Abstract Memristor is a nonlinear resistor with variable resistance. This paper discusses dynamic properties of memristor and
recurrent neural network (RNN) with memristors as connection weights. Firstly, it establishes that there exists a threshold voltage
for memristor. Secondly, it presents a model for memristive recurrent neural network (MRNN) which has variable and bounded
coefficients, and analyzes stability of memristive neural network by some maths tools. Thirdly, it gives a synthesis algorithm for
associative memory based on memristive recurrent neural network. At last, three examples verify our results.
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1 Introduction

Artificial neural networks are developed for solving some
complex problems in control, optimal computation, pattern
recognition, information processing, and associative mem-
ory [1]−[13]. American scientist Hopfield makes a great
contribution for the development of neural network. That
is the implementation of neural network by simple circuit
devices, resistors, capacitors and amplifiers [14]. Hopfield
neural network (HNN) can mimic the human’s associative
memory function and accomplish optimization. The key
point is the weights of HNN which are implemented by re-
sistors for simulating neuron synapse. While the bottleneck
is that linear resistors cannot reflect variability of synapse
for resistance of linear resistor being invariable.

Memristor [15], [16], the arising fourth circuit device,
makes it better to simulate the variability of neuron
synapse. Pershin and Ventra [17] gives their experimental
research results that neurons with memristors as synapses
can simulate the associative memory function of a dog.
Hence, memristor is the advancing spot in the present
physics research. Several models of memristor have been
set up and its properties have been analyzed in [18]−[21].
Based on these analyses, memristor can be used to mimic
synapse in neural computing architecture [22], construct
memristor bridge synapse [23] and brain combined with
the conventional complementary metal oxide semiconduc-
tor (CMOS) technology [24], set memristive neural network
[25], [26] and implement memristor array for image process-
ing [27] etc.

Some researchers derive mathematical model of mem-
ristive recurrent neural network (MRNN) by replacing re-
sistors with memristors in Hopfield and cellular neural
network circuit [28]−[30]. MRNN is modeled by state-
dependent switched systems by simplifying the memris-
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tance as two-valued device with different terminal voltage.
With differential inclusion theory, Lyapunov-Krasovskii
function and some other math tools, some sufficient condi-
tions are derived for dynamics of MRNN, such as, conver-
gence and attractivity [31]−[33], periodicity and dissipativ-
ity [34], dissipativity for stochastic and discrete case, global
exponential almost periodicity, and complete stability [35],
multi-stability [36], etc. Considering the trouble from the
switching property of memristor, researchers derive some
interesting results about exponential stabilization, reliable
stabilization, and finite-time stabilization of MRNN by de-
signing different state feedback controllers [37], [38] and
sampled-data controller [39]. All of these results make
a solid foundation for MRNN’s application to associative
memory.

Associative memory is a distinguished function of human
brain which can be simulated by recurrent neural network
(RNN). The design problem is that some given prototype
patterns are to be stored by RNN, and then the stored pat-
terns can be recalled by some prompt information. In the
existing literatures [40]−[46], there are two design methods
for associative memory. One is that prototype patterns are
designed as multiple locally asymptotically stable equilibria
and initial values are the recalling probes. Another is that a
prototype pattern is designed as the unique globally asymp-
totically stable equilibrium point with one external input
as the recalling probe. Different external inputs mean dif-
ferent equilibrium points, i.e., different prototype patterns.

To the best of our knowledge, the bottleneck of associa-
tive memory based on RNN is that capacity of RNN is lim-
ited and different storage task needs different RNN because
resistance can not be changed. Furthermore, there are few
works about associative memory based on MRNN. Hence,
the contribution of this paper is obtaining a threshold volt-
age for memristor by simulation, presenting a novel type of
MRNN with infinite number of sub neural networks, and
design a program for associative memory based on MRNN.
Compared with MRNN models in the existing literatures,
the difference is that every coefficient of MRNN has infi-
nite number of values, not two values. Furthermore, every
coefficient can be changed by the external input. So the
associative memory based on MRNN seems to solve the
problem of storage capacity.

The rest of this paper is organized as the following sec-
tions. Memristor property analysis and some preliminaries
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are stated in Section 2. Then, some sufficient conditions
are given to ensure global stability and multi-stability of
MRNN by some maths tools in Section 3, respectively.
Next, design procedure for associative memory based on
MRNN is given in Section 4. To elucidate our results, three
simulation examples are presented in Section 5. At last,
conclusion is drawn in Section 6.

2 Memristor Recurrent Neural Net-
work Model

2.1 Memristor and Its Property

The definition of memristor [15] is a functional relation
between charge q and magnetic flux ϕ, i.e., g(ϕ, q) = 0.
Memristance of memristor is defined as the following for-
mula with the assumption of linear dopant drift as follows

v(t) =
(
Ron

w(t)

D
+ Roff

(
1− w(t)

D

))
i(t) (1)

dw(t)

dt
= µV

Ron

D
i(t) (2)

where w(t), D, i(t), v(t), µV are the length of dopant re-
gion, the length of memristor, the current, voltage across
the device and the average ion mobility, respectively.

The v-i simulation curve of memristor (1) with MATLAB
is shown in Fig. 1.

Fig. 1. The curve of (v(t), i(t)) under voltage sources with

different amplitudes. The applied voltage source is v(t) =

v0 sin(ωt), v0 = 1.5, 1, 0.15, 0.01V, ω = 2π rad/s and the other

parameters are s(t0) = 0.1, t0 = 0 s, Ron = 100Ω, r = 160,

D = 10−6 cm, µV = 10−10 cm2/sV. From four subplots, there is

a threshold voltage existing for one memristor.

From Fig. 1, it shows that a memristor will not change
its resistance unless the terminal voltage exceeds a certain
threshold value VT as described in [20], [27]. It can be
expressed by the following formula

R(w) =

{
R(w, u), u > VT

Rw, u < VT
(3)

where Rw is a constant between Ron and Roff ; R(w, u) can
be calculated by the following formula [10]

Tw =
ΦD

VAR2
off

[
(R(w0))

2 − (R(w))2
]

(4)

where ΦD = (rD)2/[2µv(r − 1)]; VA, Tw, and R(w0), R(w)
are voltage amplitude, time width, resistances of the device
at the states w0, w, respectively.

Remark 1: Simulation shows that there exists a thresh-
old voltage for the memristor, i.e., memristance can be
changed by terminal voltage with amplitude value being
greater than threshold value. The result is consistent with
the theoretical analysis in [20]. This property of memris-
tor can reflect variability of neuron synapses. Furthermore,
it makes memristor being suitable for constructing neural
network with coefficients which can be changed according
to our needs.

2.2 Model

In this section, we will firstly present the mathematical
model for MRNN, and then give some concepts and lemmas
in order to obtain our main results. MRNN is modelled by
the following differential equation systems:

dxi(t)

dt
= − cixi(t) +

n∑
j=1

aij(ui)f(xj(t))

+

n∑
j=1

bij(ui)f(xj(t− τ(t))) + ui (5)

where i = 1, 2, . . . , n, x(t) = (x1(t), . . . , xn(t))T ∈ Rn is
the state vector; A(ui) = (aij(ui)), B(ui) = (bij(ui)) and
C = diag{c1, c2, . . . , cn} are connection weight matrices;
aij , bij are related to external inputs u = (u1, . . . , un)T ∈
Rn; ci > 0, i = 1, 2, . . . , n, ∀ t ≥ t0, ∀ i, j ∈ {1, 2, . . . , n},
0 < τ(t) ≤ τ is the time-varying delay; f is a bounded
activation function satisfying the following condition

|f(r1)− f(r2)| ≤ µ|r1 − r2| (6)

where r1, r2, µ ∈ R and µ > 0.
According to circuit theory and the property of memris-

tor, it results that there exist some constants aij , aij , bij ,

bij such that
{

aij ≤ aij(ui) ≤ aij

bij ≤ bij(ui) ≤ bij .
(7)

Remark 2: Compared with these models in [31]−[38],
the difference of MRNN (5) is that coefficients aij(ui)
and bij(ui), i, j = 1, 2, . . . , n are continuous variable func-
tions with respect to external inputs ui. Memristor has
multi resistances as demonstrated by real device experi-
ments and circuit simulation in [47]. Hence, MRNN can be
seen as a neural network with an infinite number of modes
because aij(ui), bij(ui) belong to intervals [aij , aij ], and

[aij , aij ], respectively. While the existing results are 2n2+1

sub modes in [31], [32]. So MRNN (5) seems to model
human neurons network more better.

2.3 Preliminaries

Let u = (u1, u2, . . . , un) be the external input and denote
x(t; t0, φ, u) as the state of MRNN (5) with some u and
initial value,

φ(ϑ) = (φ1(ϑ), φ2(ϑ), . . . , φn(ϑ))T
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where φ(ϑ) ∈ C([t0 − τ, t0],D),D ∈ Rn. Then, x(t; t0, φ, u)
is continuous and satisfies MRNN (5) and x(s; t0, φ, u) =
φ(s), for s ∈ [t0− τ, t0]. For simplicity, let x(t) be the state
of MRNN (5).

Definition 1 [48]: The equilibrium point x? of MRNN
(5) is said to be locally exponentially stable in region D, if
there exist constants α > 0, β > 0 such that ∀ t ≥ t0

‖x(t; t0, φ, u)− x∗‖ ≤ β||φ− x∗||∞ exp{−α(t− t0)}

where x(t; t0, φ, u) is the solution of MRNN (5) with any ex-
ternal input u and initial condition φ(ϑ) ∈ C([t0−τ, t0],D).
D is said to be a locally exponentially attractive set of the
equilibrium point x∗. When D = Rn, x∗ is said to be glob-
ally exponentially stable.

Lemma 1 [49]: Let D be a bounded and closed set
in Rn, and H be a mapping on complete metric space
(D, ||·||), where ∀ x, y ∈ D, ||x−y|| = max1≤i≤n{|xi−yi|} is
measurement in D. If H(D) ⊂ D and there exists a constant
α < 1 such that ∀ x, y ∈ D, ||H(x) − H(y)|| ≤ α||x − y||,
then there exists a unique x∗ ∈ D such that H(x∗) = x∗.

3 Stability Analysis for MRNN

Stability of MRNN is the foundation for its applica-
tion to associative memory. So we discuss global stabil-
ity and multi-stability of MRNN in the following subsec-
tions. Firstly, we analyze the differences between MRNN
and traditional RNN. Traditional RNN is described by, for
i, j = 1, 2, . . . , n,

dxi(t)

dt
= − cixi(t) +

n∑
j=1

aijf(xj(t))

+

n∑
j=1

bijf(xj(t− τ(t))) + ui (8)

where ci, aij , bij , ui have the same means as those in (5).
Discussion: According to above analysis, coefficients

aij(ui), bij(ui) of MRNN (5) can take any values in
[aij , aij ], [bij , bij ]. While the corresponding coefficients of
RNN cannot be changed. So MRNN (5) is a family of
neural networks with infinitely many modes or sub neural
networks. Hence MRNN may have infinite number of glob-
ally or locally stable equilibrium points. Coefficiens of the
interval RNN [50] may be constants in different intervals
because coefficients increments 4aij , 4bij are caused by
noises and implementation errors. This is different from
MRNN but the systematic analysis method [50] can be as
a reference for stability analysis of MRNN.

3.1 Global Stability Analysis

This subsection discusses global stability of MRNN (5).
By using comparative principle and the existing stabil-
ity criteria, it derives some sufficient conditions for global
stability of (5). The following activation function will be

adopted in the rest of the paper

f(r) =





4k − 3, r ∈ [
4k − 3, +∞)

2r − (4k − 3), r ∈ [
4k − 5, 4k − 3

)
. . . ,
2r − 5, r ∈ [

3, 5
)

1, r ∈ [
1, 3

)
r, r ∈ (− 1, 1

)
−1, r ∈ (− 3,−1

]
2r + 5, r ∈ (− 5,−3

]
. . . ,
2r + 4k − 3, r ∈ (

3− 4k, 5− 4k
]

3− 4k, r ∈ (−∞, 3− 4k
]
.

(9)

Obviously, |f(r1)−f(r2)| ≤ |r1−r2|, r1, r2 ∈ R. In order
to derive our result, the following lemma is needed.

Lemma 2: If the following three differential systems

ẏ(t) = g1(y(t)) (10)

ẏ(t) = g2(y(t)) (11)

ẏ(t) = g3(y(t)) (12)

have one common equilibrium point y? = 0, g1(0) =
g2(0) = g3(0) = 0 and satisfying g1(y) ≤ g2(y) ≤ g3(y),
then system (11) is globally exponentially stable if systems
(10) and (12) are globally exponentially stable.

Proof: Take the same initial value y(t0) = 0 for three
systems, let y?

1 , y?
2 denote equilibrium points of (10) and

(12), respectively. Then

g1(y) ≤ g2(y) ≤ g3(y)
∫ t

t0

g1(y) ≤
∫ t

t0

g2(y) ≤
∫ t

t0

g3(y)

y1(t) ≤ y2(t) ≤ y3(t). (13)

Hence, |y1(t)| ≤ |y2(t)| ≤ |y3(t)| or |y3(t)| ≤ |y2(t)| ≤
|y3(t)|. And (10) and (11) are globally exponentially stable,
there exist α1, α3, β1, β3, initial values φ1, φ3 satisfying

|y1(t)| ≤ ‖φ1‖ exp{−α1(t− t0)}
|y3(t)| ≤ ‖φ3‖ exp{−α3(t− t0)}.

So there must exist α2, β2 and an initial value φ2, and
the following inequality

|y2(t)| ≤ ‖φ2‖ exp{−α2(t− t0)}
is valid, i.e., (11) is globally exponentially stable. ¥

Because the external inputs ui, i = 1, 2, . . . , n are just
used to change the memristance, we assume that all of
sub neural networks have the same external inputs ui,
i = 1, 2, . . . , n in the following discussion.

Lemma 3 [48]: If for ci, aij and bij , ∀i, j ∈ {1, 2, . . . , n},
C − |A| − |B| is a nonsingular M matrix with |A| =
(|µjaij |)n×n and |B| = (|ωjbij |)n×n, µj , ωj are positive con-
stants for j = 1, 2, . . . , n, then the corresponding equilib-
rium point of (14) is globally exponentially stable.

By (5) and (7), we have NN1

dxi(t)

dt
= − cixi(t) +

n∑
j=1

aij(ui)f(xj(t))

+

n∑
j=1

bij(ui)f(xj(t− τ(t))) + ui (14)
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and NN2

dxi(t)

dt
= − cixi(t) +

n∑
j=1

aij(ui)f(xj(t))

+

n∑
j=1

bij(ui)f(xj(t− τ(t))) + ui (15)

for i = 1, 2, . . . , n.
Theorem 1: If coefficients of neural networks (14) and

(15) satisfy that C − |A| − |B| is a nonsingular M matrix
with |A| = (|aij |)n×n and |B| = (|bij |)n×n, then (5) is glob-
ally exponentially stable for ∀aij(ui) ∈ [aij , aij ], ∀bij(ui) ∈
[bij , bij ] and bounded external inputs ui, i, j = 1, 2, . . . , n.

Proof: Because the activation f(r) satisfy the Lipschitz
condition and ui, i = 1, 2, . . . , n are bounded, there must
exist one equilibrium for (5) at least by the Schauder fixed
point theorem for ∀aij(ui) ∈ [aij , aij ], ∀bij(ui) ∈ [bij , bij ]
and bounded external inputs ui, i, j = 1, 2, . . . , n. Denote
x?, x?

i , x?
i equilibrium points of (5), (14), (15), respectively.

Let

z(t) = (x1(t))− x?
1, x2(t)− x?

2, . . . , xn(t)− x?
n)

f(zi(t)) = f(xi(t) + x?
i )− f(x?

i ).

Hence,

żi(t) = − cizi(t) +

n∑
i=1

aij(ui)f(zi(t))

+

n∑
i=1

aij(ui)f(zi(t− τ(t))). (16)

Let V (t) = (V1(t), V2(t), . . . , Vn(t)), Vi(t) = |xi(t)|, then

D+Vi(t) ≤ − ciVi(t) +

n∑
i=1

|aij(ui)|Vj(t)

+

n∑
i=1

|bij(ui)|Vj(t− τ(t)). (17)

Let

Ψ(t) = − ciVi(t) +

n∑
i=1

|aij(ui)|Vj(t)

+

n∑
i=1

|bij(ui)|Vj(t− τ(t)). (18)

Since

aij ≤ aij(ui) ≤ aij , bij ≤ bij(ui) ≤ bij

then

|aij | ≤ |aij(ui)| ≤ |aij |, |bij | ≤ |aij(ui)| ≤ |bij |
or

|aij | ≤ |aij(ui)| ≤ |aij |, |bij | ≤ |aij(ui)| ≤ |bij |.
So

Ψ(t) ≤ − ciVi(t) +

n∑
i=1

|aij |Vj(t)

+

n∑
i=1

|bij |Vj(t− τ(t)) (19)

or

Ψ(t) ≤ − ciVi(t) +

n∑
i=1

|aij |Vj(t)

+

n∑
i=1

|bij |Vj(t− τ(t)). (20)

According to the condition of Theorem 1, (17), (19), (20)
and Lemma 3, there must exist positive constants α and β
satisfying |Vi(t)| ≤ α exp{−βt}. Hence the conclusion of
this theorem is valid. ¥

Remark 3: When aij = aij , bij = bij , for i, j =
1, 2, . . . , n, the result in [48] can be obtained from Theo-
rem 1. So we generalize the result of [47] to discuss global
stability of MRNN (5) with infinite number of sub neural
networks. Compared with the existing literatures, its main
merit is that MRNN (5) has many globally exponentially
stable equilibrium points. The systematic method in [43]
can be used to derive sufficient conditions for global stabil-
ity of (5) by virtue of many global stability criteria in the
existing literatures.

3.2 Multi-stability of MRNN

Multi-stability of RNN means that RNN has coexisting
multi attractors. Memory patterns can be stored by these
attractors. Memory capacity of RNN is up to the num-
ber of attractors. Another factor affecting memory is the
activation function f(r). Zeng et al. has derived some suf-
ficient conditions for multi-stability of n dimensional RNN
with the activation function f(r) = (|r + 1| − |r − 1|)/2
which has 3n equilibrium points and 2n equilibrium points
of them are locally exponentially stable. And then Zeng
et al. [49] generalize their work to n dimensional RNN with
the activation function (9). They derive that RNN with the
activation function (9) has (4k−1)n equilibrium points and
(2k)n equilibrium points of them are locally exponentially
stable in Ω̄k, where

Ωk =
{ n∏

i=1

`(i), `(i) =
(−∞,−(4k − 3)

]
or

(− (4k − 3),−(4k − 5)
]

or . . . or
(− 3,−1

]
or(− 1, 1

)
or

[
1, 3

)
or . . . or

[
4k − 5, 4k − 3

)
or

[
4k − 3, +∞)}

. (21)

But there are limited number of equilibrium points and
output patterns for RNN with these two kinds of activation
functions. Hence, we discuss multi-stability of MRNN with
the activation function (9).

Lemma 4 [49]: For the given integer k ≥ 1, if ∀ i, j ∈
{1, 2, . . . , n}, the following inequalities are valid for coeffi-
cients ci, aij , bij and external inputs ui of RNN with the
activation function (9)

aii + bii − (4k − 3)

n∑

j=1,j 6=i

(
|aij + bij |

)
− |ui| > ci (22)

aii + bii +

n∑

j=1,j 6=i

(
|aij + bij |

)
+

|ui|
(4k − 3)

<
(
1 +

2

(4k − 3)

)
ci (23)
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then RNN with the activation function (9) has (4k − 1)n

equilibrium points and (2k)n of them are locally exponen-
tially stable.

Let ăij = max{|aij |, aij}, b̆ij = max{|bij |, bij}. Then,
we have the following results.

Theorem 2: If the following inequalities are valid

aii + bii − (4k − 3)

n∑

j=1,j 6=i

(
|ăij |+ |b̆ij |

)
− |ui| > ci (24)

aii + bii +

n∑

j=1,j 6=i

(
|ăij |+ |b̆ij |

)
+

|ui|
(4k − 3)

< (1 +
2

(4k − 3)
)ci (25)

then for ci, aij ∈ [aij , aij ] and bij ∈ [bij , bij ], ∀i, j ∈
{1, 2, . . . , n}, the corresponding MRNN (5) has (4k − 1)n

equilibria located in Ωk, (2k)n of them are locally exponen-
tially stable.

Proof: In order to prove multi-stability of (5), it is suf-
ficient to verify whether conditions (22) and (23) are valid
or not. For aii ≤ aii(ui) ≤ aii, we have

aii(ui) + bii(ui)

− (4k − 3)

n∑

j=1,j 6=i

(
|aij(ui) + bij(ui)|

)
− |ui|

≥ aii + bii − (4k − 3)

n∑

j=1,j 6=i

(
|aij(ui) + bij(ui)|

)
− |ui|

≥ aii + bii − (4k − 3)

n∑

j=1,j 6=i

(
|ăij |+ |b̆ij |

)
− |ui|

> ci.

And then

(1 +
2

(4k − 3)
)ci

> aii + bii +

n∑

j=1,j 6=i

(
|ăij |+ |b̆ij |

)
+

|ui|
(4k − 3)

≥ aii(ui) + bii(ui) +

n∑

j=1,j 6=i

(
|ăij |+ |b̆ij |

)
+

|ui|
(4k − 3)

≥ aii(ui) + bii(ui) +

n∑

j=1,j 6=i

(
|aij(ui)|+ |bij(ui)|

)

+
|ui|

(4k − 3)
.

Hence, (22) and (23) are valid for ci, aij(ui), bij(ui),
i, j = 1, 2, . . . , n. By Lemma 4, the conclusion of Theo-
rem 2 is valid. ¥

Remark 4: In fact, (24) and (25) are minimum value
and maximum value of (22) and (23), respectively. Hence,
we generalize the systematic method [50], [51] to analyzing
multi-stability of MRNN. Compared with results in [49],
the conditions are more conservative. But MRNN has infi-
nite number of sub neural networks, i.e, globally exponen-
tially stable equilibrium points of MRNN (5) are infinite
times (2k)n. By virtue of the existing results for multi-
stability of RNN, we can obtain many sufficient conditions
for multi-stability of MRNN (5).

4 Associative Memory Synthesis

Based on the above analysis, we discuss associative mem-
ory design method based on MRNN (5). Memory patterns
are described by bipolar value {−1, 1}. Associative memory
is implemented by RNN circuit. So the activation function
is taken as f(r) = (|r+1|−|r−1|)/2, r ∈ R and weight val-
ues are simulated by linear resistors. So associative memory
can just remember bitmap, and storage capacity is limited.
So our associative memory synthesis is based on MRNN
with (9). It is able to memorize gray map and has infinite
storage capacity. The key point of associative memory syn-
thesis is the computation for weights value. So we firstly
describe the synthesis problem, and then present our design
method based on Zeng and Wang’s work [43]. The activa-
tion function F (r) = 0, r < 0, F (r) = f(r), r > 0 where
f(r) is defined as (9). The purpose is to make the designed
neural network be able to memorize gray map.

Synthesis Problem: There are p memory patterns being
denoted by vectors α1, α2, . . . , αp, αi ∈ {0, 1, 3, 5, . . . , 4k −
3}n, i = 1, 2, . . . , p. Compute coefficients ci, aij , bij and ui

in order that α1, α2, . . . , αp, αi are stable memory vectors
of MRNN (9).

Design procedure:
Step 1: Use vectors α1, α2, . . . , αp, αi ∈

{0, 1, 3, 5, . . . , 4k − 3}n (n, the dimension of MRNN)
presenting the desired memory pattern. If p ≤ (2k)n, then
go to Step 2 computing coefficients ci, aij , bij and ui.
If p = q(2k)n + γ, then divide α1, α2, . . . , αp into q + 1
groups. Go to Step 2 and compute coefficients for each
group.

Step 2: For the desired memory vectors, do the follow-
ing:

1) −ŨkS(l)T (S(l)S(l)T )−1 = (tij)n×n (l ≤ n);
2) Take σi > 1, i = 1, 2, . . . , n and choose aij , bij satis-

fying aii + bii − σi = tii and aij + bij = tij ; where Ũl, S(l)
are defined in [41].

Step 3: If p = (2k)n, compute memristance Mij accord-
ing to aij , bij ; if p = q(2k)n +γ, compute memristance Mij

according to |aij |max, |bij |max where

|aij |max = max
1≤δ≤q+1

|aδ
ij |

|bij |max = max
1≤δ≤q+1

|bδ
ij |.

Remark 5: Compared with the work in [41], we do not
require that p, the number of desired memory vectors, is
less than or equal to (2k)n. Hence, we generalize Zeng
and Wang’s work [43]. And we choose the activation func-
tion (9) in order to make the designed associative memory
MRNN be able to memorize gray map not bitmap. This
is one difference from the existing work. Another merit is
that the designed MRNN has infinite number of equilib-
rium points, i.e., MRNN can be used to implement large
storage capacity associative memory. For example, RNN
with f(r) = (|r + 1| − |r − 1|) only has 2n memory pat-
terns in {−1, 1}n and RNN with (9) only has (4)n memory
patterns in {−5,−1, 1, 5}n when k = 2. MRNN breaks
this bottleneck for it has variable coefficients and infinite
memory patterns.
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5 Illustrative Examples

Example 1: Consider the following MRNN with activa-
tion function f(r), r ∈ R (9) with k = 1, n = 2.





ẋ1(t) = −x1(t) + a11f(x1(t)) + a11f(x2(t))
+ b11f(x1(t− 0.1))
+ b12f(x2(t− 0.1)) + 0.8

ẋ2(t) = −x2(t) + a21f(x1(t)) + a22f(x2(t))
+ b21f(x1(t− 0.2))
+ b22f(x2(t− 0.2)) + 0.4

(26)

where

− 3 ≤ a11 ≤ −2,
1

3
≤ a12 ≤ 1

2

− 1

3
≤ a21 ≤ 1

2
, − 3 ≤ a22 ≤ −2

0.9 ≤ b11 ≤ 1, − 1

4
≤ b12 ≤ 1

4
1

4
≤ b21 ≤ 1

2
, 0.6 ≤ b22 ≤ 1

c1 = c2 = 4.8.

Fig. 2. Transient behaviors of x1(t) of MRNN (26).

Fig. 3. Transient behaviors of x2(t) of MRNN (26).

According to Theorem 1, every sub neural network of
MRNN (26) is globally exponentially stable. Let a11 =
a22 = −3, a12 = a21 = 1/2, b11 = b22 = 1, b12 = 1/4,
b21 = 1/2, and simulate with 50 initial values. The dynamic
characteristics are shown in Figs. 2−4.

Fig. 4. Phase plot of x1(t) and x2(t) of MRNN (26).

Example 2: Consider a MRNN with activation function
f(r), r ∈ R (9) with k = 2, n = 2.





ẋ1(t) = −x1(t) + a11f(x1(t)) + a11f(x2(t))
+ b11f(x1(t− 0.1))
+ b12f(x2(t− 0.1)) + 0.05

ẋ2(t) = −x2(t) + a21f(x1(t)) + a22f(x2(t))
+ b21f(x1(t− 0.2))
+ b22f(x2(t− 0.2))− 0.04

(27)

where

0.5 ≤ a11 ≤ 0.7, 0.01 ≤ a12 ≤ 0.02

− 0.02 ≤ a21 ≤ −0.01, 0.4 ≤ a22 ≤ 0.6

0.4 ≤ b11 ≤ 0.5, − 0.02 ≤ b12 ≤ −0.01

0.005 ≤ b21 ≤ 0.01, 0.6 ≤ b22 ≤ 0.7.

According to Theorem 2, every sub neural network of
MRNN (26) has 72 isolated equilibrium points and 42 of
them are locally exponentially stable. Take maximum val-
ues for aij , bij , i, j = 1, 2 and simulate with 50 initial values.
The dynamics characteristics are shown in Fig. 5.

Example 3: The same example has been introduced by
Lu and Liu [52], Zeng and Wang [43] for associative memory
synthesis. The desired memory patterns are three letters
“I, L, U” and number “7” as plotted by gray Fig. 6.

These four desired patterns can be denoted by memory
vectors

α1 = (1, 1, 1, 1, 5, 5, 5, 5, 1, 1, 1, 1)

α2 = (5, 5, 5, 5, 1, 1, 1, 5, 1, 1, 1, 5)

α3 = (5, 5, 5, 5, 1, 1, 1, 5, 5, 5, 5, 5)

α4 = (5, 1, 1, 1, 5, 1, 1, 5, 5, 5, 5, 5).

The objective is to design one 12 dimension MRNN
with α1, α2, α3, α4 being stable memory vectors. Obvi-
ously, the number of stable memory vectors is less than
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(2k)n (k = 2, n = 12). For l = 12, then we add eights
vectors α5, . . . , α8 such that

Fig. 5. Transient behaviors of x1(t) and x2(t) of MRNN (27).

Fig. 6. Three letters “I, L, U” and number “7” being presented

by gray map.

S(12) =




1 5 5 5 1 5 5 5 1 5 5 5
1 5 5 1 1 1 5 1 5 5 5 5
1 5 5 1 1 5 1 5 5 1 5 5
1 5 5 1 1 5 5 1 5 5 1 5
5 1 1 5 5 1 1 1 1 1 1 1
1 5 1 1 1 1 1 1 1 1 1 1
5 1 5 1 1 1 1 1 1 1 1 1
1 5 1 5 5 5 1 5 5 1 5 1
5 1 5 1 5 1 1 1 5 1 1 1
1 5 1 5 1 5 1 1 1 5 1 1
5 1 5 1 5 1 1 1 1 1 5 1
1 5 1 5 1 5 1 1 1 1 5 1




is an invertible matrix. Choose ui = 1.825 (external in-
puts), i = 1, 2, . . . , 12, λl

i = 1.5 (i = 1, 2, . . . , 12; l =
1, 2, 3, 4), λl

i = 0.1 (i = 1, 2, . . . , 12; l = 5, 6, . . . , 12). The
function of λl

i is to make these memory vectors be in the

stable region Ωk. According to associative memory synthe-
sis program, we can obtain

W =




0.5020 0.2342 1.1002 0.0348
−0.6667 0.6667 −0.8889 0.4444
0.8354 −0.0992 1.9891 −0.4097
−0.3333 0.3333 −0.6667 0.6667
5.0000 −5.0000 10.0000 0.0000
5.0000 −5.0000 10.0000 0.0000
−12.5307 1.4877 −6.5031 −0.5215
−7.5307 −3.5123 −16.5031 −0.5215
7.5307 3.5123 13.1697 −2.8119
−10.0000 10.0000 −13.3333 6.6667
0.0000 −0.0000 −6.6667 3.3333
7.5307 3.5123 19.8364 −6.1452

0.1227 −0.3640 0.9202 0.5215
−0.2222 0.4444 −0.2222 0
0.3449 −0.1418 1.1425 0.5215
−0.0000 0.0000 0 0.0000
0.0000 0.0000 10.0000 0
0.0000 −10.0000 10.0000 0
−1.8405 5.4601 −3.8037 12.1779
8.1595 5.4601 −13.8037 2.1779
−1.4928 −8.7935 10.4703 −2.1779
−3.3333 6.6667 −3.3333 0.0000
3.3333 3.3333 −6.6667 −0.0000
−4.8262 −12.1268 17.1370 −2.1779

0.1227 0.9202 0.2342 0.7209
0.0000 −0.4444 0.4444 −0.0000
0.7894 1.3647 0.1230 1.0542
−0.6667 −0.0000 0.3333 −0.3333
0.0000 10.0000 −5.0000 5.0000
0.0000 10.0000 5.0000 5.0000
−1.8405 −3.8037 1.4877 −5.8129
8.1595 −13.8037 −3.5123 −10.8129
1.8405 7.1370 0.1789 10.8129
0.0000 3.3333 −3.3333 −0.0000
0.0000 −3.3333 3.3333 0.0000
−8.1595 10.4703 6.8456 10.8129




where W = (tij), tij = aij + bij . It is easy to verify that
α1, α2, α3, α4 are stable memory vectors according to The-
orem 2. Take ci = 1, i = 1, 2, . . . , n, aij = bij , ui = 0.425,
then we have the MRNN with these desired patterns as
stable memory vectors.

6 Concluding Remarks

In this paper, we have introduced MRNN which is a fam-
ily of recurrent neural networks. Some sufficient conditions
are derived to assure its mono-stability and multi-stability.
In the existing literature on neural network, the largest
number of equilibrium points is (4k−1)n and (2k)n of them
are locally exponentially stable. In fact, associative mem-
ory output patterns are up to the activation function. This
point affects the storage capacity of associative memory.
Our MRNN with coefficients in intervals cannot be limited
by output value of the activation. Hence MRNN can in-
crease the storage capacity of associative memory. This is
the main merit which is different from traditional artificial
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neural network. So self-adaptive and self-organization re-
current neural network can be realized with memristor [26]
in the future.
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