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Parameter Estimation of RBF-AR Model Based on

the EM-EKF Algorithm
Yanhui Xi1, 2 Hui Peng3 Hong Mo1

Abstract RBF-AR (radial basis function network-based autoregressive) model is reconstructed as a new type of general radial
basis function (RBF) neural network, which has additional linear output weight layer in comparison with the traditional three-layer
RBF network. The extended Kalman filter (EKF) algorithm for RBF training has low filtering accuracy and divergence because of
unknown prior knowledge, such as noise covariance and initial states. To overcome the drawback, the expectation maximization (EM)
algorithm is used to estimate the covariance matrices of noises and the initial states. The proposed method, called the EM-EKF
(expectation-maximization extended Kalman filter) algorithm, which combines the expectation maximization, extended Kalman
filtering and smoothing process, is developed to estimate the parameters of the RBF-AR model, the initial conditions and the noise
variances simultaneously. It is shown by the simulation tests that the EM-EKF method for the reconstructed RBF-AR network
provides better results than structured nonlinear parameter optimization method (SNPOM) and the EKF, especially in low SNR
(signal noise ratio). Moreover, the EM-EKF method can accurately estimate the noise variance. F test indicates there is significant
difference between results obtained by the SNPOM and the EM-EKF.
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1 Introduction

The radial basis function network-based state-dependent
autoregressive (RBF-AR) model, which offers a very flexi-
ble structure for nonlinear time-series modeling, has been
extensively studied. For example, Shi et al. [1] developed
the RBF-AR model to reconstruct the dynamics of given
nonlinear time series. Peng et al. [2] extended the RBF-
AR model to the case where there are several exogenous
variables (RBF-ARX model) for the system. Following
this method, Gan et al. [3], [4] successively developed the
locally linear radial basis function network-based autore-
gressive (LLRBF-AR) model and a gradient radial basis
function based varying-coefficient autoregressive (GRBF-
AR) model. The major feature of the RBF-AR (X) model
which is superior to the black-box models based on general
function approximations is that: the RBF-AR (X) model
may provide some insights into the system dynamics due
to its quasi-linear structure, whereas the general function
approximations cannot.

The identification of the RBF networks includes the
choice of topology (e.g., the number of neurons) and es-
timation of all the parameters. For selecting the number
of neurons, several methods have been proposed, e.g., the
Akaike information criterion (AIC), Bayesian information
criterion (BIC), and cross validation. Therefore we must
first have a good model parameter estimation method, and
then we can repeat the method for models with different
number of neurons, before finally selecting the best model.
In this paper, the majority of our works focuses on deter-
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mining the parameters of RBF networks.
The estimation of the RBF-AR (X) model is a difficult

task but is a key procedure for successfully applying the
RBF-AR (X) model. Peng et al. [2] presented a struc-
tured nonlinear parameter optimization method (SNPOM)
for the RBF-AR (X) model estimation. Researches [2], [5],
[6] shown the SNPOM can optimize all of the model pa-
rameters and can also accelerate the computational con-
vergence of the optimization search process. However, the
primary shortcoming of the SNPOM is that it can be easily
trapped in a local optimum because of an initial guess value.
To overcome the problem of local minima, Gan et al. [7]
proposed the hybrid evolutionary algorithm (EA)-SNPOM
and simulation results indicated that the hybrid algorithm
provides better results than either method alone (EA and
SNPOM), but the complexity and running time increased
substantially. Also, Gan et al. [8] proposed a variable pro-
jection (VP) approach to efficiently estimate the parame-
ters of the RBF-ARX model. Although these identification
methods for RBF-AR (X) have good estimation results,
their performance may get deteriorated in case of measure-
ment with noise interference.

As Peng et al. [2] and Gan et al. [7] mentioned that
RBF-AR (X) can be regarded as a more general nonlinear
model than the RBF neural network and as a generaliza-
tion of the RBF network. Furthermore, any kind of RBF
and the RBF-ARX model parameter estimation procedure
must include the selection of appropriate centers and scal-
ing factors, and estimation of all the linear weights of the
RBF networks in the model.

Various derivative-based methods have been used to
train RBF neural network, including gradient descent [9]
and the well-known back propagation [10]. Although gra-
dient descent training for RBF networks has proven to
be much more effective than lots of conventional meth-
ods, it can be computationally expensive. An alter-
native to sequentially estimate RBF network is the ex-
tended Kalman filter (EKF)-based neural network sequen-
tial learning method [11]−[13]. The sequential EKF al-
gorithm is a fast training algorithm, which takes all the
network parameters (weights or weights and centers) as a
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state vector in state-space and adjusts them to adapt to
measurements [14]. Because it makes use of second order
statistics (covariance), the EKF is an improvement over
conventional neural network estimation techniques, such
as back-propagation and gradient descent training algo-
rithm. However, a well known limitation of the EKF is
the assumption of known a priori statistics to describe the
measurement and process noise. Setting these noise levels
appropriately often makes the difference between success
and failure in the use of the EKF. Especially in environ-
ments where the noise statistics change with time, the EKF
can lead to large estimation errors and even to divergence.
Thus, the selection of the initial states, the measurement
noise covariance matrix and the process noise covariance
matrix are very important in the control of the convergence
of the EKF learning algorithm. To overcome the difficulties
above, a number of improved learning methods were pro-
posed, such as EKFQ (the EKF algorithm with evidence
maximization and sequentially updated priors) [15], [16],
APNCPF (adaptive process noise covariance particle fil-
ter) [17], a hybrid EKF and switching PSO (particle swarm
optimization) algorithm [18], and a particle filtering algo-
rithm in combination with the kernel smoothing method
[19]. The EKFQ and APNCPF algorithms employ adap-
tive noise parameters, but the problem of choosing the right
window length, which is used to update noise covariance
matrices, results in a regularization/tracking dilemma be-
cause of unknown prior knowledge. Moreover, the above
algorithms do not consider the optimal initial values of pa-
rameters, which will lead to some imprecise information
about the spread or the shape of the posterior [20].

The expectation-maximization (EM) algorithm [21] was
developed to learn parameters of statistical models in the
presence of incomplete data or hidden variables. Lázaro
et al. [22] and Constantinopoulos et al. [23] extended the
EM learning strategy for estimation of the neural network
weights, such as the multi-layer perception (MLP) and the
Gaussian radial basis function (RBF) networks. Research
results indicate that the EM method is effective and sim-
ple to obtain maximum likelihood (ML) estimates of the
parameter and states.

In this paper, the proposed expectation-maximization
extended Kalman filter (EM-EKF) method, which com-
bines the expectation-maximization and the extended
Kalman filtering, is developed to identify the RBF-AR
model. The method is more accurate as it involves ex-
tended Kalman smoothing, which provides a minimum
variance Gaussian approximation to the posterior proba-
bility density function. To use the EM-EKF algorithm for
state space learning, RBF-AR model is reconstructed as a
general RBF network, which has additional linear output
weight layer compared with the traditional three-layer RBF
network. Thus, the general RBF network is represented
by state-space model, and the centers and the weights of
the general RBF network are treated as hidden state vari-
ables. The learning algorithm for RBF-AR model possesses
advantages of both the expectation-maximization and of
the extended Kalman filtering and smoothing. Specifically,
the EM algorithm is utilized to estimate parameters of the
state-space model, such as the measurement and process
noise variance and the initial states, while the extended
Kalman filtering and smoothing are used to estimate the
approximate state distribution. The proposed algorithm
simplifies the optimizing estimation of the maximum like-
lihood by making the expectation maximal, and EKF and
smoothing process realize the more exact estimation of
the expectation. This learning technique can improve the

performance of the EKF-based neural network sequential
learning method by estimating the noise variance and the
initial states. The performance and effectiveness of our
proposed method are evaluated by the Mackey-Glass time
series through three cases.

The contributions of this paper comprise two parts.
First, RBF-AR model is reconstructed as a new type of
general radial basis function (RBF) neural network, which
makes it able to estimate the parameters of RBF-AR model
using the EKF. Second, by combining the expectation max-
imization and extended Kalman filtering and smoothing
process, the EM-EKF method is developed to estimate
RBF-AR model, which can give joint state and parame-
ter estimates.

The structure of the remaining of this paper is as fol-
lows. Section 2 presents the state-space representation of
the RBF-AR model. The EM-EKF method is developed to
identify the RBF-AR model in Section 3. The cases studies
are shown in Section 4. Finally, the paper is concluded in
Section 5.

2 The State-space Representation of
the RBF-AR Model

We are interested in the nonlinear time series that can
be described by the following state-dependent AR (SD-AR)
model





yt = φ0 (Xt−1) +
p∑

i=1

φi (Xt−1)yt−i + et

Xt−1 = [yt−1, yt−2, . . . , yt−d]T
(1)

where yt (t = 1, . . . , T ) is the output, Xt−1 is regarded as
the state vector at time t, which contains only the output
series in this case (in other cases it may contain the input
series or another). φi(Xt−1) (i = 0, 1, . . . , p) are the state-
dependent function coefficients of the model, p is the model
order, and d is the dimension of the state vector. et denotes
Gaussian white noise.

Although the SD-AR model provides a useful framework
for general nonlinear time series modeling, the problem is
how to specify the functional form of its state-dependent
coefficients. An efficient approach to solve the problem is
to use Gaussian RBF neural networks approximations of
coefficients of model (1) [2], and then the model derived is
called the RBF-AR model, which is given by




yt = φ0 (Xt−1) +
p∑

i=1

φi (Xt−1)yt−i + et

φ0 (Xt−1) = ω0,0 +
m∑

k=1

ω0,k exp
{−λk‖Xt−1 −Zk‖22

}

φi (Xt−1) = ωi,0 +
m∑

k=1

ωi,k exp
{−λk‖Xt−1 −Zk‖22

}

Zk = [zk,1, . . . , zk,d]T

(2)

where Zk (k = 1, 2, . . . , m) are the centers of the local
linear RBF networks, λk (k = 1, 2, . . . , m) are the scaling
parameters, ωi,k (i = 0, 1, 2, . . . , p; k = 0, 1, 2, . . . , m) are
the linear weights, m and d are the number of hidden neu-
rons and the dimension of the centers (the dimension of the
centers is the same as the dimension of the state vector),
respectively, and ‖ · ‖2 denotes the vector 2-norm.

In general case, the RBF networks in model (2) may have
different centers for different regression variables. However,
in some applications, all the RBF networks may be allowed
to share the same centers, because model (2) possesses the
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autoregressive structure, thus, although the RBF centers
are the same in that case, the regressive polynomials’ co-
efficients are different. Thus, the RBF-AR model can be
seen as a general RBF network, which has two hidden lay-
ers with m and p + 1 neurons, respectively, and the output
layer with one output. In this structure, the identification
of RBF-AR model is to estimate the centers, the scaling
parameters and the weights of the general RBF network.
Fig. 1 shows the schematic of the RBF-AR model as a gen-
eral RBF network.

Fig. 1. The schematic of the RBF-AR model.

To simplify the nonlinear optimization steps, the scaling
parameters may be selected as [2]

λk =
− log εk

max
t−1

{‖Xt−1 −Zk‖2} , εk ∈ [0.0001, 0.1]. (3)

Using this heuristic way, the weights will become
bounded and stable when the signal Xt−1 is far away from
the centers Zk.

To apply a filtering algorithm to the RBF network train-
ing, the state-space model is established, which is given by





θt = θt−1 + vt

yt = g(θt, Xt−1) + ξt

= φ0 (θt, Xt−1) +
p∑

i=1

φi (θt, Xt−1)yt−i + ξt

(4)

where θ = [ωT
0 ωT

1 . . . ωT
p ZT

1 . . . ZT
m]T (ωT

j = [ω0,j

ω1,j . . . ωm,j ], 0 ≤ j ≤ p; Zk = [zk,1 zk,2 . . . zk,d]T ,
1 ≤ k ≤ m) represents the system state vector, yt is the
observation variable, vt and ξt denote the process noise
and observation noise, which are assumed to be zero-mean
Gaussian processes with the covariance Q and R, namely vt

∼ N(0, Q), ξt ∼ N(0, R). The initial state (parameters) θ0

is normally-distributed with mean µ0 and covariance Ξ0.
Obviously, the crux of the matter is that both the system
hidden state θt and the parameters ϕ = (Q, R, µ0,Ξ0) are
unknown.

3 The EM-EKF Method

To simultaneously estimate parameters and hidden
states, the expectation maximization (EM) is incorporated
with extended Kalman filtering and smoothing, which aims
to integrate over the uncertain estimates of the unknown
hidden states and optimize the resulting marginal likeli-
hood of the parameters given the observed data. The al-
gorithm realizes the more exact estimation of the posterior
distribution by use of the extended Kalman filtering and
smoothing.

The EM algorithm is an iterative method for finding a
mode of the likelihood function. To derive the EM algo-
rithm for nonlinear state space models, we need to develop
an expression for the likelihood of the completed data. We
assume that the likelihood of the data given the states, the
initial conditions and the evolution of the states can be
represented by Gaussian distributions. Thus, if the initial
mean and covariance of the states is given by µ0 and Ξ0,
then

p(θ0|ϕ) = (2π)−
l
2 |Ξ0|−

1
2

× exp

[
−1

2
(θ0 − µ0)

T Ξ−1
0 (θ0 − µ0)

]
(5)

p(θt|θt−1, ϕ) = (2π)−
l
2 |Q|− 1

2

× exp

[
−1

2
(θt − θt−1)

T Q−1 (θt − θt−1)

]
(6)

p(yt|θt, ϕ) = (2π)−
n
2 |R|− 1

2

× exp

[
−1

2
(yt − g(θt, Xt−1))

T R−1 (yt − g(θt, Xt−1))

]

(7)

where l = (1+m)(1+p)+md is the dimension of the state
vector, n = 1 is the dimension of the observation vector.

Then, the log-likelihood of the complete data is given by:

ln p(θ0:T , y1:T |ϕ) = −1

2
[θ0 − µ0]

T Ξ−1
0 [θ0 − µ0]

− 1

2
ln |Ξ0| − T (l + n) + l

2
ln 2π − T

2
ln |Q|

− T

2
ln |R| −

T∑
t=1

1

2
[θt − θt−1]

T Q−1[θt − θt−1]

−
T∑

t=1

1

2
[yt − g(θt, Xt−1)]

T R−1[yt − g(θt, Xt−1)].

(8)

If we take the expectation of the log-likelihood for the
complete data, we get the following expression:

E ln [p(θ0:T , y1:T |ϕ)] = −1

2
ln |Ξ0| − T

2
ln |Q| − T

2
ln |R|

− 1

2
E

[
θT

0 Ξ−1
0 θ0 − θT

0 Ξ−1
0 µ0 − µT

0 Ξ−1
0 θ0 + µT

0 Ξ−1
0 µ0

]

− 1

2

T∑
t=1

E
[
θT

t Q−1θt − θT
t Q−1θt−1 − θT

t−1Q
−1θt

+ θT
t−1Q

−1θt−1

]
− T (l + n) + l

2
ln 2π

− 1

2

T∑
t=1

E
[
(yt − g(θt, Xt−1))

T R−1 (yt − g(θt, Xt−1))
]
.

(9)

To compute the expectation of the measurement map-
ping g(θt, Xt−1), the Taylor expansion of this mapping
around the smoothing estimate θt|T is given by

g(θt, Xt−1) = g(θt|T , Xt−1)

+
∂g(θt, Xt−1)

∂θt

∣∣∣∣
(θt=θt|T )

(θt − θt|T ) + · · · (10)

where the smoothing estimate θt|T denotes the conditional
mean of θt given y1:T = {y1, . . . , yT }.
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The EKF utilizes only the first-order Taylor expansion,
so we can obtain

g(θt, Xt−1) ≈ g(θt|T , Xt−1)

+
∂g(θt, Xt−1)

∂θt

∣∣∣∣
(θt=θt|T )

(θt − θt|T ). (11)

Under the basic assumptions of the EKF (no model and
parameter uncertainty, zero-mean white-noise sequence,
known process and measurement models, etc.), the smooth-
ing estimates are unbiased, and the smoothing estimates
satisfy

E(θt|T ) = θt. (12)

So we can get

E(g(θt, Xt−1)) ≈ g(θt|T , Xt−1). (13)

Subsequently, we compute the covariance of g(θt, Xt−1)

E
[(

g(θt, Xt−1)− g(θt|T , Xt−1)
)

(
g(θt, Xt−1)− g(θt|T , Xt−1)

)T
]

≈ E

[[
∂g(θt, Xt−1)

θt

∣∣∣∣
(θt=θt|T )

(θt − θt|T )

]

×
[

∂g(θt, Xt−1)

θt

∣∣∣∣
(θt=θt|T )

(θt − θt|T )

]T
]

= GtP t|T GT
t . (14)

Hence, it follows that:

E
[
g(θt, Xt−1)

(
g(θt, Xt−1)

)T
]

≈ GtP t|T GT
t + g(θt|T , Xt−1)

(
g(θt|T , Xt−1)

)T

(15)

where Gt corresponds to the Jacobian matrix of the mea-
surement function:

Gt =
∂g(θt, Xt−1)

∂θt

∣∣∣∣
(θt=θt|t−1)

=

[
∂g(θt, Xt−1)

∂θ1,t

∂g(θt, Xt−1)

∂θ2,t
· · · ∂g(θt, Xt−1)

∂θl,t

]

(16)

and P t|T denotes the conditional covariance of θt given
y1:T = {y1, . . . , yT }:

P t|T = E
[
(θt − θt|T )(θt − θt|T )T

]
. (17)

Equations (13)−(15) are substituted in (9), and then we
get

E[ln p(θ0:T , y1:T |ϕ)] = −1

2
ln |Ξ0| − T

2
ln |Q|

− T

2
ln |R| − 1

2
tr

{
Ξ−1

0 [θ0|T θT
0|T

− 2θ0|T µT
0 + µ0µ

T
0 + P 0|T ]

}

− 1

2

T∑
t=1

tr

{
Q−1[θt|T θT

t|T + P t|T

− 2(θt|T θT
t−1|T + P t,t−1|T )T

+ θt−1|T θT
t−1|T + P t−1|T

]}

− (l + n)T + l

2
ln 2π

− 1

2

T∑
t=1

tr

{
R−1[(yt − g(θt|T , Xt−1))

× (yt − g(θt|T , Xt−1))
T + GtP t|T GT

t

]}
. (18)

Smoothing often includes the forward and backward fil-
tering over a segment of data so as to obtain improved
estimates. The forward filtering stage involves computing
the estimates θt|t and P t|t over a segment of T samples,
where θt|t and P t|t denote the conditional mean and con-
ditional covariance of θt given y1:t = {y1, . . . , yt}. Then,
the EKF-based forward filtering for estimating model (4)
can be derived as follows. The predicted state vector:

θt|t−1 = E[θt|y1:t−1] = θt−1|t−1. (19)

The predicted conditional covariance of θt:

P t|t−1 = E
[
(θt − θt|t−1)(θt − θt|t−1)

T
]

= P t−1|t−1 + Q. (20)

The Kalman gain:

Kt = P t|t−1G
T (GtP t|t−1G

T
t + R)−1. (21)

Updated system state estimate:

θt|t = E[θt|y1:t]

= θt|t−1 + Kt[yt − g(θt|t−1, Xt−1)]. (22)

Updated estimate covariance:

P t|t = E
[
(θt − θt|t)(θt − θt|t)

T
]

= P t|t−1 −KtGtP t|t−1. (23)

To obtain the smoothing estimates θt|T and P t|T , we
employ the Rauch-Tung-Strieber smoother to do the fol-
lowing backward recursions





J t = P t|tP
−1
t+1|t

θt|T = θt|t + J t (θt+1|T − θt+1|t)

P t|T = P t|t + J t (P t+1|T − P t+1|t)J
T
t .

(24)

We also require the cross-covariance P t,t−1|T , which is
defined as follows

P t,t−1|T = E
[
(θt − θt|T )(θt − θt|T )T

]
. (25)

And it can be obtained through the backward recursions

P t,t−1|T = P t|tJ
T
t−1 + J t (P t+1,t|T − P t|t)J

T
t−1. (26)

The backward recursions as above are initialized as fol-
lowing





θT |T = θT

P T |T = P T

P T,T−1|T = (I −KT GT )P T−1|T−1.

(27)
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Compared with the filtering algorithm that uses the ob-
servations up to time t for estimation of the state θt, the
smoothing yields a more accurate estimate θt|T by using
all available data up to time T .

To find the optimal parameters ϕ, we need to maximize
the expected value of the log-likelihood with respect to the
parameters, and then compute the derivatives with respect
to each parameter individually. That is




∂

∂µ0

E[ln p(θ0:T , y1:T |ϕ)] = 0

−1

2

∂

∂µ0

tr
{
Ξ−1

0 [(θ0|T − µ0)(θ0|T − µ0)
T + P 0|T ]

}
= 0

Ξ−1
0 (θ0|T − µ0) = 0

µ0 = θ0|T
(28)





∂

∂Ξ−1
0

E[ln p(θ0:T , y1:T |ϕ)] = 0

1

2

∂

∂Ξ−1
0

{
ln |Ξ−1

0 | − tr
[
Ξ−1

0 ((θ0|T − µ0)(θ0|T − µ0)
T

+ P 0|T )
]}

= 0

Ξ0

2
− 1

2

(
(θ0|T − µ0)(θ0|T − µ0)

T + P 0|T
)

= 0

Ξ0 = P 0|T
(29)





∂

∂Q−1 E[ln p(θ0:T , y1:T |ϕ)] = 0

∂

∂Q−1

{
T

2
ln |Q−1| − 1

2

[
tr(Q−1 (Γ− 2ΥT + Λ))

]}
= 0

T

2
Q− 1

2

(
Γ− 2ΥT + Λ

)
= 0

Q =
1

T

(
Γ− 2ΥT + Λ

)

(30)





∂

∂R−1
E[ln p(θ0:T , y1:T |ϕ)] = 0

∂

∂R−1

{
T

2
ln |R−1| − 1

2

T∑
t=1

tr
[
R−1

(
(yt − g(θt|T , Xt−1))

× (yt − g(θt|T , Xt−1))
T + GtP t|T GT

t

)] }
= 0

T

2
R− 1

2

T∑
t=1

[(
yt − g(θt|T , Xt−1)

)(
yt − g(θt|T , Xt−1)

)T

+ GtP t|T GT
t

]
= 0

R =
1

T

T∑
t=1

[(
yt − g(θt|T , Xt−1)

)(
yt − g(θt|T , Xt−1)

)T

+ GtP t|T GT
t

]

(31)

where




Γ =
T∑

t=1

(
θt|T θT

t|T + P t|T
)

Λ =
T∑

t=1

(
θt−1|T θT

t−1|T + P t−1|T
)

Υ =
T∑

t=1

(
θt|T θT

t−1|T + P t,t−1|T
)
.

(32)

It is significant to mention that the EM algorithm is ap-
plied to obtain maximum likelihood (ML) estimates of the
above parameters and states, which can reduce the com-
putational complexity and guarantee the convergence to
a stationary point while continuously increasing the ML
function. But EM algorithm is computationally expensive
when the state dimension is high.

4 Simulation Results

To evaluate the performance of the presented ap-
proach, we predict the well-known Mackey-Glass time series
through three cases. In the first case, the data is generated
from the following Mackey-Glass equation:

dyt

dt
=

ayt−τ0

1 + yc
t−τ0

− byt (33)

where the parameters are chosen to be a = 0.2, b = 0.1, c
= 10 and τ0 = 20. A thousand values are sampled and the
series is shown in Fig. 2. This chaotic benchmark time series
was studied in [1], [2]. We use the RBF-AR(p, m, d) model
to predict the nonlinear time series, where the parameters
p, m and d are defined as shown in model (2). The first
500 data points are used to train the model, and the last
500 data are used to test the model.

Fig. 2. The original Mackey-Glass time series.

To make the comparisons between the SNPOM, the EKF
and the EM-EKF, we predict the value yt from the fixed
input vector [yt−5, yt−4, yt−3, yt−2, yt−1]. Thus, an RBF-
AR (5,3,2) model is used to predict the one-step ahead out-
put of this complex nonlinear time series as follows:





yt = φ0 (Xt−1) +
5∑

i=1

φi (Xt−1)yt−i + et

φi (Xt−1) = ωi,0 +
3∑

k=1

ωi,k exp
{−λk‖Xt−1 −Zk‖22

}

Xt−1 = [yt−1, yt−2]
T .

(34)

Table I reports the comparison results of the proposed
EM-EKF, the EKF and the SNPOM. The estimated results
are the mean squared errors (MSEs), observation noise vari-
ance and the standard deviations (given in the parenthe-
ses). It is worth mentioning that Table I gives two different
estimation results using EKF in the cases of given differ-
ent measurement noise variances. From Table I we can
see that the MSEs of the training data using EM-EKF are
lesser than those using SNPOM and EKF, while the test-
ing data is only slightly lesser. We attribute this to the
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fact that the SNPOM has good estimation results for clean
data. Besides, the SNPOM obtains slightly better results
than does the EKF in these conditions of given different
measurement noise variances (R = 0.002 or R = 0.0002).
Furthermore, by comparison between the two conditions in
the EKF, the closer the given measurement noise variance is
to the true value (R = 0), the better the results are. This il-
lustrates that setting the measurement noise appropriately
leads to success or failure when using EKF. The estimate
of observation noise variance using EM-EKF is close to the
true value (zero), while the estimate of that using SNPOM
is unknown, and the observation noise variance in the EKF
must be given in advance. In Fig. 3, the top plot shows the
increase of the log-likelihood at each step, the middle plot
shows the convergence of the measurements noise variance
R, and the bottom plot shows the trace of the process noise
variance Q. The initial conditions for the state θ0 and the
measurements noise variance R are randomly chosen with
a uniform distribution from the range [0,1] and [0, 0.01], re-
spectively, and matrices Q and P are initialized as identity
matrix and 100 times identity matrix, respectively.

TABLE I
Comparison Results for Mackey-Glass Time Series

Method MSE (Training) MSE (Testing) R

SNPOM 1.0800E−7 1.2600E−7 unknown

EKF 1.9560E−7 2.1786E−7 0.002 (given)

EKF 1.2559E−7 1.9793E−7 0.0002 (given)

EM-EKF 7.1765E−8 1.2008E−7 1.8146E−7

Fig. 3. The convergence process of the Log-likelihood, the mea-
surement and process noise variance.

To examine the noise effect in the time series, the EM-
EKF, the EKF and the SNPOM are used to estimate
the Mackey-Glass chaotic time series corrupted by addi-
tive white noise with variance 0.25 and 1 in the following
two cases (see Fig. 4). Table II gives the performance of
the EM-EKF compared to those of the SNPOM and the
EKF on estimating the Mackey-Glass chaotic time series
corrupted by additive white noise. From Table II, one can
see that the overall performance obtained by the EM-EKF
is better than that of the SNPOM and the EKF. In detail,
the EM-EKF has smaller values of MSEs than those of the
SNPOM and the EKF for the training data and testing
data, although the improvement is not significant. As for
the EKF, when the given values of the measurement noise
variance (R = 0.1 and R = 0.6) deviate relatively far from
the true values (R = 0.25 and R = 1), the results become

worse, even worse than those obtained by the SNPOM. On
the contrary, when the given values (R = 0.2 and R = 0.8)
are relatively close to the true values, the EKF obtains
slightly better results than does the SNPOM, but still ob-
tains worse results than does the EM-EKF. This illustrates
that setting of the measurement noise plays an important
part in the use of the EKF again. In both cases, the val-
ues of measurements noise variance R using EM-EKF are
0.25950 and 1.0589, respectively, which are very close to
the true values. In contrast, the SNPOM can not estimate
the values of measurement noise variance, and the values of
measurements noise variance should be given beforehand in
the use of the EKF. The initial conditions are the same as
case one except that R is randomly chosen with a uniform
distribution from the range [0, 1]. Figs. 5 and 6 show the
convergent process of the log-likelihood and noise variance.

Fig. 4. The Mackey-Glass chaotic time series corrupted by ad-
ditive white noise.

TABLE II
Comparison Results for Mackey-Glass Time Series

Corrupted by Additive White Noise

Noise variance Method MSE (Training) MSE (Testing) R

SNPOM 0.26606 0.28120 unknown

0.25 EKF 0.26577 0.28082 0.2 (given)

EKF 0.27343 0.28825 0.1 (given)

EM-EKF 0.25750 0.27825 0.25950

SNPOM 0.97452 1.1644 unknown

1 EKF 0.97215 1.1512 0.8 (given)

EKF 0.98262 1.1785 0.6 (given)

EM-EKF 0.96590 1.13907 1.0589

Statistical F test is used to judge whether the error vari-
ance estimated by the EM-EKF is equal to the variance
estimated by the SNPOM. As shown in Table III, the val-
ues of the computing F test statistic (F ) are greater than
the table value (Fα=0.05) except for the testing data with-
out additional white noise, so the null hypothesis that two
variances are equal is rejected at level α = 0.05. This in-
dicates that there are significant differences between the
above two methods and the performance of the EM-EKF
is superior to the SNPOM.

To compare the computational complexity, Table IV lists
the computational time for the three methods. The sim-
ulations are implemented on a computer (Inter (R) Core
(TM)2 Duo CPU E7200 @2.53 GHz, 8 G-RAM). The av-
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erage running time (100 iterations) for EM-EKF is ap-
proximately 30.766 seconds, for SNPOM (100 iterations)
10.690 seconds, and for EKF 0.40572 seconds. Obviously,
the EM-EKF is more time-consuming than the other two
methods since EM algorithm is computationally expensive
for high-dimension states. Also, for a large RBF network,
the computational expense of the EKF could be burden-
some and it increases linearly with the number of training
samples. Instead, the SNPOM is a hybrid method, depend-
ing partly on the Levenberg-Marquardt method (LMM) for
nonlinear parameter optimization and partly on the least-
squares method (LSM) for linear parameter estimation.
The SNPOM can greatly accelerate the computational con-
vergence of the parameter search process, especially for the
RBF-type models with larger number of linear weights and
smaller number of nonlinear parameters. However, the EM-
EKF, as an alternative way, is superior to the SNPOM and
the EKF and can accurately estimate the noise variance.

Fig. 5. The convergence process of the Log-likelihood, the mea-
surement and process noise variance.

Fig. 6. The convergence process of the Log-likelihood, the mea-
surement and process noise variance.

TABLE III
The Results of Statistical F Test at Level 0.05

Case Fα=0.05 F Results

Case 1 (Training) 1.16 1.4642 Reject; Difference

Case 1 (Testing) 1.16 1.0105 No reject; No difference

Case 2 (Training) 1.16 14.1212 Reject; Significant difference

Case 2 (Testing) 1.16 9.2984 Reject; Significant difference

Case 3 (Training) 1.16 37.8297 Reject; Significant difference

Case 3 (Testing) 1.16 15.5751 Reject; Significant difference

TABLE IV
The Computation Time of Different Methods (s)

Method Time

SNPOM 10.690

EKF 0.40572

EM-EKF 30.766

As a whole, the EM-EKF method is capable of estimat-
ing the parameters of the RBF-AR model, and the initial
conditions and the noise variances are identified by use of
the EM algorithm, which can further improve the modeling
precision. Comparison results indicate that the RBF-AR
model estimated by the EM-EKF makes more accurate pre-
dictions than do the SNPOM and the EKF, although the
values of the MSEs using EM-EKF are only slightly smaller
than those of the SNPOM and EKF in some cases. How-
ever, F test shows there is significant difference between
results obtained by the SNPOM and the EM-EKF. Fur-
thermore, the estimation of observation noise variance us-
ing EM-EKF is close to the true value, while the estimate of
that using SNPOM is unknown, and the observation noise
variance in the EKF must be given in advance. Therefore,
we can conclude that the EM-EKF method is an advis-
able choice for estimating RBF-AR model and is especially
appropriate for signals disturbed by noise.

5 Conclusion

In this paper, the EM-EKF method is developed to esti-
mate the parameter of RBF-AR model. Firstly, the model
is reconstructed as a new type of general radial basis func-
tion neural networks. Secondly, to circumvent the EKF’s
limitation of unknown prior knowledge, the EM is pro-
posed to calculate the initial states and the measurement
and process noise variance. By combining the EM and ex-
tended Kalman filtering and smoothing process, the EM-
EKF method is proposed to estimate the parameters of the
RBF-AR model, the initial conditions and the noise vari-
ances jointly, and can further improve the modeling preci-
sion. Comparisons of the performance of the EM-EKF with
the SNPOM and the EKF are performed, and the results in-
dicate that the RBF-AR model estimated by the EM-EKF
makes more accurate predictions than do the SNPOM and
the EKF, although the EM-EKF is more time-consuming.
Moreover, the estimate of observation variance converges
to the true value. Finally, F test indicates there is signif-
icant difference between results obtained by the SNPOM
and the EM-EKF. Our future work would develop the EM-
EKF algorithm for RBF-ARX (Peng et al. [2]) estimation
and apply the RBF-AR model based on the EM-EKF al-
gorithm to other types of time series and complex systems
analysis.
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