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Global Optimization for Combination Test Suite by

Cluster Searching Algorithm
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Abstract The test suite generation is a key task for combinatorial testing of software. In order to generate high-quality testing
data, a cluster searching driven global optimization mechanism is proposed. In this approach, a binary encoding mechanism is used
to transform the combination test suite generating problem into a gene sequence optimization problem. Meanwhile, a novel global
optimization algorithm, cluster searching algorithm (CSA), is developed to solve it. In this paper, the validity and rationality of
problem transformation mechanism is verified, and the details of CSA are shown. The simulations illustrate the proposed mechanism
is feasible. Moreover, it is a simpler and more efficient test suite generation approach for small-size combinatorial testing problems.
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1 Introduction

In order to test a software system completely, we should
make the functional detection for all kinds of system ele-
ment combinations. If a software system under test (SUT)
has k elements and each element has vi (i = 1, 2, . . . , k) dif-
ferent values, then the number of whole test cases, which
could covered all kinds of system element combinations for
this SUT, is

∑k
i=1 vi. For example, Table I is a SUT with

3 testing elements, and the number of whole test cases for
completely testing this SUT is 33 = 27. Since

∑k
i=1 vi

might be a huge number, the cost of entire operations for
testing such SUT is likely to be tremendous. So, it is in-
feasible to make a complete testing for the SUT with large
input space.

TABLE I

A SUT With Three Test Parameters

Value A B C

0 a0 b0 c0

1 a1 b1 c1

2 a2 b2 c2

Fortunately, some researches show about 70 % software
bugs are caused by the combinations between two elements,
meanwhile, the correlations among three elements gener-
ated about 90% software bugs [1]. That means, we can
generate a smaller test case set, which just identifies the
interactions among several system elements, such as pair-
wise or triple combinations, to capture most of bugs in a
SUT [2], [3]. Therefore, the combinatorial testing could be
a more effective technique for discovering interaction faults
of SUT, whose key task is to generate a test suite as small
as possible to cover all given system element combinations.
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In this study, we propose a novel test suite generation
and global optimization approach. In the first step, the
test suite generation problem has been transformed into a
binary sequence optimization problem by a binary encoding
mechanism. Based on it, a novel evolutionary algorithm,
cluster searching algorithm (CSA), is presented to optimize
the binary sequence in solution space so as to construct
the optimal test suite. In Section 2, we analyze the related
research works. Section 3 introduces the problem transfor-
mation. Section 4 shows the CSA. Section 5 provides the
simulations. Section 6 gives the conclusion.

2 Related Work

Generally, a test case subset, which can satisfy all cover-
ing requirements, is known as a representative set. Assum-
ing that the cost of generating and managing each test case
is the same, a representative set with a minimum number of
test cases is desirable and is called the optimal testing suite.
The optimal combinatorial test suite generation problem is
defined as, given a SUT and a set of combinatorial cov-
ering criterion, find a minimal representative set from the
complete test case set. For example, Table II is an optimal
pairwise combinations representative set, which can cover
all combinations between any two system elements of the
SUT in Table I. In general, this problem can be expressed
as a set-covering problem [4], and it is a NP-complete prob-
lem also [5].

TABLE II

An Optimal Test Suite Covering All Pairwise

Combinations

Number A B C

1 a0 b0 c0

2 a0 b2 c2

3 a0 b1 c1

4 a1 b0 c2

5 a1 b1 c0

6 a1 b2 c1

7 a2 b0 c1

8 a2 b2 c0

9 a2 b1 c2
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In traditional studies, people make use of some mathe-
matical methods to construct the representative set, such
as orthogonal array [6]. But, there are some unsolved prob-
lems existing in the orthogonal array generation method,
such as we cannot generate a necessary orthogonal array for
any kind of SUT. Another mathematical method is based
on the matrix recursive construction process [7]. For some
special instances, this method can give a wonderful result.
But, it cannot be applied to all kinds of SUT either. More-
over, the theoretical researches of combinatorial testing are
still unable to give an explicit optimal covering number
for most problems. The major conclusions of such studies
just can give some logical relations for the optimal covering
number between different problems [8].

In recent years, the evolutionary algorithm (EA) has de-
veloped into a powerful global optimization algorithm to
solve many complex engineering optimization problems [9]
−[12]. In combinatorial testing researches, the EA is usu-
ally coupled with one-test-at-a-time mechanism [13]. In
such studies, an EA has been used to search a best test case
ti in the test case complete set, which can cover the max-
imum combinations in uncovering combination set (CS),
in one computation. Then, let ti join test suite (TS) and
delete the covered combinations by ti in CS. After that,
the above operations will repeat until all combinations in
CS have been covered. Based on this iterative construc-
tion process, the one-test-at-a-time mechanism can solve
most large-size SUT very well [14], [15]. However, to a
small-size SUT, it does not show a desired performance.
Firstly, it is likely to generate an approximate representa-
tive set. Secondly, it always takes a much longer time and
more matrix transformations to generate whole represen-
tative set. These characteristics make one-test-at-a-time
mechanism not suitable to solve small-size SUT. For exam-
ple, if we use this mechanism to generate the TS for the
SUT in Table I, the test cases a0b0c0, a1b1c1 and a2b2c2
are likely to be preferentially selected from complete set to
join TS one by one, because both of them contain 3 un-
covered pairwise combinations in CS, which conform to the
optimal condition for the test case selection. However, if
it does, no matter what test case in the left 24 cases has
been chosen to join TS in the next computation cycle, the
generated representative set would be an approximate so-
lution, because there is at least one pair-wise combination
repetitive with the 9 covered pair-wise combinations, which
have been generated by the above 3 test cases.

Recently, efforts have been focused on the use of meta-
heuristic algorithms as part of the computational approach
for test suite generation. Generally, meta-heuristic algo-
rithms start with a random set of test cases, such as us-
ing a simple one-test-at-a-time greedy procedure to con-
struct it [16]. Then, the initial test case set undergoes a
series of transformations in an attempt to improve itself.
Each of them could be an independent meta-heuristic algo-
rithm, such as teaching learning based optimization, global
neighborhood algorithm, particle swarm optimization, and
cuckoo search algorithm [17]. In this process, one best can-
didate is selected at each iteration until all the required
interactions are covered. Such researches show a good per-
formance for large-size constrained CA problems as well.
But, these algorithms always contain several searching al-

gorithms and try to balance them in the iteration compu-
tation process. So, these approaches often have a relatively
heavy and complicated structure and are more suitable to
solve large-size CA problems.

By using one-test-at-a-time mechanism or meta-heuristic
algorithms, it is possible to perform large combinatorial
testing that was not possible before. But, for small-size CA
problem, such approaches still imply a high cost and often
get an approximate result. In the practical applications, a
portion of software testing works belongs to the small-size
problem. So, finding a simple method to improve the prob-
ability of generating the optimal test suite for small-size
combinatorial testing is a worthy goal. In order to opti-
mize the test suite more effectively, some researchers try to
translate small-size CA problem into another kind of prob-
lem to solve it, such as satisfiability problem (SAT) [18]
and integer program problem [19] etc. However, these re-
searches also meet some difficult challenges. For example,
even translating a small-size SUT into a SAT problem, we
will get a very large clause set. Besides, the normal plan-
ning algorithm cannot deal with a big optimization problem
efficiently. Above researches enlighten us that the combi-
nation test suite generation problem should be translated
into a simple and concise data structure for global optimiza-
tion, meanwhile, it is necessary to equip an effective global
optimization algorithm to improve the solution quality.

3 Proposed Method

Fig. 1 is the flowchart of combinatorial test suite global
optimization mechanism. As it shows, a one-to-one corre-
spondence is created between a test case in its complete
set and a gene of a binary code string. Based on this, we
can create a mapping relation between a test case subset of
complete set and a vertex in the binary code space. This
means we can translate a combination test suite genera-
tion problem into a binary code based global optimization
problem to solve. The binary string is a simpler and more
compact data structure. Moreover, it is more suitable for
global optimization computation. In this section, we will
introduce the encoding and decoding procedure firstly.

3.1 Binary Code Based Problem Transformation

Generally, we can use a covering array (CA) or a mixed
level covering array (MCA) to describe a SUT [4]. The dif-
ference between CA and MCA is that each test parameter
of CA has the same value range, but in MCA it can be
different. Actually the CA can be looked upon as a special
case of MCA, and the processing methods for them have
no difference. To facilitate the computation process, we
make this study for CA problem only. The following is the
definition of covering array given by Cohen [20].

Definition 1 (Covering array): Let N , k, t, and v be pos-
itive integers. A covering array, CA(N ; t, k, v), is a N × k
array on v symbols, and every N × t sub-array contains all
ordered subsets from v symbols of size t at least once. In
such an array, t is called strength, k is called the degree, v
is called the order.

By this definition, we can get that the number of test
cases in the complete set of CA(N ; t, k, v) is vk, and the
number of whole combinations with covering strength t is



No. 9 Hao Chen et al.: Global Optimization for Combination Test Suite by Cluster Searching Algorithm 1627

Fig. 1. Combinatorial test data global optimization mechanism.

vtCt
k. For describing the problem transformation mecha-

nism, the other definitions are given in the following.
Definition 2: Let Φ be the complete test case set of

CA(N ; t, k, v), then |Φ| = vk. Sort Φ in ascending order
by the value of each test parameter. The id j of test case
tj is labeled from 0 to |Φ| − 1.

By this definition, the complete test case set Φ will show
an orderly structure. Furthermore, we can use the id j to
visit a definite test case tj in Φ. For example, Table III is
the complete test case set of the SUT in Table I.

TABLE III

An Orderly Complete Test Cases Set

A B C tj id j

a0 b0 c0 t0 0

a0 b0 c1 t1 1

a0 b0 c2 t2 2

a0 b1 c0 t3 3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

a2 b2 c2 t26 26

Definition 3: The binary code sequence I is a string of
length L. Its genes αj{0, 1}, j = 0, 1, . . . L− 1.

As Fig. 1 shows, the binary code space is an L-
dimensional hypercube. The vertex in this hypercube is
a unique binary coding string.

Definition 4: Let γi be a test cases subset of Φ and Γ =
{γi|γi ∈ Φ}. Then, Γ is the complete set of Φ’s subset, and
for ∀γi and ∀γj (γi, γj ∈ Γ and i 6= j), γi 6= γj . Let λi be a
vertex in binary code space and Λ = {λ0, λ1,. . . }. Then, Γ
is the complete set of vertex in binary code space.

Based on above definitions we can get 2 characteristic
theorems of set Γ and set Λ firstly.

Theorem 1: Let L = |Φ|, then the element number of set
Γ is equal to set Λ’s. That is |Γ| = |Λ| = 2L.

Proof: By Definition 3, we can get there are 2L unique
vertexes in the L-dimensional hypercube. By Definition 1,
we know there are |Φ| = vk distinct test cases in Φ. Mean-
while, for a test case, there are also two statuses, it belong

to the test case subset or not. That means the element
number of Γ is |Γ| = 2|Φ|. So, if L = |Φ|, we can get |Γ| =
|Λ| = 2L. ¥

Theorem 2: Make test case tj join the TS only when the
gene αj = 1 (j = 0, 1, . . . , L − 1). Then, both Γ → Λ and
Λ → Γ are bijections.

Proof: Firstly, we can prove both Γ → Λ and Λ → Γ are
surjections based on above assumption. By Theorem 1 we
know the set Γ and set Λ have same number of elements
when L = |Φ|. Besides, both the test case in Φ and the
gene in a binary string have two statuses, which is yes or
no and 1 or 0. Meanwhile, the tj has corresponded to one
and only αj by the same id j. So, under the given condi-
tion, each element in set Γ would correspond to one and
only object in set Λ, and each element in set Λ is mapped
by a unique object in set Γ, and vice versa. Based on this,
we can get both Γ → Λ and Λ → Γ are surjections. On the
other hand, by the Theorem 1, we can get all elements in
set Γ and set Λ is a unique object. That means each ele-
ment in set Γ and set Λ is different from others. Therefore,
both Γ → Λ and Λ → Γ are injections. For Γ → Λ and
Λ → Γ are both surjection and injection, we can get that
both Γ → Λ and Λ → Γ are bijections. ¥

The bijection relationships between set Γ and set Λ show
there is a one-to-one correspondence between the test case
subset and the vertex in binary code space, which is a nec-
essary condition for the problem transformation.

3.2 Decoding Mechanism

The decoding mechanism is used to parse the binary code
sequence so as to construct the corresponding combinato-
rial test case subset. To facilitate this process, we use a
positive integer, whose value is set from 0 to v−1, to mark
the symbol of each parameter of SUT. Then, we can use a
mod-v number to present the details of a test parameter.

Definition 5: For a covering array CA(N ; t, k, v), a test
case can be expressed as a k figures integer sequence, and
each figure is a positive mod-v integer.

Let xi (xi ∈ {0, 1, . . . , v − 1}) express the value of ith
parameter (i ∈ {0, 1, . . . , k − 1}) of test case tj . Then, an
equation can be created to show the details of test case tj

after parsing the number id j. The formula is
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j = xk−1 ∗ vk−1 + · · ·+ x1 ∗ v1 + x0 ∗ v0 (1)

For example, to the CA in Table I, if the gene value of α3

in Ii is 1, that means j = 3. Then, we can create an equa-
tion 3 = 0× 32 + 1× 31 + 0× 30. Based on this equation,
we can get an integer sequence, which is 010. After that,
this integer sequence can be translated into a test case t3
= a0b1c0. Repeating this process for each valuable gene
in Ii, whose value is 1, we can generate a whole test suite.
This procedure is shown as follows.

Algorithm 1 Decoding

Input: positive integer k and v, binary code of Ii

Output: test suite TS

1: for j from 0 to L− 1 do

2: if αj equal to 1 then

3: dnum = j;

4: for m from 0 to k − 1 do

5: x = dnum %v; dnum/ = v;

6: tj [m] = x;

7: end for

8: put tj into TS;

9: end if

10: end for

In above procedure, TS = {tj |j = 0, 1, . . . , L − 1}, tj =
xk−1, . . . , x1, x0 where xi is a mod-v integer value. Firstly,
we set TS = φ.

3.3 Fitness Calculation and Constraint Handling

In the proposed approach, the CA problem can be re-
garded as a sort of optimization problem. So, we can for-
mulate λi’s fitness as

max f(λi), λi ∈ Λ. (2)

By Theorem 2, we know λi → γi is a one to one mapping.
So, we can give the following definition

Definition 6: the fitness of λi and γi is

f(λi) = f(γi) = fi. (3)

Since we expect to use as few test cases as possible to
cover whole combinations with strength-t, the fitness of λi

can be evaluated from two aspects. The first one is the cov-
ering degree for strength-t combination in CS. The second
one is the number of test cases in λi. In order to balance the
two sides, we propose to use following formula to calculate
fi

fi = 10 ∗ ω

|CS| + 1− |TS|
|Φ| (4)

where ω is the number of covered combinations in CS and
|CS| is the number of all strength-t combinations. Obvi-
ously, 0 < ω ≤ |CS| and 0 < |TS| ≤ |Φ|. Based on our
experience, 10 ∗ω/|CS|, which is between 0 and 10, is used
to judge the coverage of combinations set. Meanwhile, 1
− |TS|/|Φ|, which is between 0 and 1, is used to show the
test suite size relationship.

Besides, for handing constraints, a specific calculation
mechanism is used to filter out all invalid genes from λi

before fitness evaluating.
Definition 7: The constraint set CO = {coi|i = 1, 2, . . .}.

If the constraint coi is available, we can generate a corre-
sponding binary string Ii = {α0α1 · · ·αL−1}, in which the
αj = 0 if its corresponding test case tj is infeasible to coi;
otherwise, αj = 1. Based on I1, I2, . . ., we can generate an
invalid genes filtering string Ico

Ico = I1 ∧ I2 ∧ · · · (5)

where ∧ is the logic and operation.
Using Ico we can filter out all invalid genes in λi easily

by following formula

λi = λi ∧ Ico. (6)

After this calculation process, the fitness of λi would be
calculated by (4).

Based on fitness function, the value of λi and γi can be
evaluated. Moreover, both of them have the same fitness
value. Then, if we sort the set Γ and set Λ based on its
individuals fitness, we can see the corresponding individu-
als between two sets also have the same position in each
fitness sequence. So, we can get Theorem 3.

Theorem 3: The γi and λi have the same relative posi-
tion in its fitness ordering sequence of set Γ and set Λ.

This theorem gives a sufficient condition for the problem
transformation. Above all, we can get a conclusion that
a combination test suite generation problem can be trans-
lated into a binary code based global optimization problem
to solve.

4 Cluster Searching Algorithm

As we know, the solution of EA is much likely to be
affected by the phenomena of premature convergence and
searching stagnation. The adaptive mechanism is the most
commonly used self-adjusting method in EA. Nevertheless,
in a practical application, it is difficult to make a reli-
able and accurate self-adjusting strategy for EA. So, the
adaptive mechanism just can make a limited impact on
the performance improvement of EA. Recently, a new re-
search trend is aimed at creating a hybrid algorithm model
by merging various searching mechanisms and operators
in order to improve the performance of optimization sys-
tem [21], [22]. Meanwhile, a new problem has emerged.
That is how to balance the diversity and the complexity
in a hybrid evolution system and harmonize the specificity
and the coordination among multiple operators. We find
that an organization with sort of cluster form structure in
a complicated and huge evolutionary group has shown a
particularly important role in the occurrence and develop-
ment process of such group. Inspired by this, we propose to
create a certain cluster organization in the population, and
use it to control and adjust the searching process of pop-
ulation. Fig. 2 is the model of cluster searching algorithm
(CSA).

In CSA, the cluster C is a connection relationship among
individuals, which can be generated by a clustering pro-
cess. Such structure makes the population searching pro-
cedure divided into two parts, which are the searching
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among group process and the searching inside group pro-
cess. By the interactions among multiple clusters, the
searching among group process is developed to explore the
code space. In contrast with it, the searching inside group
process is aimed at refining the individuals in each group.
Such job-division mechanism is not only helpful keeping low
coupling between the global and local searching computa-
tion in evolution system, but also provides an environment
and foundation for merging various searching mechanisms
and operators, and adjusting the interrelation between the
global and local searching process. For describing CSA, we
give some basic definitions firstly.

Fig. 2. Model of cluster searching algorithm.

Definition 8: A population Pop of CSA consists of an
n-tuple of strings Ii (i = 0, 1, . . . , n− 1) of length L, where
the genes αj ∈ {0, 1}, j = 0, 1, . . . , L − 1. Ii is called an
individual. The fitness of Ii is fi > 0.

Definition 9: The cluster C is a virtual group organiza-
tion and the Aj

i is a member of group Ci, which maps an
individual Ik in Pop. We can express it as

C = {C1, C2, . . .}, Ci = {A1
i , A

2
i , . . .}

Aj
i = k, i, j, k = 1, 2, . . . (7)

∅ = {Ci ∩ Cj |i 6= j}, ∅ = {Ar
i ∩As

j |i 6= j}
Pop = ∪Ci, i, j, r, s = 1, 2, . . . . (8)

Definition 10: In cluster C, the members of the same
group have more similarity, and the members belonging to
different groups have more diversity. That is

Distance(Ar
i , A

q
j) > Distance(Ar

i , A
s
i ),

i 6= j, i, j, r, s, q = 1, 2, . . . . (9)

Definition 11: The core member Ac
i of Ci is a member

who has the best fitness in group Ci. That is

fAr
i
≤ fAc

i
∀Ar

i ∈ Ci, i, r = 1, 2, . . . . (10)

In the iteration process of CSA, the cluster, created in
kth generation, is written as Ck, and the children, gener-
ated by the searching process of Ck, are Chk. The following
are the main steps of CSA.

1. C0 = initializing(Pop0);
2. While (the termination criteria are not reached) do
3. Chk = searchingamonggroup(Popk−1, Ck−1);
4. Ck = clustering(Popk−1, Chk);
5. Chk = searchinginsidegroup(Popk−1, Chk, Ck);
6. C0 = initializing(Pop0);

7. End while.
In the first step, CSA initializes the population Pop0 in

binary code space randomly. After that each Ii in Pop0

is set to be a group Ci (i = 1, 2, . . . , |n|). And it is the
only member A1

i and center member Ac
i of Ci also. Then,

the cluster C0 is created. The following is the iteration
searching process of CSA.

4.1 Searching Among Group Process

In the searching among group process, we choose an indi-
vidual from different groups and use multi-point crossover
operation ⊕ and mutation operation ¯ to explore the code
space. This step will generate n offspring individuals.The
number of crossover point ξ in ⊕ operation is randomly
generated between a and b. The default parameters a and
b satisfy 1 < a < b < L/2. In ¯ operation, the gene muta-
tion probability is ρ ∈ (0, 0.05).

Algorithm 2 Searching among group

Input: population Popk−1 and cluster Ck−1

Output: n offspring individuals in Chk

1: Randomly select two different groups Ci and Cj (i 6= j) from

current cluster Ck−1, then randomly select member Ar
i and As

j

from Ci and Cj respectively.

2: Perform ⊕ operation between Ar
i and As

j to generate binary

string ch1 and ch2. Then, perform ¯ operation on ch1 and ch2,

respectively. That is

ch1, ch2 = ¯(A
r
i ⊕ A

s
j). (11)

3: The number of offspring individuals p = p + 2. If p < n, return

to step 1. Otherwise, exit.

4.2 Clustering Process

After the searching among group process, 2n individu-
als will be dispersed in code space widely. Then, we use
a clustering process to assign them into different groups
so that they have a high degree of similarity within the
group, and that the cluster is to be distinct. This process
helps CSA to analyze the spatial distribution structure of
population in code space. This clustering process also con-
sists of two parts: a technique for calculating the distance
between binary strings, and a grouping technique to mini-
mize the distance between individuals in same group while
maximizing the distance among groups.

4.2.1 Distance Calculation by PAD

Based on the bound researches of optimal test case num-
ber, such as symbol-fusing and the lower and upper bound
[23], [8], we can see that the valuable genes, whose value is
1, just have occupied a small proportion in binary code. In
order to emphasize the importance of these valuable genes
in clustering process, we propose to use positive attribute
distance (PAD) [24] instead of traditional hamming dis-
tance to calculate the individual distance.

The PAD of two binary sequences is as follows

PAD(Ii, Ij) = 0 ≤ 2Ψij

Ψi + Ψj
(12)
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where Ψi is the number of 1’s in ith binary sequence, Ψj

is the number of 1’s in jth binary sequences, and Ψij is
the number of 1’s common to both ith and jth binary se-
quences. Obviously, the result of PAD is in the interval
between 0 and 1, where 1 expresses absolute similarity and
0 expresses absolute diversity.

Furthermore, we use the average PAD of population as
the indicator of population diversity γ ∈ (0, 1). It can be
calculated by following formula

γ =
2

|n|(|n| − 1)

|n|∑
i=2

i−1∑
j=1

PAD(Ii, Ij). (13)

4.2.2 Clustering Based on PAD

Algorithm 3 is the main steps of a hierarchical clustering
process. In this process, we set two matrixes, IDM and
GDM, to store the individual distance idmij ∈ IDM and
group distance gdmij ∈ GDM . That is

idmij =

{
0, if i ≤ j, i, j = 1, 2, . . .

PAD(Ii, Ij), else
(14)

gdmij =





0, if i ≤ j,

i, j, r, s = 1, 2, . . .∑
Ar

i∈Ci

∑
As

j∈Cj

PAD(Ar
i ,As

j )

|Ci||Cj | , else.

(15)

Meanwhile, the current population Popk−1 and its off-
spring individuals Chk have been mixed together to join
clustering process.

Algorithm 3 Searching among group

Input: population Popk−1 and offspring individuals Chk

Output: new cluster Ck

1: Set each Ii in population to be a temporary group Ci. Initialize

the IDM by (14). After that initialize the GDM by (15) based

on IDM. Then, calculate the population diversity γ by (13), and

set the average group distance ξ = γ.

2: Find the minimum group distance gdmpq in GDM and merge

the group Cp and Cq into a new group Cpq. Then, update the

GDM.

3: Calculate new average group distance ξ′

ξ
′
=

2

|C|(|C| − 1)

|C|∑

i=2

i−1∑

j=1

gdmij (16)

where |C| is the number of groups after step 2. If ξ′ < ξ, go to

step 4; otherwise, ξ = ξ′ and return step 2.

4: Restore the group Cp, Cq and GDM. After that, update the

center member for each group and output C.

4.3 Searching Inside Group Process

The searching inside group process consists of two oper-
ations, SIG1 and SIG2, which are used to reduce the valu-
able genes in binary string while maintaining it can satisfy
all covering requirements. In this process, a parameter m
is used to limit the execution times of SIG1 and SIG2 for
each group. In this paper, the m is adjusted by the follow-
ing formula

m = round

(
m2 −m1

G− 1
g +

m1G−m2

G− 1

)
(17)

where 0 ≤ m1 < m2, g = 1, 2, . . . , G is the generation num-
ber, G is its ceiling number and round(·) is the rounding
operation. During the searching process, (17) makes m in-
crease from m1 to m2 gradually. Besides, parameter λ ∈
(0, 1) is used to adjust the operation probability between
SIG1 and SIG2.

Algorithm 4 Searching inside group

Input: Popk−1, Chk, Ck and λ

Output: m|C| offspring individuals in Chk

1: Run this operation for Ci, i = 1, 2, . . . , |C|, and set t = 0.

2: UR(0, 1) is a uniformly distributed random number between 0

and 1. If UR(0, 1) < λ, goto step 2.1 to execute SIG1. Other-

wise, goto step 2.2 to execute SIG2.

2.1: SIG1: select two members Ar
i and As

i from Ci randomly,

and execute logic and operation ∧ between them. After that,

perform multi-point crossover operation ⊕ between the output

string by Ar
i ∧As

i and the center members Ac
i . This process can

be expressed as

ch1, ch2 = A
c
i ⊕ (A

r
i ∧ A

s
i ). (18)

After that, put the generating individuals ch1 and ch2 into

Ci, t = t + 2 and goto step 3.

2.2: SIG2: Randomly select three members Ar
i , As

i and At
i from

Ci. Then, perform logic and operation ∧ among them and out-

put a binary string ch

ch = A
r
i ∧ A

s
i ∧ A

t
i. (19)

If ch can cover all strength-t combinations in CS, goto step

2.2.1. Otherwise, goto step 2.2.2.

2.2.1: Randomly select a valuable gene in ch, whose value is

1, and change it into 0. If the updated ch still can cover all

strength-t combinations in CS, repeat this step. Otherwise, re-

cover the value of last chosen gene to 1 and goto step 2.2.3.

2.2.2: Randomly select a gene in ch, whose value is 0, and change

its value into 1. Then repeat this step until ch has covered all

strength-t combination in CS and goto step 2.2.3.

2.2.3: Make the generating individuals ch join Ci, set t = t + 1

and goto step 3.

3: If t < m, update the Ac
i of Ci and return to step 2. Otherwise,

set i = i + 1 and return to step 1.

Fig. 3 shows the practical calculation process of

Fig. 3. Calculation cases of searching inside group process.
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searching inside group. In Fig. 3 (a), two binary strings, ch1

and ch2, are generated by (18). In Fig. 3 (b), a temporary
individual ch is generated by (19). Then, one gene of ch is
selected to change its value from 0 to 1, and a solution is
gotten.

4.4 Cluster Selection Process

After the cluster searching process, the scale of current
population increases to 2n + m|C|. In order to satisfy the
computation requirement for next generation, we need to
select n individuals from current population to form next
population. In cluster selection process, n individuals will
be selected from each group respectively.

Algorithm 5 Cluster selection

Input: Popk−1, Chk, Ck

Output: Popk

1: For each Ci, sort its members in descending order by their fit-

ness. After that, set i = 1, k = 1, j = 1.

2: Take member Ak
i from Ci to be a surviving individual Ij and

join next population. It can be expressed as

Ij = A
k
i , j = 1, 2, . . . , n

i = j%|C|+ 1, k = round

(
j

|C|

)
+ 1. (20)

3: If j < n, j = j + 1 and return to step 2; otherwise, exit.

5 Simulation Experiments

In this section, we implemented 3 algorithms, a real
code genetic algorithm with one-test-at-a-time mechanism
GA/OTAT, a binary code GA with global optimization ap-
proach GA/BCGO, and CSA, in C++. Meanwhile, 32 CA
problems are chosen to test above 3 algorithms and TCA
[16], whose source code is implemented in C++, and avail-
able online1, on a 2.1 GHz AMD Phenom PC with 2 GB
memory.

5.1 Experimental Settings

An individual xk, . . . , x2, x1 in GA/OTAT is a k-
dimensional real vector. The gene value of each dimension
is initialized between 0 and 1 randomly. In decoding pro-
cess, the gene value of each dimension in an individual will
be translated into an integer by the formula round (xi · v).
According to this integer, we can get the corresponding pa-
rameter symbol in the SUT. For example, in an individual,
if the gene x1 = 0.6, we can get 1 = round(0.6 · 3). For
the CA in Table I, the integer 1 means x1 → a1. Besides,
the population size n of GA/OTAT is 100. The searching
operations of GA/OTAT include algebraic crossover, non-
uniform mutation and linear sort selection. The following
is mainly the computation procedure of GA/OTAT.

1. Initialize test suite TS = φ;
2. Initialize combination set CS;
3. While (CS 6= φ) do
4. Initialize population of GA/OTAT randomly;
5. While (the termination criteria are not reached)do

6. search a best test case ti;
7. End while;
8. Make ti join TS;
9. Delete the covered combinations in CS;
10. End while;
11. Output TS.

Both GA/BCGO and CSA use (4) to verify the quality
of test suite. Besides, based on our experience, we set pop-
ulation size n = 60 in CSA. Furthermore, the GA/BCGO
and CSA use the same maximum running iterations in the
following trials and the CSA will costs more operation num-
ber than GA/BCGO in each searching iteration process.
To be fair, we set a big population size for GA/BCGO,
which is 100, to make its searching operations number
is not less than CSA in each iteration process. Besides,
GA/BCGO and CSA use same crossover and mutation op-
eration. In multi-point crossover operation, the parameter
a and b, which are used to set the lower and upper limita-
tion of crossover point, are set to a = round(L/10) and b
= round(L/4). The gene mutation probability is ρ = 0.01.
But, GA/BCGO uses the linear sort selection operation to
generate next population. Besides, the parameter m1 and
m2 of CSA, which are used to limit the computation times
m in searching inside process, are set to m1 = round(n/10)
and m2 = round(n/4). The parameter λ, which is used
to control the execute probability of SIG1 and SIG2, is
set to λ = 0.4. The computation procedure of CSA and
GA/BCGO is

1. Encode the binary code space;
2. Initialize population of CSA or GA/BCGO;
3. While (the termination criteria are not reached) do
4. search the best genetic string Ii in code space;
5. End while;
6. Decode Ii and output TS.

In the beginning of TCA, the initialization step is called
to construct a CA set to cover all valid t-tuples, which
works with a simple one-test-at-a-time greedy strategy. Af-
ter that, TCA executes the search steps to adjust the CA
set until the time budget is reached. During the search pro-
cess, TCA switches between two modes, that is, the greedy
mode and the random mode. With a probability p = 0.001,
TCA works in the random mode; otherwise (with a proba-
bility 1-p), TCA works in the greedy mode. In each run of
testing, we will set a cutoff time to TCA in advance.

5.2 Results and Discussions

We ran GA/OTAT, GA/BCGO, CSA and TCA for 32
CA problems over 30 independent trials. The experiment
results of above 4 algorithms are shown in Table IV and Ta-
ble V with the experiment results of HHH [17] and integer
program method [19] for part of testing problems.

In first round of experiments, 16 CA problems with
strength-2 have been tested. In the first 8 tests, we set
v = 2 and k = 3, 4, 5, . . . , 12, respectively. The maximum
running iterations of GA/OTAT, GA/BCGO and CSA are
set to 200, 500 and 1000 when k is less than or equal to 6,
9 and 12, respectively. In the next 5 tests, v = 3 and k =
4, 5, . . . , 8, respectively. The maximum running iterations

1https://github.com/leiatpku/TCA
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TABLE IV

Experiment Statistical Results of 3 Algorithms for 16 CA Problems With Strength-2

v k |Φ| N

GA/OTAT GA/BCGO CSA TCA HHH Integer program

|TS|
Time (s)

|TS|
Time (s)

|TS|
Time (s)

|TS| |TS| |TS|
Time (s)

Best Ave. Best Ave. Best Ave. Best Ave. Best Ave. Best Ave.

2

5 32 6 7 7.7 5.97 6 6 0.27 6 6 0.36 6 6.5 - - 6 - 0.70

6 64 - 7 8.1 6.54 6 6.2 0.68 6 6 1.10 6 6.7 - - 6 - 16.57

7 128 - 7 8.4 10.89 6 9.4 1.43 6 6 1.99 6 7.3 - - 6 - 441.2

8 256 - 8 10.7 12.71 6 11.3 3.91 6 6 4.70 6 7.0 - - - - -

9 512 - 8 11.2 14.5 40 51.6 7.49 6 6 9.60 7 7.9 - - - - -

10 1024 - 8 12.9 25.3 60 70.8 19.5 6 8.4 23.1 7 8.2 - - - - -

11 2048 7 9 14.2 28.8 141 167 40.3 7 9.5 49.0 8 8.7 - - - - -

12 4096 - 9 16.7 32.9 196 228 112.4 20 33.9 145 8 8.8 - - - - -

3

4 81 9 9 10.6 8.8 9 9 1.29 9 9 1.70 9 9.6 9 9 9 - 0.08

5 243 11 11 12.8 17.2 11 17.2 3.73 11 11 5.31 11 11.3 11 11.35 13 - ∗
6 729 12 16 18.1 19.6 44 57.8 11.5 12 12 14.9 13 14.1 13 14.2 - - -

7 2187 - 19 21.7 36.9 157 165 39.1 12 16.9 50.2 13 14.5 14 15 - - -

8 6561 13 20 27.9 40.3 224 277 133 88 97.5 148 14 14.7 15 15.6 - - -

4

5 1024 16 21 29.5 68.1 56 71.5 22.4 16 16.9 25.6 18 19.8 - - - - -

6 4096 19 25 36.7 74.4 197 227 194 22 34.2 223 21 22.7 - - - - -

7 16384 21 28 40.9 93 320 342 417 116 135 508 24 25.2 - - - - -

TABLE V

Experiment Statistical Results of Test Case Number for 16 CA Problems With Strength-3

v k |Φ| N

GA/OTAT GA/BCGO CSA TCA HHH

|TS|
Time (s)

|TS|
Time (s)

|TS|
Time (s)

|TS| |TS|
Best Ave. Best Ave. Best Ave. Best Ave. Best Ave.

2

5 32 10 11 13.6 11.1 10 11.2 0.41 10 10 0.42 10 10.6 - -

6 64 - 13 14.2 17.6 10 12.6 1.29 10 10 1.34 10 10.7 - -

7 128 - 14 15.6 24.4 12 15.1 2.09 10 10 2.15 10 11.2 - -

8 256 - 17 19.8 31.8 15 19.6 5.22 10 10 5.62 11 12.0 - -

9 512 - 19 21.9 41.0 17 23.9 9.85 10 10 11.0 11 11.9 - -

10 1024 - 22 25.2 52.3 41 54.7 25.9 10 11.8 25.3 13 15.8 - -

11 2048 12 24 27.7 69.9 80 92.8 56.8 12 19.4 55.5 14 15.5 - -

12 4096 15 28 30.9 82.1 239 257 131 69 85.7 133 17 18.1 - -

3

4 81 27 29 34.2 68.1 27 27 1.62 27 27 1.91 27 28.9 27 29.45

5 243 - 30 36.1 71.3 27 34.2 3.93 27 27 5.53 29 31.6 39 41.25

6 729 33 36 42.5 80.5 55 62.9 15.5 33 35.5 15.4 34 36.1 33 39

7 2187 39 48 54.4 89.9 195 217 87.9 49 54.9 93.2 46 47.7 49 50.8

8 6561 42 54 58.9 99.6 251 275 145 156 170 157 51 52.2 52 53.65

4

5 1024 64 72 81 148 60 78.2 22.7 64 67.9 27.6 66 68.7 - -

6 4096 88 93 105 198 229 249 212 194 216 231 94 96.6 - -

7 16384 - 99 117 153 370 379 499 233 247 527 96 98.4 - -

of 3 algorithms are set to 200, 500 and 1000 when k is less
than or equal to 4, 6 and 8, respectively. In the last 3
tests, v = 4 and k = 5, 6, 7, respectively. The maximum
running iterations of 3 algorithms are set to 1000 and 2000
when k is less than or equal to 6 and 7, respectively. The
experiment statistical results of above 16 tests are shown
in Table IV. In second round of experiments, the covering
criterion of above 16 CA problems is changed to strength-3.
Meanwhile, the parameters of v, k and maximum running
iterations of above 16 CA problems have the same value

as the first round experiments. Table V is the experiment
statistical results of these 16 CA problems. For a fair com-
parison, the cutoff time of TCA for each CA problem is
set to an integer number, which is gotten by rounding up
CSAs running time. HHH does not provide its running
time and just shows the best and average number of |TS|
for CA(N ; t, 3k) where 4 ≤ k ≤ 8 with strength-2 and
strength-3. The integer program method just provides the
results of 8 small-size CA problems with strength-2. The ∗
in Table IV indicates the best possible solution found at the
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point when the process was stopped after running for about
6.5 hours. Besides, the number N is the known minimal
number of |TS| for 36 CA problems, which can be found in
Colbourns website2.

In Table IV, we can see the CSA has gotten 11 best
solutions of 16 CA problems and GA/BCGO has gotten
6 best solutions, but GA/OTAT just gets an approximate
solution for each 16 problems. In Table V, the experiment
results show a similar formation as Table IV. With a holis-
tic view, GA/BCGO can get the optimal solution with a
high probability when the problems scale |Φ| is less than
250. It is worth noting that CSA has improved the per-
formance of global optimization mechanism immensely. It
can find the optimal solution with a high probability when
the problems scale |Φ| is less than 2000. Instead, GA/O-
TAT just can get the approximate solution even the |Φ|
of CA problem is very small. However, when the |Φ| of
CA problem is more than 4000, the solution qualities and
average CPU times of GA/OTAT begin to transcend CSA
distinctly. Moreover, even the |Φ| is more than 16 000, the
solutions and average CPU times of GA/OTOA still keep
an acceptable approximate result.

Comparing the experiment results between GA/OTAT,
TCA and HHH, we can see the meta-heuristic algorithms
improve the average quality of |TS| remarkably relative to
the traditional one-test-at-a-time algorithm for its search
step can adjust the generated CA set dynamically. How-
ever, the heuristic algorithms should cost lots of array
transformation operations to adjust the CA set and com-
binations set in its greedy and random search processes,
which make its running time increase clearly when the cover
strength has been augmented. In [16], TCA sets its cutoff
time up to 1000 second so as to get a good performance. For
above experiments, we can see an extended cutoff time is
very helpful for improving the stability of solutions in TCA.
It is worth noting that the global optimization ability of
TCA is usually limited, notwithstanding it can adjust the
generated CA set constantly. So, for most of experiment
trials, even the problems scale |Φ| is not very huge, TCA is
likely to generate a high quality approximate solution. Un-
der the same runtime, CSA shows a better average quality
of |TS| than TCA when the problems |Φ| is less than 2000.
Meanwhile, the Integer Problems results shows that it is dif-
ficult for an integer program method to solve the problem
which has more than about 100 integer variables. Instead,
CSA shows a good performance when the |Φ| is less than
2000. That means the proposed approach can acquire more
powerful global optimization ability through CSA than oth-
ers. Moreover, the problem translation mechanism makes
CSA less sensitive to strength-t than TCA and HHH, which
is a very helpful character for CSA to get a higher perfor-
mance when the covering strength is augmented.

On the other hand, comparing the experiment data be-
tween CSA and GA/BCGO in Table IV and Table V, we
also find the best solution of GA/BCGO is very close to
CSA when the |Φ| is less than 250. But, with the increas-
ing of |Φ|, the solution qualities of GA/BCGO begin to
decline clearly. We believe the traditional searching opera-
tions, such as crossover operation and mutation operation

are great at rearranging genetic structure and finding new
code pattern, but not so good at refining the existing ge-
netic structure, especially when the gene sequence is too
long. In CSA, the searching among group process could be
used to prospect the potential gene code, and the searching
inside group process could be used to reduce multiple gene
patterns in different groups. Based on the collaboration be-
tween the searching inside group process and the searching
among group process, CSA can improve the performance
of proposed approach remarkably.

Above all, we believe the proposed global mechanism is a
more efficient calculation approach for small-size SUT with
multiple covering strength.

5.3 Parameter Analysis

In this section, we will discuss how to adjust and con-
trol the coordination process between the searching among
group process and the searching inside group process.

In CSA, the parameter m is used to control the comput-
ing number of searching inside group process in each group,
which affects the proportion between global searching and
local searching. For discussing the proper range and ad-
justing rule of m, the CA problem (v = 2, k = 10 and with
strength-2) is used to do a testing. In this experiment, the
m has been assigned 3 different values, which is m = m1

(m1 = n/10), m = m2 (m2 = n/4), and m is increased
from m1 to m2 linearly by (17). Besides, the population
size n is 60 and the other parameters in CSA are same as
the testing in above section.

Fig. 4 is the statistical data of this experiment after 30
independent trials. The boxplot shows the dispersion of 30
experiment results of |TS|. We can see that too smaller
m is likely to affect the solution quality, and too bigger m
makes the distribution of solution much scattered. From
the mean value curve of γ, which shows the changing trend
of population diversity, we can find the bigger m makes its
curve fall rapidly in early stages of searching process and
the smaller m makes its curve fall slowly. The quick di-
versity loss in early searching stages is likely to make the
probability of premature increasing. Conversely, too slow
convergence will affect the solution accuracy. The formula
(17) makes m increase gradually during the searching pro-
cess. This test shows it is a feasible balancing mechanism,
which makes the population keep a higher diversity against
premature convergence in early searching stage while mak-
ing population accelerate convergence to improve the accu-
racy of solution in later searching stage.

The parameter λ is another important controlling pa-
rameter, which is used to adjust the running probability
between SIG1 and SIG2. For discussing the proper range
of λ, the CA problem (v = 3, k = 6 and with strength-3) is
used to do the test. In this experiment, the λ has been set 3
different values 0, 0.4 and 1. The values of other parameter
in CSA are same as in the above section.

Fig. 5 is the statistical data of this experiment after 30
independent trials. Obviously, this parameter has a great
influence on the gene sequence reducing process. If λ = 0,
only SIG2 operation would be executed in searching inside
group process. The boxplot shows it makes the distribution
of solution much scattered and the quality of solution more

2http://www.public.asu.edu/ ccolbou/src/tabby/catable.html
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Fig. 4. Experiment statistical data for CA(6; 2, 10, 2) with dif-

ferent parameter m.

unstable. Oppositely, if λ = 1, it would take only SIG1
operation to be executed in searching inside group process
and makes the gene sequence unable to reduce effectively.
The mean value curve of γ has shown the same changing
trends. When λ = 0, this curve has fallen more rapidly.
Meanwhile, when λ = 1, the falling speed of γ is too slow
to ensure the quality of population convergence. Therefore,
the efficiency of searching inside group process depends on
the reasonable coordination between SIG1 and SIG2. Ob-
viously, 0.4 is a feasible experience value for this parameter.

6 Conclusion

In this paper, we propose a cluster searching driven
combinatorial test data global optimization and generation
method. A program based on the proposed method that
can be executed on compatible PC has been implemented.
The experimental results show the proposed method can
get a good performance for small-size CA problems. Within
a reasonable time, the optimal test suite can be obtained
with higher probability when the scale of complete test case

Fig. 5. Experiment statistical data for CA(33; 3, 6, 3) with dif-

ferent parameter λ.

set is less than 2000. But, the quality of its solution de-
clines clearly when the count of test case is more than 4000.
So, the proposed method is not ideal for solving the large-
size CA problems. Furthermore, we have discussed 2 main
control parameters of CSA and given a feasible adjusting
approach for them. In future work, we will try to make this
approach applicable to MCA problems.
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