
Vol. 43, No. 10 ACTA AUTOMATICA SINICA October, 2017

Bayesian Saliency Detection for RGB-D Images
Songtao Wang1, 2 Zhen Zhou1 Hanbing Qu2 Bin Li2

Abstract In this paper, we propose a saliency detection model for RGB-D images based on the contrasting features of color and
depth within a Bayesian framework. The depth feature map is extracted based on superpixel contrast computation with spatial
priors. We model the depth saliency map by approximating the density of depth-based contrast features using a Gaussian distribution.
Similar to the depth saliency computation, the color saliency map is computed using a Gaussian distribution based on multi-scale
contrasts in superpixels by exploiting low-level cues. By assuming that color- and depth-based contrast features are conditionally
independent, given the classes, a discriminative mixed-membership naive Bayes (DMNB) model is used to calculate the final saliency
map from the depth saliency and color saliency probabilities by applying Bayes’ theorem. The Gaussian distribution parameter can
be estimated in the DMNB model by using a variational inference-based expectation maximization algorithm. The experimental
results on a recent eye tracking database show that the proposed model performs better than other existing models.
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1 Introduction

Saliency detection is the problem of identifying the
points that attract the visual attention of human beings.
Callet et al. introduced the concepts of overt and covert
visual attention and the concepts of bottom-up and top-
down processing [1]. Visual attention selectively processes
important visual information by filtering out less important
information and is an important characteristic of the hu-
man visual system (HVS) for visual information processing.
Visual attention is one of the most important mechanisms
that are deployed in the HVS to cope with large amounts
of visual information and reduce the complexity of scene
analysis. Visual attention models have been successfully
applied in many domains, including multimedia delivery,
visual retargeting, quality assessment of images and videos,
medical imaging, and 3D image applications [1].

Borji et al. provided an excellent overview of the current
state-of-the-art 2D visual attention modeling and included
a taxonomy of models (cognitive, Bayesian, decision theo-
retic, information theoretical, graphical, spectral analysis,
pattern classification, and more) [2]. Many saliency mea-
sures have emerged that simulate the HVS, which tends
to find the most informative regions in 2D scenes [3]−[10].
However, most saliency models disregard the fact that the
HVS operates in 3D environments and these models can
thus investigate only from 2D images. Eye fixation data
are captured while looking at 2D scenes, but depth cues
provide additional important information about content in
the visual field and therefore can also be considered relevant
features for saliency detection. The stereoscopic content
carries important additional binocular cues for enhancing
human depth perception [11], [12]. Today, with the de-
velopment of 3D display technologies and devices, there
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are various emerging applications for 3D multimedia, such
as 3D video retargeting [13], 3D video quality assessment
[14], [15], 3D ultrasound images processing [16], [17] and so
forth. Overall, the emerging demand for visual attention-
based applications for 3D multimedia has increased the
need for computational saliency detection models for 3D
multimedia content. In contrast to saliency detection for
2D images, the depth factor must be considered when per-
forming saliency detection for RGB-D images. Therefore,
two important challenges when designing 3D saliency mod-
els are how to estimate the saliency from depth cues and
how to combine the saliency from depth features with those
of other 2D low-level features.

In this paper, we propose a new computational saliency
detection model for RGB-D images that considers both
color- and depth-based contrast features within a Bayesian
framework. The main contributions of our approach consist
of two aspects: 1) to estimate saliency from depth cues, we
propose the creation of depth feature maps based on super-
pixel contrast computation with spatial priors and model
the depth saliency map by approximating the density of
depth-based contrast features using a Gaussian distribu-
tion, and 2) by assuming that color-based and depth-based
features are conditionally independent given the classes, the
discriminative mixed-membership naive Bayes (DMNB)
model is used to calculate the final saliency map by ap-
plying Bayes’ theorem.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the related work in the literature. In
Section 3, the proposed model is described in detail. Sec-
tion 4 provides the experimental results on eye tracking
databases. The final section concludes the paper.

2 Related Work

As introduced in Section 1, many computational models
of visual attention have been proposed for various 2D mul-
timedia processing applications. However, compared with
the set of 2D visual attention models, only a few compu-
tational models of 3D visual attention have been proposed
[18]−[36]. These models all contain a stage in which
2D saliency features are extracted and used to compute
2D saliency maps. However, depending on the way in which
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they use depth information in terms of the development of
computational models, these models can be classified into
three different categories:

1) Depth-weighting Models: This type of model adopts
depth information to weight a 2D saliency map to calcu-
late the final saliency map for RGB-D images with feature
map fusion [18]−[21]. Fang et al. proposed a novel 3D
saliency detection framework based on color, luminance,
texture and depth contrast features, which designed a new
fusion method to combine the feature maps to obtain the
final saliency map for RGB-D images [18]. Ciptadi et al.
proposed a novel computational model of visual saliency
that incorporates depth information and demonstrated the
method by explicitly constructing 3D layout and shape fea-
tures from depth measurements [19]. In [20], color contrast
features and depth contrast features are calculated to con-
struct an effective multi-feature fusion to generate saliency
maps, and multi-scale enhancement is performed on the
saliency map to further improve the detection precision fo-
cused on the 3D salient object detection. The models in
this category combine 2D features with a depth feature
to calculate the final saliency map, but they do not in-
clude the depth saliency map in their computation pro-
cesses. Apart from detecting the salient areas by using 2D
visual features, these models share a common step in which
depth information is used as a weighting factor for the 2D
saliency.

2) Depth-pooling Models: This type of model combines
depth saliency maps and traditional 2D saliency maps to
simply obtain saliency maps for RGB-D images [11], [12],
[22]−[32]. Ouerhani et al. aimed at extension of the visual
attention model to the depth component of the scene. They
attempted to integrate depth into the computational model
built around conspicuity and saliency maps [23]. Desingh
et al. investigated the role of depth in saliency detection
in the presence of competing saliencies due to appearance,
depth-induced blur and centre-bias and proposed a 3D-
saliency formulation in conjunction with 2D saliency mod-
els through non-linear regression using a support vector
machine (SVM) to improve saliency [12]. Xue et al. pro-
posed an effective visual object saliency detection model via
RGB and depth cues mutual guided manifold ranking and
obtained the final result by fusing RGB and depth saliency
maps [24]. Ren et al. presented a two-stage 3D salient
object detection framework, which first integrates the con-
trast region with the background, depth and orientation
priors to achieve a saliency map and then reconstructs the
saliency map globally [25]. Song et al. proposed an effec-
tive saliency model to detect salient regions in RGBD im-
ages through a location prior of salient objects integrated
with color saliency and depth saliency to obtain the re-
gional saliency map [26]. Guo et al. proposed a saliency
fusion and propagation strategy-based salient object detec-
tion method for RGB-D images, in which the saliency maps
based on color cues, location cues and depth cues are inde-
pendently fused to provide high precision detection results,
and saliency propagation is utilized to improve the com-
pleteness of the salient objects [27]. Fan et al. proposed an
effective saliency model that combines region-level saliency
maps generated using depth, color and spatial information
to detect salient regions in RGB-D images [28]. Peng et al.
proved a simple fusion framework that combines existing
RGB-produced saliency with new depth-induced saliency:

the former one is estimated from existing RGB models,
while the latter one is based on the multi-contextual con-
trast model [29]. In [30], stereo saliency based on disparity
contrast analysis and domain knowledge from stereoscopic
photography was computed. Furthermore, Ju et al. pro-
posed a novel saliency method that worked on depth images
based on anisotropic centre-surround difference [31]. Wang
et al. proposed two different ways of integrating depth in-
formation in the modeling of 3D visual attention, where
the measures of depth saliency are derived from the eye
movement data obtained from an eye tracking experiment
using synthetic stimuli [32]. Lang et al. analyzed the ma-
jor discrepancies between 2D and 3D human fixation data
of the same scenes, which are further abstracted and mod-
elled as novel depth priors with a mixture of Gaussians
[11]. To investigate whether the depth saliency is helpful
for determining 3D saliency, some existing 2D saliency de-
tection method are combined [12], [22], [31]. Iatsun et al.
proposed a 3D saliency model relying on 2D saliency fea-
tures jointly with depth obtained from monocular cues, in
which 3D perception is significantly based on monocular
cues [22]. The models in this category rely on the exis-
tence of “depth saliency maps”. Depth features are ex-
tracted from the depth map to create additional feature
maps, which are then used to generate the depth saliency
maps (DSM). These depth saliency maps are finally com-
bined with 2D saliency maps using a saliency map pooling
strategy to obtain a final 3D saliency map.

3) Learning-based Models: Instead of using a depth
saliency map directly, this type of model uses machine
learning techniques to build a 3D saliency detection model
for RGB-D images based on extracted 2D features and
depth features [31]−[36]. Iatsun et al. proposed a visual
attention model for 3D video using a machine learning ap-
proach. They used artificial neural networks to define adap-
tive weights for the fusion strategy based on eye tracking
data [33]. Inspired by the recent success of machine learn-
ing techniques in building 2D saliency detection models,
Fang et al. proposed a learning-based model for RGB-
D images using linear SVM [34]. Zhu et al. proposed a
learning-based approach for extracting saliency from RGB-
D images, in which discriminative features can be automat-
ically selected by learning several decision trees based on
the ground truth, and those features are further utilized to
search the saliency regions via the predictions of the trees
[35]. Bertasius et al. developed an EgoObject representa-
tion, which encodes these characteristics by incorporating
shape, location, size and depth features from an egocentric
RGB-D image, and trained a random forest regressor to
predict the saliency of a region using ground truth salient
object [36].

From the above description, the key to 3D saliency de-
tection models is determining how to integrate the depth
cues with traditional 2D low-level features. In this paper,
we propose a learning-based 3D saliency detection model
with a Bayesian framework that considers both color- and
depth-based contrast features. Instead of simply combining
a depth map with 2D saliency maps as in previous studies,
we propose a computational saliency detection model for
RGB-D images based on the DMNB model [37]. Experi-
mental results from a public eye tracking database demon-
strate the improved performance of the proposed model
over other strategies.
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3 The Proposed Approach

In this section, we introduce a method that integrates the
color saliency probability with the depth saliency probabil-
ity computed from Gaussian distributions based on multi-
scale superpixel contrast features and yields a prediction of
the final 3D saliency map using the DMNB model within
a Bayesian framework. First, the input RGB-D images
are represented by superpixels using multi-scale segmenta-
tion. Then, we compute the color and depth map using
the weighted summation and normalization of the color-
and depth-based contrast features, respectively, at differ-
ent scales. Second, the probability distributions of both the
color and depth saliency are modelled using the Gaussian
distribution based on the color and depth feature maps,
respectively. The parameters of the Gaussian distribution
can be estimated in the DMNB model using a variational
inference-based expectation maximization (EM) algorithm.
The general architecture of the proposed framework is pre-
sented in Fig. 1.

3.1 Feature Extraction Using Multi-scale Super-
pixels

We introduce a color-based contrast feature and a depth-
based contrast feature to capture the contrast information
of salient regions with spatial priors based on multi-scale
superpixels, which are generated at various grid interval
parameters S, similar to simple linear iterative clustering
(SLIC) [38]. We further impose a spatial prior term on each
of the contrast measures holistically, which constrains the
pixels that were rendered as salient to be compact as well
as centred in the image domain. This spatial prior can also
be generalized to consider the spatial distribution of differ-
ent saliency cues such as the centre prior and background
prior [10], [29]. We also observe that the background often
presents local or global appearance connectivity with each
of four image boundaries. These two features complement
each other in detecting 3D saliency cues from different per-
spectives and, when combined, yield the final 3D saliency
value.

1) RGB-D Images Multi-scale Superpixel Segmentation:
For an RGB-D image pair, superpixels are segmented ac-
cording to both color and depth cues. We notice that when
applying the SLIC algorithm directly to the RGB image
and depth map, the segmentation result is unsatisfactory
due to the lack of a mutual context relationship. We re-
define the distance measurement incorporating depth as
shown in (1):

Ds =

√
d2

lab + ωdd2
d +

m

S d2
xy (1)

where dd =
√

(dj − di)2 denotes the depth distance
weighted by ωd between pixel i and j in the depth map,
dlab and dxy are the original distance measurements of the
color and spatiality normalized with m/S in [38], and Ds is
the final distance between two pixels in the RGB-D image
pair. The superpixel segmentation of the RGB-D images
can be described as Algorithm 1.

We obtain more accurate segmentation results as shown
in Fig. 2 by considering the color and depth cues simulta-
neously. The boundary between the foreground and the
background is segmented more accurately.

Algorithm 1. Superpixel segmentation of the RGB-D images

Input: m, S, ωd and IterNum.

Initialization: Initialize clusters Ci = [li, ai, bi, di, xi, yi]
T by

sampling pixels at regular grid steps S by computing the average

labdxy vector, where [li, ai, bi] is the L, a, b values of the CIELAB

color space and [xi, yi] is the pixel coordinates of ith grid in the

RGB-D image pair.

Set label l(p) = −1 and distance d(p) = ∞ for each pixel p.

Output: d(p).

1: Perturb cluster centres in a 3 × 3 neighbourhood to the lowest

gradient position in the RGB image.

2: for IterNum do

3: for each cluster centre Ci do

4: Assign the best matching pixels from a 2S×2S square neighbour-

hood around the cluster centre according to the distance measure

Ds in (1).

for each pixel p in a 2S × 2S region around Ci do

Compute the distance Ds between Ci and labdxyp

if Ds < d(p) then

Set d(p) = Ds

Set l(p) = i

end if

end for

5: end for

6: Computer new cluster centres. After all the pixels are associated

with the nearest cluster center, a new center is computed as the

average labdxy vector of all the pixels belonging to the cluster.

7: end for

8: Enforce connectivity.

2) Color-based Contrast feature: An input image is over-
segmented at L scales, and the color feature map is formu-
lated as

f(pl
c) = ωl

cSCl
GMR (2)

where pl
c is a quantified histogram in the CIELAB color

space for each superpixel at any scale l, and SCl
GMR is

the color saliency map generated by graph-based manifold
ranking only with background cues similar to [10], in which
the RGB image is represented as a single-layer graph with
superpixels as nodes at any l scale. In contrast to [10],
the definition of the background priors is inspired by the
observation that the patches from the corners of images
are more likely to be background and contain considerable
scene information that helps distinguish salient objects, as
shown in Fig. 3. The saliency measure based on manifold
ranking is described as follows: given as a superpixel de-
fined by pseudo-background as a query, the remaining su-
perpixels are ranked based on their relevances to the given
query. Given an input image represented as a graph and
some salient query nodes, we use the nodes on the image
corner as background seeds to rank the relevances of all
other regions. Then, we obtain the saliency map SCl

GMR

by integrating by the four saliency maps at any scale l, that
is

SCl
GMR = SCl

GMRt
×SCl

GMRl
×SCl

GMRr
×SCl

GMRb
(3)

where SCl
GMRt

, SCl
GMRl

, SCl
GMRr

and SCl
GMRb

denote
saliency map constructed using top left corner, left bottom
corner, top right corner and bottom right corner, respec-
tively.
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Fig. 1. The flowchart of the proposed model. The framework of our model consists of two stages: the training stage shown in the

left part of the figure and the testing stage shown in the right part of the figure. In this work, we perform experiments based on the

EyMIR dataset in [32], NUS dataset in [11], NLPR dataset in [29] and NJU-DS400 dataset in [31].
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Fig. 2. Visual samples for superpixel segmentation of RGB-D images with S = 40. Rows 1−4: comparative results on the EyMIR

dataset, NUS dataset, NLPR dataset and NJU-DS400 dataset, respectively.

Fig. 3. Visual illustration for the saliency measure based on

manifold ranking, where patches from corners of images marked

as red is defined as pseudo-background.

With multi-scale fusion, the color feature map is con-
structed by weighted summation of f(pl

c), where the

weights are determined by
∑L

l=1 ωl
c = 1. The final pixel-

wise color feature map is obtained by assigning the feature
value of each superpixel to every pixel belonging to it, as
shown in the first row of Fig. 4.

3) Depth-based Contrast Feature: Similar to the con-
struction of the color feature maps, we formulate the depth
feature maps based on multi-scale superpixels in the depth
maps:

f(pl
d) = ωl

dSDl
GMR (4)

where pl
d is the depth value of the centroid calculated as

the mean depth value within the superpixel and SDl
GMR

is the depth saliency map generated via graph-based man-
ifold ranking only with background cues. In this work, the
weight of the affinity matrix between two nodes in a depth
map at any l scales is defined by

ωl
ij = e

− (dl
j−dl

i)
2

σ2 (5)

where d
l
j and d

l
i denote the mean of the superpixel i and

superpixel j corresponding to two nodes, respectively, and
σ is a constant that controls the strength of the weight

in [10]. With multi-scale fusion, the depth feature map
is constructed by weighted summation of f(pl

d), where the

weights are determined by
∑L

l=1 ωl
d = 1. Visual samples

for different depth feature maps are shown in the second
row of Fig. 4.

4) Bayesian Framework for Saliency Detection: Let the
binary random variable zzzs denote whether a point belongs
to a salient class. Given the observed color-based contrast
feature xxxc and the depth-based contrast feature xxxd of that
point, we formulate the saliency detection as a Bayesian
inference problem to estimate the posterior probability at
each pixel of the RGB-D image:

p(zzzs|xxxc,xxxd) =
p(zzzs,xxxc,xxxd)

p(xxxc,xxxd)
(6)

where p(zzzs|xxxc,xxxd) is shorthand for the probability of pre-
dicting whether a pixel is salient, p(xxxc,xxxd) is the likelihood
of the observed color-based and depth-based contrast fea-
tures, and p(zzzs,xxxc,xxxd) is the joint probability of the la-
tent class and observed features, defined as p(zzzs,xxxc,xxxd) =
p(zzzs)p(xxxc,xxxd|zzzs).

In this paper, the class-conditional mutual information
(CMI) is used as a measure of dependence between two
features xxxc and xxxd, which can be defined as I(xxxc,xxxd|zzzs) =
H(xxxc|zzzs) + H(xxxd|zzzs)−H(xxxc,xxxd|zzzs), where H(xxxc|zzzs) is the
class-conditional entropy of xxxc, defined as −∑

i p(zzzs = i)
× ∑

xxxc
p(xxxc|zzzs = i) log p(xxxc|zzzs = i). Mutual information

is zero when xxxc and xxxd are mutually independent given
class zzzs and, increases with increasing level of dependence,
reaching the maximum when one feature is a deterministic
function of the other. Indeed, the independence assump-
tion becomes more accurate with decreasing entropy which
yields an asymptotically optimal performance of the naive
Bayes classifier [39].

We employ a CMI threshold τ to discover feature depen-
dencies, as shown in Fig. 5. For CMI between the color-
based contrast feature and depth-based contrast feature
less than τ , we assume that xxxc and xxxd are conditionally
independent given the classes zzzs, that is, p(xxxc,xxxd|zzzs) =



No. 10 Songtao Wang et al.: Bayesian Saliency Detection for RGB-D Images 1815

Fig. 4. Visual samples of different color and depth feature maps. Rows 1−4: color feature maps of the EyMIR dataset, NUS dataset,

NLPR dataset and NJU-DS400 dataset, respectively. Rows 5−8: depth feature maps of the EyMIR dataset, NUS dataset, NLPR

dataset and NJU-DS400 dataset, respectively.



1816 ACTA AUTOMATICA SINICA Vol. 43

Fig. 5. Visual results for class-conditional mutual information between color-based contrast features and depth-based contrast

features on four RGB-D image datasets.

p(xxxc|zzzs)p(xxxd|zzzs). This entails the assumption that the
distribution of the color-based contrast features does not
change with the depth-based contrast features. Thus, the
pixel-wise saliency of the likelihood is given by p(zzzs|xxxc,xxxd)
∝ p(zzzs)p(xxxc|zzzs)p(xxxd|zzzs).

3.2 DMNB Model for Saliency Estimation

By assuming that color and depth features are con-
ditional independent given class, the DMNB model is
adopted to calculate the final saliency map from the depth
saliency probability and color saliency probability by ap-
plying Bayess theorem. DMNB could be considered as a
generalization of NB classifier extend in the following as-
pects: First, NB shares a component among all features,
but DMNB has a separate component for each feature and
maintains a Dirichlet-multinomial prior on all possible com-
bination of component assignments. Second, NB uses the
shared component as a class indicator, whereas DMNB uses
the mixed membership over separate components as inputs
to a logistic regression model which finally generates the
class label. In this paper, the DMNB model has Gaussian
distribution for each color and depth feature and is appli-
cable to predict final saliency map.

Given the graphical model of DMNB for saliency detec-
tion shown in Fig. 6, the generative process for {x1:N , y} fol-
lowing the DMNB model can be described as Algorithm 2,
where p(·|α) is a Dirichlet distribution parameterized by α,
θ is sampled from a p(θ|α) distribution, p(·|θ) is a multino-
mial distribution parameterized by θ, zzz1:N = zzzs = (zzzc, zzzd),
xxx1:N = (xxxc,xxxd), p(xxxj |zzzj , Ωj) is an exponential family dis-
tribution for feature xxxj given the hidden class zzzj parame-
terized by Ωj , p(yyy|zzzj , η) is a multi-class logistic regression

for yyy and yyy is the label that indicates whether the pixel is
salient or not.

Fig. 6. Graphical models of DMNB for saliency estimation. yyy

and xxx are the corresponding observed states, and zzz is the hidden

variable.

Algorithm 2. Generative process for saliency detection

following the DMNB model

1: Input: α, η.

2: Choose a component proportion: θ ∼ p(θ|α).

3: For each feature:

choose a component zzzj ∼ p(zzzj |θ);

choose a feature value xxxj ∼ p(xxxj |zzzj , Ωj).

4: Choose the label: yyy ∼ p(yyy|zzzj , η).

In this work, each feature xxxj is assumed to have been
generated from one of k Gaussian distribution with a mean
of {µjk, [j]N1 } and a variance of {σ2

jk, [j]N1 }. The marginal
distribution of (xxx1:N , yyy) is

p(xxx1:N , yyy|α, Ω, η) =

∫
p(θ|α)




N∏
j=1

∑
zzzj

p(zzzj |θ)p(xxxj |zzzj , Ωj)p(yyy|zzzj , η)


 dθ

(7)
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where θ is the prior distribution over K components, Ω =
{(µjk, σ2

jk), [j]N1 , [k]K1 }, p(xxxj |zzzj , Ωj) = N (xxxj |µjk, σ2
jk). In

this paper, yyy is either 0 or 1 generated from Bern(yyy|η),
where Bern(·|η) ia a Bernoulli distribution parameterized
by η. Because the DMNB model assumes a generative pro-
cess for both the labels and features, we use both X =
{(xxxij), [i]M1 , [j]N1 } and Y = {yyyi, [i]

M
1 } as a collection of M

superpixels in trained images from the generative process
to estimate the parameters of the DMNB model such that
the likelihood of observing (X ,Y) is maximized. In prac-
tice, we may find a proper K using the Dirichlet process
mixture model (DPMM) [40]. The DPMM thus provides a
nonparametric prior for the parameters of a mixture model
that allows the number of mixture components to grow as
the training set grows, as shown in Fig. 7.

Due to the latent variables, the computation of the like-
lihood in (7) is intractable. In this paper, we use a vari-
ational inference method, which alternates between ob-
taining a tractable lower bound to the true log-likelihood
and choosing the model parameters to maximize the lower
bound.

For each feature value, to obtain a tractable lower bound
to log p(yyy,xxx1:N |α, Ω, η), we introduce a variational distribu-
tion q(zzz1:N , θ|γ, φ) as an approximation of the true poste-
rior distribution p(zzz1:N , θ|α, Ω, η) over the latent variable.
By a direct application of Jensen’s inequality [37], the lower
bound to log p(yyy,xxx1:N |α, Ω, η) is given by

log p(yyy,xxx1:N |α, Ω, η)

≥ Eq(log p(yyy,xxx1:N , zzz1:N |α, Ω, η)) + HHH(q(zzz1:N , θ|γ, φ)).
(8)

Noticing that xxx1:N and yyy are conditionally independent
given zzz1:N , we use a variational distribution:

q(zzz1:N , θ|γ, φ) = q(θ|γ)

N∏
j=1

q(zzzj |φ) (9)

where q(θ, γ) is a K-dimensional Dirichlet distribution for
θ, q(zzzj |φ) is Discrete distribution for zzzj . We use L to de-
note the lower bound:

L = Eq[log p(θ|α)] + Eq[log p(zzz1:N |θ)]
+ Eq[log p(xxx1:N |zzz1:N , γ)]− Eq[log q(θ)]

− Eq[log q(zzz1:N )] + Eq[log p(yyy|zzz1:N , η)] (10)

where Eq[log p(yyy|zzz1:N , η)] ≥ ∑K
k=1 φk(ηkyyy − eηk/ξ) − (1/ξ

+ log ξ) and ξ > 0 is a newly introduced variational pa-
rameter. Maximizing the lower-bound function L(γk, φk,
ξ; α, Ω, η) with respect to the variational parameters yields
updated equations for γk, φk and ξ as follows:

φk ∝ e
(Ψ(γk)−Ψ(

K∑
l=1

γl)+
1
N

(ηkyyyi− eηk
ξ
−

N∑
j=1

(xxxij−µjk)2

2σ2
jk

))

(11)

γk = α + Nφk (12)

ξ = 1 +

K∑

k=1

φkeηk . (13)

The variational parameters (γ∗, φ∗, ξ∗) from the infer-
ence step provide the optimal lower bound for the log-
likelihood of (xxxi, yyyi), and maximizing the aggregate lower

bound
∑M

i=1 L(γ∗, φ∗, ξ∗, α, Ω, η) over all of the data with

respect to α, Ω and η, respectively, yields the estimated
parameters.

Variational parameters (γ∗, φ∗, ξ∗) from the inference
step gives the optimal lower bound to the log-likelihood
of (xxxi, yyyi), and maximizing the aggregate lower bound∑M

i=1 L(γ∗, φ∗, ξ∗, α, Ω, η) over all data points with respect
to α, Ω and η, respectively, yields the estimated parame-
ters. As for µ, σ and η, we have

µjk =

M∑
i=1

φikxxxij

M∑
i=1

φik

σjk =

M∑
i=1

φik(xxxij − µjk)2

M∑
i=1

φik

ηk = log




M∑
i=1

φikyyyi

M∑
i=1

φik
ξi


 .

Based on the variational inference and parameter esti-
mation updates, it is straightforward to construct a variant
EM algorithm to estimate (α, Ω, and η). Starting with an
initial guess (α0, Ω0, and η0), the variational EM algorithm
alternates between two steps, as Algorithm 3.

Algorithm 3. Variational EM algorithm for DMNB

1: repeat

2: E-step: Given (αm−1, Ωm−1, ηm−1), for each feature value

and label, find the optimal variational parameters

(γm
i , φm

i , ξm
i ) = arg maxL(γi, φi, ξi; αm−1, Ωm−1, ηm−1).

Then, L(γm
i , φm

i , ξm
i ; α, Ω, η) gives a lower bound to

log p(yyyi,xxx1:N |α, Ω, η).

3: M-step: Improved estimates of the model parameters (α, Ω, η)

are obtained by maximizing the aggregate lower bound:

(αm, Ωm, ηm) = arg max(α,Ω,η)
∑N

i=1 L(γm
i , φm

i , ξm
i ; α, Ω, η).

4: until
∑N

i=1 L(γm
i , φm

i , ξm
i ; αm, Ωm, ηm)

−∑N
i=1 L(γm+1

i , φm+1
i , ξm+1

i ; αm+1, Ωm+1, ηm+1)

≤ threshold.

After obtaining the DMNB model parameters from the
EM algorithm, we can use η to perform saliency prediction.
Given the feature xxx1:N , we have

E[log p(yyy|xxx1:N , α, Ω, η)]

=





ηT E[zzz]− E[log(1 + eηT zzz)], yyy = 1

0− E[log(1 + eηT zzz)], yyy = 0
(14)

where zzz is an average of zzz1:N over all of the observed fea-
tures. The computation for E[zzz] is intractable; therefore,
we again introduce the distribution q(zzz1:N , θ) and calculate
Eq[zzz] as an approximation of E[zzz]. In particular, Eq[zzz] = φ;
therefore, we only need to compare ηT φ with 0.
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Fig. 7. Visual result for the number of components K in the DMNB model: generative clusters vs DPMM clustering. Row 1:

generative clusters for four RGB-D image datasets, where green and red denote distribution of salient and non-salient features,

respectively. Row 2: DPMM clustering for four RGB-D image datasets, where the number of colors and shapes of the points denote

the number of components K. The appropriate number of mixture components to use in DMNB model for saliency estimation is

generally unknown, and DPMM provides an attractive alternative to current method. We find K = 26, 34, 28, and 32 using DPMM

on the EyMIR dataset, NUS dataset, NLPR dataset and NJU-DS400 dataset, respectively.
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TABLE I

Summary of Parameters

Name Range Description

m [1, 40] the weight of spatial proximity

S > 8 the grid interval

md (0, 1] the weight of depth distance

IterNum [10, 200] the iteration number of superpixel

segmentation

L [2, 10] the level of multi-sacle superpixel

segmentation

ωl
c (0, 1) the weight of color feature map at l

scale

ωl
d (0, 1) the weight of depth feature map at l

scale

τ (0, 1) a CMI threshold

α (0, 40] the parameter of a Dirichlet distribu-

tion

θ (0, 1) the parameter of a Multinomial dis-

tribution

η (−2.0, 2.0) the parameter of a Bernoulli distri-

bution

Ω ((0, 255), (1, 103)) the parameter of a Gaussian distri-

bution

K > 2 the number of components of DMNB

4 Experimental Evaluation

4.1 Experimental Setup

1) Dataset: In this section, we conduct some experi-
ments to demonstrate the performance of our method. We
use four databases to evaluate the performance of the pro-
posed model, as shown in Table II. We distinguish between
two cases. The first case includes images that show a sin-
gle salient object over an uninteresting background. For
such images, we expect that only the object’s pixels will be
identified as salient. The first databases were presented in
the NLPR dataset1 and NJU-DS400 dataset2. The NLPR
dataset includes 1000 images of diverse scenes in real 3D
environments, where the ground-truth was obtained by re-
quiring five participants to select regions where objects are
presented, i.e., the salient regions were marked by hand.
The NJU-DS400 dataset includes 400 images of different
scenes, where the ground-truth was obtained by four volun-
teers labelling the salient object masks. The second case in-
cludes images of complex scenes. The EyMIR dataset3 and
NUS dataset4 are somewhat different. In these datasets,
the images were presented to human observers for several
seconds each, and eye tracking data were collected and aver-
aged. In the NUS dataset, Lang et al. collected a large hu-
man eye fixation database from a pool of 600 2D-vs-3D im-
age pairs viewed by 80 subjects, where the depth informa-
tion is directly provided by the Kinect camera and the eye
tracking data are captured in both 2D and 3D free-viewing
experiments. In the EyMIR dataset, 10 images from the
database were selected from the Middlebury 2005/2006 im-

age dataset, and the rest of the database consisted of the set
of images from the IVC 3D image dataset, which contains
two outdoor scenes and six indoor scenes. To create the
ground-truth map, observers viewed the stereoscopic stim-
uli through a pair of passive polarized glasses at a distance
for 15 seconds.

TABLE II

Comparison of the Benchmark and Existing 3D Saliency

Detection Datasets

Name Size Object No.
Scene Centre

types bias

EyMIR dataset in [32] 18 Multiple 18 No

NUS dataset in [11] 600 Multiple > 10 No

NLPR dataset in [29] 1000 One (mostly) 11 Yes

NJU-DS400 dataset in [31] 400 One > 10 Yes

2) Evaluation Metrics: To date, there are no specific
and standardized measures for computing the similarity be-
tween the fixation density maps and saliency maps created
using computational models in 3D situations. Nevertheless,
there is a range of different measures that are widely used
to perform comparisons of saliency maps for 2D content.
We introduce two types of measures to evaluate algorithm
performance on the benchmark. The first one is the gold
standard: F-measure. The F-measure is the overall perfor-
mance measurement computed by the weighted harmonic
of precision and recall:

Fβ =
(1 + β2)Precision×Recall

β2Precision + Recall
(15)

where we set β2 = 0.3 to emphasize the precision [5]. Preci-
sion corresponds to the percentage of salient pixels correctly
assigned to all the pixels of extracted regions, and Recall
is the fraction of detected salient pixels belonging to the
salient object in the ground truth. The F-measure is com-
puted with an adaptive saliency threshold that is defined
as twice the mean saliency of the image [5]. The adaptive
threshold is defined as

T =
2

W ×H

W∑
x=1

H∑
y=1

S(x, y) (16)

where W and H denote the width and height of an image,
respectively.

The second is the receiver operating characteristic
(ROC) curve and the area under the ROC curve (AUC). By
thresholding over the saliency maps and plotting true pos-
itive rate vs. false positive rate, an ROC curve is acquired.
The AUC score is calculated as the area underneath the
ROC.

3) Parameter Setting: To evaluate the quality of the pro-
posed approach, we divided the datasets into two subsets
according to their CMI values, and we held out 90 % of the
data whose CMI values are less than τ for training purpose
and tested on the remaining 10%. For each image, we chose
positively labelled samples randomly from the top 40% of

1http://sites.google.com/site/rgbdsaliency
2http://mcg.nju.edu.cn/en/resource.html
3http://www.irccyn.ecnantes.fr/spip. php?article1102&lang=en
4https://sites.google.com/site/ vantam/nus3d-saliency-dataset
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salient locations in the human fixation maps and negatively
labelled samples from the bottom 30 % of salient locations
to construct training sets based on the NUS dataset and
the EyMIR dataset. The ground truth is binarized by the
adaptive threshold in (16). We set the IterNum = 10, m
= 20 and ωd = 1.0 in Algorithm 1. We set the L = 3, ωl

c

= 0.2, 0.3, 0.5, ωl
d = 0.3, 0.3, 0.4 and σ2 = 0.1 in (2), (4)

and (5), respectively. As shown in Fig. 5, we compute the
CMI for all of the RGB-D images, and the parameter τ is
set to 0.35, which is a heuristically determined value. We
initialize the model parameters using all data points and
their labels in the training set in Algorithm 2. In partic-
ular, we use the mean and standard deviation of the data
points in each class to initialize Ω and Dc/D to initialize
αi, where Dc is the number of data points in class c and D
is the total number of data points. For the η in the DMNB
model, we run a cross validation by holding out 10 % of
the training data as the validation set and use the param-
eters generating the best results on the validation set. We
find the initial number of components K using the DPMM
based on 90% of the training dataset.

Our algorithm is implemented in MATLAB v7.12 and
tested on a Intel Core(TM)2 Quad CPU 2.33 GHz with
4GB RAM. A simple computational comparison is shown
in Table III in terms of EyMIR, NUS, NLPR and NJU-
DS400 datasets. It should be noted that there are lots of
works left for computational optimization, including prior
parameters optimization, algorithm optimization for vari-
able inference during the prediction process.

TABLE III

Comparison of the Average Running Time (Seconds Per

RGB-D Image Pair) on the EyMIR, NUS, NLPR and

NJU-DS400 Datasets (s)

Dataset ACSD [31] GP [25] LMH [29] Ours

EyMIR 1.06 232.92 – 75.22

NUS 0.15 – – 17.18

NLPR 0.14 38.88 2.78 19.87

NJU-DS400 0.21 – – 14.77

4) The Effect of the Parameters: In particular, we per-
formed the experiments while varying S from Algorithm 1
and K from Algorithm 2. Fig. 8 shows typical results when
varying S from Algorithm 1. Fig. 8 illustrates the AUC ob-
tained from the different numbers of superpixels. If only
one scale is used, the results are inferior. This justifies our
multi-scale approach.

The parameter K is the number of components in the
proposed algorithm, and we set a larger number of compo-
nents than the number of classes in this paper. Interesting,
a larger K helps to discover the components not specified in
labels and increase classification accuracy. The appropri-
ate number of mixture components to use in DMNB model
for saliency estimation is generally unknown, and DPMM
provides an attractive alternative to current method. In
practice, we find the initial number of components K us-
ing the DPMM based on 90 % of the training set, then
we run a cross validation with a range of K by holding
out 10 % of the training data as the validation. We use
10-fold cross-validation with the parameter K for DMNB

models. In a 10-fold cross-validation, we divide the dataset
evenly into 10 parts, one of which is picked as the valida-
tion set, and the remaining 9 parts are used as the training
set. The process is repeated 10 times, with each part used
once as the validation set. We use perplexity as the mea-
surement for comparison. The generative models are capa-
ble of assigning a log-likelihood log p(xxxi) to each observed
data point xxxi. Based on the log-likelihood scores, we com-
pute the perplexity of the entire dataset as perplexity =

exp(−∑n
i=1

log p(xxxi)
N

), where n is the number of data points.
The perplexity is a monotonically decreasing function of the
log-likelihood, implying that lower perplexity is better (es-
pecially on the test set) since the model can explain the
data better. We calculate the perplexity for results on the
validation set and training set respectively.

Fig. 8. The effects of the number of scales S on the EyMIR,

NUS, NLPR and NJU-DS400 datasets. A single scale produces

inferior results.

The parameter K in Algorithm 2 is set according to the
training set based on DPMM, as shown in Fig. 7. Given a
range of values for the number of components K, the overall
results on training and test sets are presented as perplex-
ity in Fig. 9. For a generative model, a larger number of
parameters may yield a better performance on the training
set, such as a lower perplexity or a higher accuracy, since
the model could be as complicated as necessary to fit the
training data perfectly well. However, such complicated
models typically lose the ability for generalization and lead
to over-fitting on the test set. If the over-fitting does occur
to DMNB, it will lead to a bad performance on the test
set. Thus the results on test sets are more interesting and
crucial. Finally, for all the experiments described below,
the parameter K was fixed at 32 — no user fine-tuning was
done.

We are also interested in the contributions of different
features in our model. The ROC curves of saliency estima-
tion from different features are shown in Fig. 10. This may
be why the color and depth saliency maps show comparable
performances, whereas their combination produces a much
better result.

4.2 Qualitative Experiment

During the experiments, we compare our algorithm with
five state-of-the-art saliency detection methods, among
which three are developed for RGB-D images and two for
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Fig. 9. The perplexity for different K components in the DMNB model in terms of the four datasets. We use 10-fold cross-validation

with the parameter K for DMNB models. The K found using DPMM was adjusted over a wide range in a 10-fold cross-validation.

Fig. 10. The ROC curves of different feature map and their linear fusions. + indicates a linear combination strategy, and × indicates

a weighting method based on multiplication.
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Fig. 11. Visual comparison of the saliency estimations of the different 2D methods with DSM. + indicates a linear combination

strategy, and × indicates a weighting method based on multiplication. DSM means depth saliency map, which is produced by our

proposed depth feature map. CSM means color saliency map, which is produced by our proposed color feature map.

traditional 2D image analysis. One RGB-D method per-
forms saliency detection at low-level, mid-level, and high-
level stages and is therefore referred to as LMH [29]. One
RGB-D method is based on anisotropic centre-surround dif-
ference and is therefore denoted ACSD [31]. The other
RGB-D method exploits global priors, which include the
background, depth, and orientation priors to achieve a
saliency map and is therefore denoted GP [25]. The two
2D methods are Hemami’s frequency-tuned method [15],
which is denoted FT, and the approach from the graph-
based manifold ranking [10], which is denoted GMR. For
the two 2D saliency approaches, we also add and multi-
ple their results with the DSM produced by our proposed
depth feature map; these results are denoted FT + DSM,
FT × DSM, GMR + DSM and GMR × DSM. All of the
results are produced using public codes that are offered by
the authors of the previously mentioned literature reports.

Fig. 11 compares our results with FT [5], FT + DSM,
FT × DSM, GMR [10], GMR + DSM and GMR × DSM.
As shown in Fig. 11, FT detects many uninteresting back-
ground pixels as salient because it does not consider any
global features. The experiments show that both FT +

DSM and FT × DSM are highly improved when incor-
porated with the DSM. GMR fails to detect many pixels
on the prominent objects because it does not define the
pseudo-background accurately. Although the simple late
fusion strategy achieves improvements, it still suffers from
inconsistency in the homogeneous foreground regions and
lacks precision around object boundaries, which may be
ascribed to treating the appearance and depth correspon-
dence cues in an independent manner. Our approach con-
sistently detects the pixels on the dominant objects within
Bayesian framework with higher accuracy to resolve the
issue.

The comparison of the ACSD [31], LMH [29] and GP
[25] RGB-D approaches is presented in Figs. 12−15. ACSD
works on depth images on the assumption that salient ob-
jects tend to stand out from the surrounding background,
which takes relative depth into consideration. In Fig. 13,
ACSD generates unsatisfying results without color cues.
LMH uses a simple fusion framework that takes advantage
of both depth and appearance cues from the low-, mid-,
and high-levels. In [29], the background is nicely excluded;
however, many pixels on the salient object are not detected
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Fig. 12. Visual comparison of saliency estimations of different 3D methods based on the EyMIR dataset.

Fig. 13. Visual comparison of saliency estimations of different 3D methods based on the NUS dataset.

Fig. 14. Visual comparison of saliency estimations of different 3D methods based on the NLPR dataset.
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Fig. 15. Visual comparison of the saliency estimations of different 3D methods based on the NJU-DS400 dataset.

Fig. 16. The quantitative comparisons of the performance of the depth cues. + indicates a linear combination strategy, and indicates

a weighting method based on multiplication.

as salient, as shown in Fig. 14. Ren et al. proposed two pri-
ors, which are the normalized depth prior and the global-
context surface orientation prior [25]. Because their ap-
proach uses the two priors, it has problems when such priors

are invalid, as shown in Fig. 12. We can see that the pro-
posed method can accurately locate the salient objects and
produce nearly equal saliency values for the pixels within
the target objects.
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Fig. 17. The quantitative comparisons of the performances of depth cues. + indicates a linear combination strategy, and indicates

a weighting method based on multiplication.

Fig. 18. The ROC curves of different 3D saliency detection models in terms of the EyMIR dataset, NUS dataset, NLPR dataset

and NJU-DS400.
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Fig. 19. The F-measures of different 3D saliency detection models when used on the EyMIR dataset, NUS dataset, NLPR dataset

and NJU-DS400.

4.3 Quantitative Evaluation

1) Comparison of the 2D Models Combined With DSM:
In this experiment, we first compare the performances of
existing 2D saliency models before and after DSM fusing.
We select two state-of-the-art 2D visual attention models:
FT [5] and GRM [10]. Figs. 16 and 17 present the exper-
imental results, where + and × denote a linear combina-
tion strategy and a weighting method, respectively. From
Fig. 16, we can see the strong influence of using the DSM
on the distribution of visual attention in terms of the view-
ing of 3D content. Although the simple late fusion strat-
egy achieves improvements, it still suffers from inconsis-
tency in the homogeneous foreground regions, which may
be ascribed to treating the appearance and depth corre-
spondence cues in an independent manner, as shown in
Fig. 11. We also provide the ROC curves for several com-
pared methods in Fig. 17. The ROC curves demonstrate
that the proposed 3D saliency detection model performs
better than the compared methods do.

2) Comparison of 3D Models: To obtain a quantita-
tive evaluation, we compared ROC curves and F-measures
from the EyMIR, NUS, NLPR and NJU-DS400 datasets.
We compared the proposed model with the other existing

models, i.e., GP, LMH, and ACSD described in [25], [29]
and [31], respectively. In this paper, the GP model, LMH
model and ACSD model are classified as depth-pooling
models. Figs. 18 and 19 show the quantitative comparisons
among these method on the constructed RGBD datasets
in terms of ROC curves and F-measures. Methods such as
[31] are not designed for such complex scenes but rather
single dominant-object images. For the case that a single
salient object is over an uninteresting background in the
NJU-DS400 dataset, ACSD presented impressive results,
as shown in Figs. 18 (d) and 19 (d). In the NJU-DS400
dataset, we do not have experimental results for the LMH
[29] and GP [25] methods due to the lack of depth infor-
mation, which is required by their codes.

Due to the lack of global-context surface orientation pri-
ors in the EyMIR dataset, GP [25] is not able to apply
the orientation prior to refine the saliency detection, which
has lower performance compared to the ACSD method, as
shown in Figs. 18 (a) and 19 (a). Interestingly, the LMH
method, which uses Bayesian fusion to fuse depth and RGB
saliency by simple multiplication, has lower performance
compared to the GP method, which uses the Markov ran-
dom field model as a fusion strategy, as shown in Figs. 18 (c)
and 19 (c). However, LMH and GP achieve better perfor-
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mances than ACSD by using fusion strategies. The pro-
posed RGBD method is superior to the baselines in terms
of all the evaluation metrics. Although the ROC curves
are very similar, Fig. 19 shows that the proposed method
improves the recall and F-measure when compared to LMH
and GP, particularly in the NLPR dataset. This is mainly
because the feature extraction using multi-scale superpix-
els enhances the consistency and compactness of salient
patches.

3) Limitations: Because our approach requires train-
ing on large datasets to adapt to specific environments,
it has the problem that properly tuning the parameters for
specific new tasks is important to the performance of the
DMNB model. The DMNB model does classification in one
shot via a combination of mixed-membership models and
logistic regression, where the results may depend on differ-
ent choices of K. The learned parameters will surely have
good performances on the specific stimuli but not necessar-
ily on the new testing set. Thus, the weakness of the pro-
posed methods is that to yield reasonable performances, we
train our saliency model on the training set for specific K.
This problem could be addressed by using Dirichlet process
mixture models to find a proper K for new datasets.

5 Conclusion

In this study, we proposed a saliency detection model for
RGB-D images that considers both color- and depth-based
contrast features within a Bayesian framework. The exper-
iments verify that the proposed model’s depth-produced
saliency can serve as a helpful complement to the existing
color-based saliency models. Compared with other com-
peting 3D models, the experimental results based on four
recent eye tracking databases show that the performance
of the proposed saliency detection model is promising. We
hope that our work is helpful in stimulating further research
in the area of 3D saliency detection.
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