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Convolutional Sparse Coding in Gradient Domain for
MRI Reconstruction

Jiaojiao Xiong1 Hongyang Lu1 Minghui Zhang1 Qiegen Liu1, 2

Abstract Magnetic resonance imaging (MRI) reconstruction from undersampled data has always been a challenging and fascinating
task due to its implicit ill-posed nature and its significance accompanied with the emerging compressed sensing (CS) theory. Most
state-of-the-art sparse representation based CS approaches partition the image into overlapped patches, and process each patch
separately. These methods, however, lose important spatial structures of the signal of interest, and ignore the consistency of pixels,
which is a strong constraint for MR image. In this paper, we propose a new reconstruction method, which builds on recently
introduced ideas of convolutional sparse coding in gradient domain (GradCSC) to address above mentioned issue. As opposed to
patch-based methods, GradCSC directly operates on the whole gradient image to capture the correlation between local neighborhoods
and exploits the gradient image global correlation to produce better edges and sharp features of gradient image. It enables local
features implicitly existed in the gradient images to be captured effectively. Extensive experimental results demonstrate that the
proposed algorithm achieves higher quality reconstructions than alternative methods and converges quickly at various sampling
schemes and k-space acceleration factors.
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1 Introduction

Magnetic resonance imaging (MRI) is a crucial medical
diagnostic technique which offers clinicians with significant
anatomical structure for lack of ionizing. Unfortunately,
although it enables highly resolution images and distin-
guishes depiction of soft tissues, the imaging speed is lim-
ited by physical and physiological constraints and increas-
ing scan duration may bring in some physiological motion
artifacts [1]. Therefore, it is necessary to seek for a method
to decrease the acquisition time. Reducing the number of
measurements mandated by Nyquist sampling theory is a
way to accelerate the data acquisition at the expense of in-
troducing aliasing artifacts in the reconstructed results. In
recent years, compressed sensing (CS) theory, as a promis-
ing method, has proposed an essential theoretical founda-
tion for improving data acquisition speed. Particularly, the
application of CS to MRI is known as CS-MRI [2]−[6].

The CS theory states that the image which has a sparse
representation in certain domain can be recovered from a
reduced set of measurements largely below Nyquist sam-
pling rates [2]. The traditional CS-MRI usually utilizes pre-
defined dictionaries [1], [7]−[9], which may fail to sparsely
represent the reconstructed images. For instance, Lustig
et al. [1] employed the total variation (TV) penalty and
the Daubechies wavelet transform for MRI reconstruction.
Trzasko et al. [6] proposed a homotopic minimization strat-
egy to reconstruct the MR image. Instead, adaptive dic-
tionary updating in CS-MRI can provide less reconstruc-
tion errors due to the dictionary learned from sampled
data [10], [11]. Recently, Ravishankar et al. supposed
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that each image patch has sparse representation, and pre-
sented a prominent two-step alternating method named
dictionary learning based MRI reconstruction (DLMRI)
[12]. The first step is for adaptively learning the dictio-
nary, and the second step is for reconstructing image from
undersampled k-space data. Numerical experiments have
indicated that these data-driven-learning approaches ob-
tained considerable improvements than previous predefined
dictionaries-based methods. Liu et al. [13] proposed a gra-
dient based dictionary learning method for image recon-
struction (GradDL), which alleviated the drawback of the
popular TV regularization by employing dictionary learn-
ing technique. Specifically, it firstly trained dictionaries
from the horizontal and vertical gradients of the image re-
spectively, and then reconstructed the desired image using
the sparse representations of both derivatives. They also
extended their ideas to the CT reconstruction and InSAR
phase noise filtering [14], [15]. Nevertheless, most of exist-
ing methods did not consider the geometrical profit infor-
mation sufficiently, which may lead to the fine details to be
lost.

All the above methods use conventional patch-based
sparse representation to reconstruct MR image, it has a
fundamental disadvantage that the important spatial struc-
tures of the image of interest may be lost due to the subdi-
vision into patches that are independent of each other. To
make up for deficiencies of conventional patch-based sparse
representation method, Zeiler et al. [16] proposed a con-
volutional implementation of sparse coding method (CSC).
In the convolutional decomposition procedure, the decom-
position does not need to divide the entire image into over-
lapped patches, and can naturally utilize the consistency
prior. CSC was first introduced in the context of model-
ing receptive fields in human vision [17]. Recently, it has
been demonstrated that CSC has important applications
in a wide range of computer vision problems, like low/mid-
level feature learning, low-level reconstruction [18], [19],
networks in high-level computer vision or hierarchical struc-
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tures challenges [16], [20], [21], and in physically-motivated
computational imaging problems [22], [23]. In addition,
CSC can find applications in many other reconstruction
tasks and feature-based methods, including denoising, in-
painting, super-resolution and classification [24]−[30].

In this paper, we propose a new formulation of convo-
lutional sparse coding tailored to the problem of MRI re-
construction. Moreover, due to the image gradients are
a sparser representation than the image itself and there-
fore may have sparser representation with the CSC than
the pixel-domain image, we learn CSC in gradient domain
for better quality and efficient reconstruction. The present
method has two benefits. First, we introduce CSC for
MRI reconstruction. Second, since the image gradients are
usually sparser representation than the image itself, it is
demonstrated that the CSC in gradient domain could lead
to sparser representation than those using the conventional
sparse representation methods in the pixel domain.

The remainder of this paper is organized as follows. Sec-
tion 2 states the prior work in CS and CSC. The proposed
algorithm CSC in gradient domain (GradCSC) that em-
ploying the augmented Lagrangian (AL) iterative method
is detailed in Section 3. Section 4 demonstrates the perfor-
mance of the proposed algorithm on examples under a va-
riety of sampling schemes and undersampling factors. Con-
clusions are given in Section 5.

2 Background

In this section, we first review several classical models
for CS-MRI, and then introduce the theory of CSC. The
following notational conventions are used throughout the
paper. Let u ∈ CN denotes an image to be reconstructed,
and f ∈ CQ represents the undersampled Fourier measure-
ments. The partially sampled Fourier encoding matrix Fp

∈ CQ×N maps u to f such that Fpu = f . An MRI re-
construction problem is formulated as the retrieval of the
vector u based on the observation f and given the encoding
matrix Fp.

2.1 CS-MRI

The choice of sparsifying transform is an important ques-
tion in CS theory. In the past several years, reconstruct-
ing unknown image from undersampled measurements was
usually formulated as in (1) where assuming the image gra-
dients are sparse

min
u

{
µ1‖u‖TV +

1

2
‖Fpu− f‖22

}
(1)

where ‖u‖TV = ‖∇u‖1 =
∑

i,j |(∇xu)i,j |+ |(∇yu)i,j | is an
anisotropic discretization formulation of the TV regulariza-

tion, ∇u = [uT
x , uT

y ]
T
, ∇ = [∇T

x ,∇T
y ]

T
denotes the differ-

ence operators in horizontal and vertical directions. This
model is very straightforward and has good ability to pre-
serve edges. However, the application of model (1) is lim-
ited in terms of reconstruction quality due to most MR
images are not all piecewise constant. Yang et al. [31] pre-
sented the RecPF method by adding Wavelet transform to
improve the issue.

Sparse and redundant representations of image patches
based on learned basis has been drawing considerable at-
tention in recent years. Specifically, Ravishankar et al. [12]
presented a method named DLMRI to reconstruct MR im-

age from highly undersampled k-space data with its objec-
tive shown as follows:

min
u,D,Γ

{∑

l

‖Dαl −Rlu‖22 + ν‖Fpu− f‖2
}

s.t. ‖αl‖0 ≤ T0 ∀ l (2)

where Γ = [α1, α1, . . . , αL] denotes the sparse coefficient
matrix of image patches, R (u) = [R1u, R2u, . . . , RLu] con-
sisting of L signals, ‖·‖0 denotes the l0 quasi-norm which
counts the number of non-zero coefficients of the vector and
T0 controls the sparsity of the patch representation. Images
are reconstructed by the minimization of a linear combi-
nation of two terms corresponding to dictionary learning-
based sparse representation and least squares data fitting.
The first term enforces sparsity of the image patches with
respect to an adaptive dictionary, and the second term en-
forces data fidelity in k-space. The method exhibited su-
perior performance compared to those using fixed basis,
through learned adaptive transforms from image. Since
DL techniques are more effective and efficient in the sparse
domain of the image, Liu et al. [13] proposed a model to
reconstruct the image by iteratively reconstructing the gra-
dients via dictionary learning and solving for the final im-
age, instead of learning adaptive structure from the image
itself. The method is based on the observation that the
gradients are sparser than the image itself. Therefore, it
possesses sparser representation in the learned dictionary
than the pixel-domain.

Although conventional patch-based sparse representa-
tion has widely applications, it has some drawbacks. First,
it typically assumes that training image patches are inde-
pendent from each other, hence the consistency of pixels
and important spatial structures of the signal of interest
may be lost. This assumption typically results in filters
are simply translated versions of each other, and generates
highly redundant feature representation. Second, due to
the nature of the mathematical formulation that a linear
combination of learned patches, these traditional patch-
based representation approaches may fail to adequately
represent high-frequency and high-contrast image features,
thus loses some details and textures of the signal, which is
important for MR images.

2.2 Convolutional Sparse Coding

Zeiler et al. [16] proposed an alternative to patch-
based approaches named CSC, decomposing the image into
spatially-invariant convolutional features. CSC is the sum
of a set of convolutions of the feature maps by replacing
the linear combination of a set of dictionary vectors. Let
X be a training set containing 2D images with dimension
m × n. Let D = {dk}K

k=1 be the 2D convolutional filter
bank having K filters, where each dk is a h × h convolu-
tional kernel. zk is the sparse feature maps, each of which
is the same size as X. CSC aims to decompose the input
image X into the sparse feature maps zk convolved with
kernels dk from the filter bank D, by solving the following
objective function:

min
d,z

2∑
i=1

1

2

∥∥∥∥∥X −
K∑

k=1

dk ∗ zk

∥∥∥∥∥

2

2

+ β

K∑

k=1

‖zk‖1

s.t. ‖dk‖22 ≤ 1 ∀ k ∈ {1, . . . , K} (3)
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Fig. 1. One illustration of filters learned. (a) Learned dictionary by DLMRI, (b) Learned dictionary by GradDL, and (c) Learned

filter by GradCSC, respectively.

where the first and the second terms represent the recon-
struction error and the `1-norm penalty respectively; β is a
regularization parameter that controls the relative weight of
the sparsity term; ∗ is the 2D discrete convolution operator;
and filters are restricted to have unit energy to avoid triv-
ial solutions. Note that here ‖zk‖1 represents the entrywise
matrix norm, the construction of is realized by balancing
the reconstruction error and the `1-norm penalty.

However, the CSC has led to some difficulties in opti-
mization, Zeile et al. [16] used the continuation method
to relax the equality constraints, and employed the conju-
gate gradient (CG) decent to solve the convolutional least
square approximation problem. By considering the prop-
erty of block circulant with circulant block (BCCB) matrix
in the Fourier domain, Bristow et al. [32] presented a fast
CSC method. Recently, Wohlberg [33] presented an effi-
cient alternating direction method of multipliers (ADMM)
to further improve this method.

3 Convolutional Sparse Coding in Gra-
dient Domain

The image gradients are sparser than the image itself
[13], therefore it has sparser representation in the CSC
than that in the pixel-domain image. This motivates us
to consider the CSC in the gradient domain. It is expected
that such learning is more accurate and robust than that
from pixel domain. In this work, we propose an algorithm
to reconstruct the image by iteratively reconstructing the
gradients via CSC and solving for the final image.

3.1 Proposed Model

To reconstruct image from the image gradients, we pro-
pose a new model as follows:

min
u,d,z





2∑
i=1

1

2

∥∥∥∥∥∇
(i)u−

K∑

k=1

dk ∗ zk

∥∥∥∥∥

2

2

+ β

K∑

k=1

‖zk‖1 +
ν1

2
‖Fpu− f‖2

}

s.t. ‖dk‖22 ≤ 1 ∀ k ∈ {1, . . . , K} (4)

where (∇x,∇y) = (∇(1),∇(2)). The first term and the sec-
ond term in the cost function (4) capture the sparse prior
of the gradient image patches with respect to CSC, and the
third term ‖Fpu− f‖22 represents the data fidelity term in
k-space with l2-norm controlling the error. The weight v1

balances the tradeoff between these three terms, and is set
as ν1 = (λ1/σ) like the DLMRI algorithm does [13], where
λ1 is a positive constant. β is a regularization parameter
and controls the relative weight of the sparsity term with
respect to the data term. The constraint ‖dk‖22 ≤ 1, ∀ k ∈
{1, . . . , K} can be included in the objective function via an
indicator function indC(·), which is defined on the convex
set of the constraint C = {v |‖Sv‖22 ≤ 1}.

In order to better understand the benefit of the CSC
in the gradient domain, one demonstration of visual in-
spection between traditional sparse coded dictionaries and
GradCSC filter is shown in Fig. 1. The learned dictionaries
by DLMRI and GradDL are depicted in Figs. 1 (a) and (b),
both of which are learned from the Lumbar spine image in
Fig. 2. The learned filters by GradCSC shown in Fig. 1 (c)
are learned from the dataset in [16]. Compared to the tra-
ditional sparse coded dictionaries in Figs. 1 (a) and (b), it
can be seen from Fig. 1 (c) that the convolutional filter in
GradCSC shows less redundancy, crisper features, and a
larger range of feature orientations.

3.2 Algorithm Solver

In the regularization term of (4), the global finite dif-

ference operators ∇(i) are coupled, hence we resort to the
splitting technique to decouple them. Specifically, to find
a solution to the model (4), an AL iterative technique is
employed and an algorithm called GradCSC is developed.
The algorithm alternately updates sparse representations
of the image patches, reconstructs the horizontal and ver-
tical gradients, and estimates the original image from both
gradients. A full description of the algorithm is given in
Algorithm 1.

Equation (4) can be rewritten as follows by introducing

auxiliary variables w(i), i = 1, 2.

min
u,w(i),d,z





2∑
i=1

1

2

∥∥∥∥∥w(i) −
K∑

k=1

dk ∗ zk

∥∥∥∥∥

2

2

+ β

K∑

k=1

‖zk‖1 +
ν1

2
‖Fpu− f‖2 +

K∑

k=1

indC(dk)

}

s.t. w(i) = ∇(i)u ∀ i (5)

then, by employing the AL technique and denoting ∇ =[∇(1)

∇(2)

]
, b =

[
b(1)

b(2)

]
and w =

[
w(1)

w(2)

]
, it yields a sequence of

constrained subproblems as follows:
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Fig. 2. The reconstruction results of the Lumbar spine image under different undersampling factors with 2D random sampling.

Algorithm 1. The GradCSC algorithm

1: Initialization: zk
0 = 0, dk

0 = 0, (b(i))
0

= 0, i = 1, 2;

u0 = F T
p f

2: For j = 1, 2, . . . repeat until a stop-criterion is satisfied

3: (w(i))
j+1

=
ν2[(b(i))

j
+(∇(i)u)

j
]+

K∑
k=1

dj
k
∗zj

k

2ν2+1 , i = 1, 2

4: Updating {dk
j+1, zk

j+1} from difference images (w(i))
j+1

by (13), i = 1, 2

5: Updating {r`+1
1 , r

`+1
2 , r

`+1
3 } from the coefficients, and the

filters by (14)

6: uj+1 = F -1(
F [ν1F T

p f+ν2∇T ((w(i))
j+1−(b(i))

j
)]

ν1F F T
p FpF T +ν2F∇T F T F∇F T )

7: (b(i))
j+1

= (b(i))
j

+ (∇(i)u)
j+1 − (w(i))

j+1
, i = 1, 2

8: End

9: Output uj+1

{
uj+1, wj+1, dj+1, zj+1

}

= arg min
u,w(i),d,z

2∑
i=1

1

2

∥∥∥∥∥w(i) −
K∑

k=1

dk ∗ zk

∥∥∥∥∥

2

2

+
ν1

2
‖Fpu− f‖22 + β

K∑

k=1

‖zk‖p +

K∑

k=1

indC(dk)

+
ν2

2

∥∥∥∥
(
b(i)

)j

+∇u− w(i)

∥∥∥∥
2

2

(6)

(
b(i)

)j+1

=
(
b(i)

)j

+∇uj+1 −
(
w(i)

)j+1

(7)

where ν2 denotes the positive penalty parameter. The
ADMM can be used to address the minimization of (6)
with respect to u, w, z, and d. This technique carries out
approximation via alternating minimization with respect to
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one variable while keeping other variables fixed.
1) Updating the Solution u: At the jth iteration, we as-

sume w, z, and d to be fixed with their values denoted
as wj , zj , and dj , respectively. Eliminating the constant
variables, the objective function for updating u is given as

uj+1 = arg min
u

{
ν1 ‖Fpu− f‖22

+ ν2

∥∥∥(b(i))
j
+∇u− (w(i))

j
∥∥∥

2

2

}
. (8)

Recognizing that (8) is a simple least squares problem
admitting an analytical solution. The least squares solu-
tion satisfies the normal equation

(
ν1F

T
p Fp + ν2∇T∇

)
uj+1 = ν1F

T
p f + ν2∇T (wj − bj). (9)

However, directly solving the equation can be tedious
due to (9) has a high computation complexity (O(P 3)).
Fortunately, we can use the convolution theorem of Fourier
transform to obtain the solution:

uj+1 = F−1

(
F

[
ν1F

T
p f + ν2∇T (wj − bj)

]

ν1FF T
p FpF T + ν2F∇T F T F∇F T

)
(10)

similarly as described in DLMRI and GradDL method [12],
the matrix FF T

p FpF T is a diagonal matrix consisting of
ones and zeroes corresponding to the sampled location in
k-space.

2) Updating the Gradient Image Variables w(i), i = 1, 2:

The minimization in (6) with respect to w(1) and w(2) are
decoupled, and then can be solved separately. It yields:

(w(i))
j+1

= arg min
w(i)

{
1

2

∥∥∥∥∥
K∑

k=1

dj
k
∗ zj

k
− w(i)

∥∥∥∥∥

2

2

+
ν2

2

∥∥∥∥
(
b(i)

)j

+
(
∇(i)u

)j+1

− w(i)

∥∥∥∥
2

2

}
.

(11)

The least squares solution satisfies the normal equation,
and the solution of (11) is as follow:

(
w(i)

)j+1

=

ν2

[(
b(i)

)j

+
(
∇(i)u

)j+1
]

+
K∑

k=1

dj
k
∗ zj

k

ν2 + 1
.

(12)
3) Updating the Coefficients z, and the Filters d: The

minimization (6) with respect to CSC and coefficient vari-
ables of the gradient image in horizontal and vertical yields:

min
dj+1,zj+1

1

2

∥∥∥∥∥w(i) −
K∑

k=1

dk ∗ zk

∥∥∥∥∥

2

2

+ β

K∑

k=1

‖zk‖1 +

K∑

k=1

indC(dk). (13)

The problem in (13) can be solved by employing an AL
algorithm like mentioned above, (13) needs to introduce

auxiliary variables r1 =
∑K

k=1 dj+1
k

∗ zj+1
k

, r2 = dj+1, r3 =

zj+1
k

, it solves:

{
dj+1,`+1

k , zj+1,`+1
k , r

`+1

1 , r
`+1

2 , r
`+1

3

}

= arg min
dj+1,zj+1,r1,r2,r3

{
1

2

∥∥∥∥
(
w(i)

)j+1

− r1

∥∥∥∥
2

2

+

K∑

k=1

indC(r2,k) + β

K∑

k=1

‖r3,k‖1

+
µ1

2

∥∥∥∥∥r1 −
K∑

k=1

dj+1
k

∗ zj+1
k

+ λj
1

∥∥∥∥∥

2

2

+
µ2

2

∥∥∥r2 − dj+1
k

+ λj
2

∥∥∥
2

2
+

µ3

2

∥∥∥r3 − zj+1
k

+ λ`
3

∥∥∥
2

2

}

(14)

at the `th iteration for dj+1,`+1, zj+1,`+1, r`+1
1 , r`+1

2 , r`+1
3 ,

then updates the multipliers λ1, λ2 and λ3 by the formula

λ`+1
1 = λ`

1 + r`+1
1 −

K∑

k=1

dj+1,`+1
k

∗ zj+1,`+1
k

λ`+1
2 = λ`

2 + r`+1
2 − dj+1,`+1

k

λ`+1
3 = λ`

3 + r`+1
3 − dj+1,`+1

k
. (15)

ADMM is chosen to solve the (14). The corresponding
five subproblems can be solved as follows:

dj+1,`+1
k =

((
zj+1,`

k

)T

zj+1,`
k +

µ2

µ1
I

)−1

×
((

zj+1,`
k

)T (
r`
1 + λ`

1

)
+

µ2

µ1

(
r`
2 + λ`

2

))

(16)

zj+1,`+1
k =

((
dj+1,`+1

k

)T

dj+1,`+1
k +

µ4

µ3
I

)−1

×
((

dj+1,`+1
k

)T (
r`
3 + λ`

3

)
+

µ4

µ3

(
r`
4 + λ`

4

))

(17)

r
`+1

1 = (µ1 + 1) I−1

×
[(

µ1

K∑

k=1

zj+1,`
k

∗ dj+1,`+1
k

− λ`
1

)
+

(
w(i)

)j+1
]

(18)

r
l+1

2,k =





dj+1,`+1
k

−λ`
2

‖d
j+1
k

−λ
j
2‖2

, dj+1,`+1
k

− λ`
2 ≥ 1

dj+1,`+1
k

− λ`
2 , else

(19)

where r
`+1

2 = {r`+1

2,1 , r
`+1

2,2 , . . . , r
`+1

2,k , . . . , r
`+1

2,K}.

r
`+1

3 = max





1− β

µ3

∥∥∥zj+1,`+1
k − λ`

3

∥∥∥
2

, 0





◦
(
zj+1,`+1

k
− λ`

3

)
(20)

where ◦ represents the point-wise product function and the
operation is implemented by component-wise manner.
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4 Experimental Results

In this section, we evaluate the performance of proposed
method at a variety of sampling schemes and undersam-
pling factors. The sampling schemes employed in the ex-
periments contain the 2D random sampling, pseudo radial
sampling, and Cartesian sampling with random phase en-
coding (1D random). The size of images we use in the
synthetic experiments are 512× 512. The CS data acquisi-
tion was simulated by subsampling the 2D discrete Fourier
transform of the MR images (except the test with real ac-
quired data) in the light of many prior work on CS-MRI
approaches,. In order to find the sparse feature map zk, we
use a fixed filter D which is trained from reference MR im-
ages. We find that learning K = 100 filters of size 11× 11
pixels fulfills these conditions for our data and works well
for all the images tested. In the experiment, the proposed
method GradCSC is compared with the leading DLMRI
[12] and GradDL [13] methods that have shown the sub-
stantially outperform other CS-MRI methods. In addition,
we use the peak signal-to-noise ratio (PSNR) and high-
frequency error norm (HFEN) [20] to evaluate the quality
of reconstruction. All of these algorithms are implemented
in MATLAB 7.1 on a PC equipped with AMD 2.31 GHz
CPU and 3GByte RAM.

4.1 Experiments Under Different Undersampling
Factors

In this subsection, we evaluate the performance of Grad-
CSC under different undersampling factors with same sam-
pling scheme. Fig. 2 illustrates the reconstruction results
at a range of undersampling factors with 2.5, 4, 6, 8, 10
and 20. We added the zero-mean complex white Gaussian
noise with σ = 10.2 in the 2D random sampled k-space.
The PSNR and HFEN values for DLMRI, GradDL and
GradCSC at various undersampling factors are presented
in Figs. 2 (b) and (c), additionally the PSNR values are
listed in Table I. For the subjective comparison, the con-
struction results and magnitude image of the reconstruction
error provided by the three methods at 8-fold undersam-
pling are presented in Figs. 2 (d), (e), (f) and (g), (h), (i),
respectively. In this case, it can be seen that the image
reconstructed by the DLMRI method (shown in Fig. 2 (d))
is blurred and loses some textures. Although both GradDL
and GradCSC present excellent performances on suppress-
ing aliasing artifacts, our GradCSC provides a better recon-
struction of object edges (such as the spine) and preserves
finer texture information (such as the bottom-right of the
reconstruction). Such difference in reconstruction quality
is particularly clear in the image errors shown in Figs. 2 (g),
(h) and (i). In general, our proposed method provides
greater intensity fidelity to the image reconstructed from
the full data.

4.2 Impact of Undersampling Schemes

In this subsection, we evaluate the performance of Grad-
CSC at various sampling schemes. The results are pre-
sented in Fig. 3 which reconstructed an axial T2-weighted
brain image at 8-fold undersampling factors by applying
three different sampling schemes, including 2D random
sampling, 1D Cartesian sampling, and pseudo radial sam-

pling. The PSNR and HFEN indexes versus iterative num-
ber for method DLMRI, GradDL and GradCSC are plot-
ted in Figs. 3 (b) and (c). Particularly, we present the re-
constructions of DLMRI, GradDL and GradCSC with 2D
random sampling in Figs. 3 (d), (e), and (f), respectively.
In order to facilitate the observation, the difference im-
age between reconstruction results are shown in Figs. 3 (g),
(h), and (i). As can be expected, the convolution opera-
tor enables CSC outperform DLMRI and GradDL methods
for most of specified undersampling ratios and trajectories.
This exhibits the benefits of employing the convolutional
filter for sparse coding. In particular, in Fig. 3 (d), (e),
and (f) the skeletons in the top half part of the Grad-
CSC reconstruction appear less obscured than those in the
DLMRI and GradDL results. the proposed method Grad-
CSC reconstructs the images more accurately with larger
PSNR and lower HFEN values than the GradDL approach.
Particularly when sampled at 2D random trajectory, our
method GradCSC outperforms others with a remarkable
improvement from 0.7 dB to 5.8 dB.

4.3 Performances at Different Noise Levels

We also conduct experiments to investigate the sensi-
tivity of GradCSC to different levels of complex white
Gaussian noise. DLMRI, GradDL and GradCSC are ap-
plied to reconstruct a noncontrast MRA of the circle of
Willis under pseudo radial sampling at 6.67-fold acceler-
ation. Fig. 4 presents the reconstruction results of three
methods at different levels of complex white Gaussian noise,
which are added to the k-space samples. Fig. 4 (c) presents
the PSNRs of DLMRI, GradDL and GradCSC at a se-
quence of different standard deviations (0, 2, 5, 8, 10,
12, 15). Reconstruction results with noise 5 are shown in
Figs. 4 (d), (e), and (f). The PSNRs gained by DLMRI and
GradDL are 27.03 dB and 29.78 dB, while the GradCSC
method achieves 30.45 dB. Obviously, the reconstruction
obtained by GradCSC is clearer than those by DLMRI and
GradDL. It can be observed that our GradCSC method
can reconstruct the images more precisely than DLMRI
and GradDL, in terms of extracting more structural and
detail information from gradient domain. The correspond-
ing error magnitudes of the reconstruction are displayed in
Figs. 4 (g), (h), and (i). It reveals that our method pro-
vides a more accurate reconstruction of image contrast and
sharper anatomical depiction in noisy case.

5 Conclusion

In this work, a novel CSC method in gradient domain
for MR image reconstruction was proposed. The impor-
tant spatial structures of the signal were preserved by con-
volutional sparse coding. For the new derived model, we
utilized the AL method to implement the algorithm in a
few number of iterations. A variety of experimental results
demonstrated the superior performance of the method un-
der various sampling trajectories and k-space acceleration
factors. The proposed method can produce highly accu-
rate reconstructions for severely undersampled factors. It
provided superior performance in both noiseless and noisy
cases. The presented framework will be extended to paral-
lel imaging applications in the future work.
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TABLE I

Reconstruction PSNR Values at Different Undersampling Factors With the Same 2D Random Sampling Trajectories

Undersampling factors 2.5-fold 4-fold 6-fold 8-fold 10-fold 20-fold

DLMRI 35.92 35.19 31.26 30.76 30.13 26.39

GradDL 38.26 38.20 34.35 32.89 31.81 27.90

GradCSC 37.39 37.53 35.23 35.45 34.62 30.54

Fig. 3. The reconstruction results of the axial T2-weighted brain image under different undersampling schemes.
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Fig. 4. The reconstruction results of the COW image under different noise levels.
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