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Abstract The robust H∞ consensus control problem of high-
order discrete-time multi-agent systems with parameter uncer-
tainties and external disturbances is studied, and a linear dis-
tributed consensus protocol is designed in this paper. Firstly, the
robust H∞ consensus control problem of high-order discrete-time
multi-agent systems with parameter uncertainties and external
disturbances is transformed to a robust H∞ control problem of a
set of independent uncertain systems. Secondly, a sufficient lin-
ear matrix inequality (LMI) condition is derived to insure that
high-order discrete-time multi-agent systems with parameter un-
certainties and external disturbances achieve robust consensus
with a H∞ performance level γ. Thirdly, convergence results are
given as final consensus values of high-order discrete-time linear
multi-agent systems with parameter uncertainties and without
external disturbances. Finally, a contrast numerical experiment
with and without parameter uncertainties is provided to demon-
strate the correctness and effectiveness of the theoretical results.
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1 Introduction
In recent years, distributed coordination of multi-agent

systems (MASs) has received great attention from many re-
searchers due to its broad applications on MASs in many ar-
eas including formation control [1], [2], flocking [3], [4], dis-
tributed filtering [5], [6], synchronization of coupled chaotic
oscillators [7]−[9]. Consensus is an essential problem of dis-
tributed coordination of MASs, which is to make each agent
agree on some common values of interest through feedback
of local information from neighboring agents.

The theoretical framework for posing and solving the
consensus problem for MASs was first introduced in [10]−
[12]. Their work mostly focused on the first-order and
second-order consensus in MASs. Furthermore, the con-
sensus problem of MASs has obtained a tremendous surge
of interest and extensive development. These works can be
generally divided into two categories depending on whether
the agent models are continuous-time or discrete-time. The
union of interaction topologies must contain a spanning tree
if MASs are expected to achieve consensus asymptotically
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[13]. A framework of high-dimensional state space for the
consensus problems of MASs was studied in [14], and then
the consensus problems of high order or more general linear
MASs models were discussed in [15]−[17]. The consensus
problem of discrete-time MASs (D-MASs) based on general
linear models was investigated in [18], [19]. The leader-
following consensus problem of D-MASs based on general
linear models was studied in [20]. The robust guaranteed
cost consensus problem of general linear D-MASs models
with parameter uncertainties and time-varying delays was
investigated in [21].

With the development of the research, the H∞ consensus
control problem of MASs subject to external disturbances
was considered in [22]−[24]. Robust H∞ consensus control
problems of first-order MASs with external disturbances
and model uncertainties are discussed in [22]. The second-
order robust H∞ consensus control problem of MASs with
measurement noises and asymmetric delays is studied in
[23]. Distributed H2 and H∞ consensus control problems
are investigated in [24] for MASs with linear dynamics sub-
ject to external disturbances. The robust H∞ consensus
control problem of high-order linear MASs with parame-
ter uncertainties and external disturbances was studied in
[25], which also considered the time-delay and switching
topology simultaneously. Specifically, the aforementioned
works were based on continuous-time models, while the
study of discrete-time model cases is more widely applied
in practice. In [26], H∞ synchronization and state esti-
mation problems were considered for an array of coupled
discrete time-varying stochastic complex networks over a
finite horizon. The robust H∞ consensus control problem
of high-order linear time-varying D-MASs with uncertain-
ties/disturbances and missing measurements was investi-
gated in [27]. The event-based H∞ consensus control prob-
lem for high-order linear time-varying D-MASs over a finite
horizon was studied in [28]. Nevertheless, although the ro-
bust H∞ control consensus problem of high-order D-MASs
with parameter uncertainties and external disturbances was
addressed in [26]−[28], the final convergence value was not
provided in these studies.

Motivated by the above, in this paper, the robust H∞
control consensus problem of high-order D-MASs with pa-
rameter uncertainties and external disturbances is inves-
tigated by state space decomposition approach. We con-
sider the leaderless consensus of the uncertain high-order
D-MASs with fixed topologies. In this problem, if an ap-
propriate consensus protocol is applied, the D-MASs should
converge to a common value. Comparing with the existing
works, the contribution of this paper is two-fold. On one
hand, by state space decomposition approach, a sufficient
linear matrix inequality (LMI) condition is given to guaran-
tee that, high-order D-MASs subject to parameter uncer-
tainties and external disturbances achieve robust consensus
with a H∞ performance index γ. On the other hand, with
ωx(k) ≡ 0 or ωx(k) interpreted as deterministic l2 signal,
final consensus values of high-order D-MASs with parame-
ter uncertainties and external disturbances, which are first
provided in this paper for the first time.

The rest of the paper is organized as follows. The prob-
lem formulation is presented in Section 2. In Section 3,
the robust H∞ consensus control problem of MASs (1) is
transformed to a robust H∞ control problem of a set of
independent uncertain systems, and a sufficient LMI con-
dition insuring the robust consensus, and a final consensus
value of MASs (1) with protocol (4) are given. A numerical
example is provided in Section 4 to verify the theoretical
analysis. Some conclusions are finally drawn in Section 5
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which concludes the paper and proposes some possible fu-
ture directions. The notions of graph theory and Kronecker
product that will be used in this paper are summarized in
Appendix A and Appendix B, respectively.

Notations: A matrix or a vector is said to be positive (re-
spectively, non-negative) if all of its entries are positive (re-
spectively, non-negative). A square matrix is called Schur
stable if all of its eigenvalues lie in the open unit disk. Let
diag{a11, a22, . . . , ann} be the diagonal matrix with diago-
nal entries a11, a22, . . . , ann. The symbol ⊗ represents the
Kronecker product. MT denotes the transpose conjugate of
matrix M . I is an appropriate dimensions identity matrix.
1N = [1, . . ., 1]T denotes an N-dimensional vector with all
of its elements being 1.

2 Problem Formulation
A high-order MAS can be described as a linear system,

which has been presented in [15], and thus, consider a high-
order identical D-MAS consisting of N agents indexed by
1, 2, . . . , N , distributed on an undirected communication
graph G, in which the dynamics of agent i is described by
a linear discrete-time system as follows





xxxi(k + 1) = (A + ∆A)xxxi(k)

+ (B + ∆B)uuui(k) + Bωωωωi,x(k)

zzzi(k) = Cxxxi(k)

(1)

where ωωωi,x(k) ∈ Rm2 is the external disturbance of agent
i; uuui(k) ∈ Rm1 and xxxi(k) ∈ Rd are the consensus proto-
cols and states of agent i, respectively; zzzi,x(k) ∈ Rl is the
controlled-output of agent i; A ∈ d×d, B ∈ Rd×m1 , Bω ∈
Rd×m2 and C ∈ Rl×d are known constant matrices, ∆A
and ∆B are parameter uncertainties in the system matrix
and input channel, which are assumed to be of the form

[ ∆A ∆B ] = DF [ E1 E2 ] (2)

where D is a real constant matrix, and F is an unknown
matrix function satisfying

F T F ≤ I. (3)

The parameter uncertainties ∆A and ∆B are said to
be admissible if both (2) and (3) hold. For the leaderless
consensus problem of uncertain D-MASs (1), the following
local consensus protocol is applied to each agent i

uuui(k) = K
∑

j∈Ni

aij(xxxj(k)− xxxi(k)) (4)

where K is a constant gain matrix with appropriate dimen-
sions, and aij being the graph edge weights. This protocol
is distributed in nature as it only depends on the imme-
diate neighbors Ni of agent (node) i. This is known as
a local voting protocol because the control input of each
agent depends on the difference between its state and all
its neighbors. Then, the definition of consensus for high-
order D-MASs (1) with consensus protocol (4) is given as
follows.

Definition 1: For a given gain matrix K, system (1) is
said to achieve consensus if for any given bounded initial
condition, there exists a vector-valued c(k) which is depen-
dent on the initial condition such that limk→∞(x(k)−1N⊗
c(k)) = 0, where c(k) is called a final consensus value.

Let xxx(k) = [xxxT
1 (k), . . . ,xxxT

N (k)]T , ωωωx(k) = [ωωωT
1,x, . . .,

ωωωT
N,x]T and zzz(k) = [zzzT

1 (k), . . . , zzzT
N (k)]T , then the dynamics

of high-order D-MASs (1) with the distributed consensus
protocol (4) can be described by a closed-loop discrete-time
networked dynamics as





xxx(k + 1) = (IN ⊗ (A + ∆A)

− L⊗ (B + ∆B)K)xxx(k) + (IN ⊗Bω)ωωωx(k)

zzz(k) = (IN ⊗ C)xxx(k).

(5)

The suboptimal robust H∞ consensus control problem
of system (5) is stated to find a distributed protocol (4)
such that

1) with ωωωx(k) = 0, the closed-loop system (5) is asymp-
totically stable for all admissible uncertain matrices F .

2) with ωωωx(k) interpreted as deterministic l2 signal, the
closed-loop transfer function from ωωωx(k) to zzz(k) of system
(5), which is denoted by Tωz, satisfies ‖Tωz‖∞ < γ for
all admissible uncertain matrices F and a given allowable
scalar γ > 0, where ‖Tωz‖∞ is the H∞ norm of Tωz, defined
by ‖Tωz‖∞ = supωx∈RNd σ̄(Tωz(jω)).

In order to analyze the robust H∞ consensus control
problem of closed-loop D-MASs (6), we assume hereafter
that the communication graph G is connected and give the
following lemma about the graph theory.

Lemma 1 [29] : Let L be the Laplacian matrix of an
undirected graph G , then zero is an eigenvalue of L. If, in
addition, G is connected, the zero eigenvalue of L is simple,
and all the other eigenvalues of L are positive and real.

Moreover, let λi (i = 1, 2, . . . , N) be eigenvalues of the
Laplacian matrix L ∈ RN for an undirected topology G,
where λ1 = 0 with the associated eigenvector ūuu1 = 1√

N
1N ,

and λ1 ≤ λ2 ≤ · · · ≤ λN . There exists an orthogonal
matrix

U =




1√
N

1T
N−1√
N

1T
N−1√
N

Ū




such that UT LU = diag {λ1, λ2, . . . , λN}.
Theorem 1: For a given γ > 0, system (5) is asymptoti-

cally stable and ‖Tωz‖∞ < γ, if and only if the following N
systems are simultaneously asymptotically stable and the
H∞ norms of their transfer function matrices are all less
than γ:





x̃xxi(k + 1) = (A + ∆A− λi(B + ∆B)K)x̃xxi(k)

+ Bωω̃ωωi,x(k)

z̃zzi(k) = Cx̃xxi(k), i = 1, 2, . . . , N.

(6)

Proof: Let λi (i = 1, 2, . . . , N) be eigenvalues of the
Laplacian matrix L ∈ RN for an undirected topology G,
where λ1 = 0 with the associated eigenvector ū1 = 1√

N
1N ,

and λ1 ≤ λ2 ≤ · · · ≤ λN . There exists an orthogonal
matrix

U =




1√
N

1T
N−1√
N

1T
N−1√
N

Ū




such that UT LU = diag {λ1, λ2, . . . , λN} = Λ. Let

x̃xx(k) =
(
UT ⊗ Id

)
xxx(k) =

[
x̃xxT

c (k), x̃xxT
r (k)

]T

=
[
x̃xxT

1 (k), x̃xxT
2 (k), . . . , x̃xxT

N (k)
]T

. (7)



1852 ACTA AUTOMATICA SINICA Vol. 43

Then, system (5) can be rewritten in terms of x̃xx(k) as





x̃xx(k + 1) = (IN ⊗ (A + ∆A)

− Λ⊗ (B + ∆B)K)x̃xx(k) + (UT ⊗Bω)ωωωx(k)

zzz(k) = (U ⊗ C)x̃xx(k).

(8)

Moreover, reformulate the disturbance variable ωωωx(k)
and the performance variable zzz(k) via

ω̃ωωx(k) =
(
UT ⊗ Im2

)
ωωωx(k)

=
[
ω̃T

1,x(k), ω̃T
2,x(k), . . . , ω̃T

N,x(k)
]T

(9)

z̃zz(k) =
(
UT ⊗ Il

)
zzz(k) =

[
z̃T
1 (k), z̃T

2 (k), . . . , z̃T
N (k)

]T

.

(10)

Subsequently, substituting (9) and (10) into (8) gives





x̃xx(k + 1) = (IN ⊗ (A + ∆A)

− Λ⊗ (B + ∆B)K)x̃(k) + (IN ⊗Bωωω)ω̃ωωx(k)

z̃zz(k) = (IN ⊗ C)x̃xx(k).

(11)

Note that (11) is composed of N individual systems of
(6). Denote by ‖Tω̃z̃‖∞ and ‖Tω̃iz̃i‖∞ the transfer function
matrices of systems (11) and (5), respectively. Then, it
follows from (5), (9), (10) and (11) that

Tω̃z̃ = diag(Tω̃1z̃1 , Tω̃2z̃2 , . . . , Tω̃N z̃N )

=
(
UT ⊗ Il

)
Tωz(U ⊗ Im2) (12)

which implies that

‖Tω̃z̃‖∞ = max
i=2,3,...,N

‖Tω̃iz̃i‖∞ = ‖Tωz‖∞. (13)

¥
In addition, it is worth mentioning that,

x̃xx(k) =
[
x̃xxT

c (k), x̃xxT
r (k)

]T

=
[
x̃xxT

c (k), x̃xxT
r,2(k), . . . , x̃xxT

r,N (k)
]T

ω̃ωωx(k) =
[
ω̃ωωT

c,x(k), ω̃ωωT
r,x(k)

]T

=
[
ω̃ωωT

c,x(k), ω̃ωωT
r,2x(k), . . . , ω̃ωωT

r,Nx(k)
]T

z̃zz(k) =
[
z̃zzT

c (k), z̃zzT
r (k)

]T

=
[
z̃zzT

c (k), z̃zzT
r,2(k), . . . , z̃zzT

r,N (k)
]T

.

By Lemma 1, the discrete-time system (11) also can be
rewritten as the following N subsystems

{
x̃xxc(k + 1) = (A + ∆A)x̃xxc(k) + Bωω̃ωωc,x(k)

z̃zzc(k) = Cx̃xxc(k)
(14)





x̃xxr,i(k + 1) = (A + ∆A− λi(B + ∆B)K)x̃xxr,i(k)

+ Bωω̃ωωi,x(k)

z̃zzr,i(k) = Cx̃xxr,i(k), i = 2, 3, . . . , N.

(15)

Obviously, if subsystems (15) are asymptotically stable,
then D-MASs (5) reach consensus. Subsystem (14) deter-
mines the final consensus value of D-MASs (5), and the
details of it will be discussed below.

Remark 1: The robust H∞ leaderless consensus problem
of uncertain D-MASs (1) is to design distributed consen-
sus protocols uuui(k), ∀ i ∈ Ni such that the consensus is
reached and ‖Tωz‖∞ < γ, simultaneously. Theorem 1 con-
verts the robust H∞ consensus control problem of D-MASs
(5) into the robust H∞ control problems of N subsystems
(6), which is a set of independent systems having the same
dimensions as a single agent in (1), thereby reducing the
computational complexity significantly. The key tools lead-
ing to this result rely on the state space decomposition ap-
proach, as used in [15].

3 Main Results
Lemma 2: Given the pair (K, γ > 0), if the matrix in-

equality

ĀT
λi

PĀλi − P + PCT CP + γ−2BωBωT < 0

i = 1, 2, . . . , N (16)

admits a symmetric positive definite solution P ∈ Rd×d,
where Āλi = A+∆A−λi(B+∆B)K = Aλi +DFEλi , Aλi

= A− λiBK, Eλi = E1 − λiE2K. Then, D-MASs (1) are
said to achieve robust consensus with a H∞ performance
index γ.

Proof: Given K, γ > 0, assume that P = P T > 0 satis-
fies the matrix inequality (16). In this case (dropping the
quadratic semidefinite positive term in P ) it follows

ĀT
λi

PĀλi − P ≤ −γ−2BωBT
ωωω < 0, i = 1, 2, . . . , N (17)

(complying with the previous assumptions) that Āλi is
asymptotically stable. To prove the H∞-norm. Inequal-
ity, we proceed as follows. For each system (6), consider
the closed-loop transfer function from ω̃i,x(k) to z̃zzi(k) given
by

Hλi(s) = C(sI − Āλi)
−1(B + ∆B) , i = 1, 2, . . . , N.

(18)

Defining s = ejω, ω ∈ [−π, π] and the auxiliary trans-
fer function L̄λi(s) = sC(sI − Āλi)

−1PC after simple but
tedious algebraic manipulations, inequality (17) can be fac-
torized as

CPCT − L̄λi(s)− L̄λi(s
−1)T + L̄λi(s)L̄λi(s

−1)T

+ ĀT
λi

PĀλi − P < −γ−2BωBT
ωωω ≤ 0. (19)

which, after completing squares, becomes

Hλi(s)Hλi(s
−1)T ≤ γ2I − γ2CPCT

− γ2[I − L̄λi(s)][I − L̄λi(s
−1)]T < γ2I (20)

meaning that ‖Hλi‖∞ < γ, which proves the lemma pro-
posed. ¥

Remark 2: In Lemma 2, a sufficient condition is given
to guarantee D-MASs (5) achieving robust consensus with
a H∞ performance index γ. Nevertheless, it is not difficult
to find that (16) is a nonlinear matrix inequality (NMI)
and therein lies parameter uncertainties.

To cope with the uncertain matrices F and the nonlinear
terms of (16), the following two lemmas are given.

Lemma 4 [30]: Given matrices Y , D and E of appropri-
ate dimensions and with Y symmetric, then

Y + DFE + ET F T DT < 0 (21)
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for all F satisfying F T F ≤ I, if and only if there exists a
scalar ε > 0 such that

Y + εDDT + ε−1ET E < 0. (22)

Lemma 5 (Schur complement) [31]: The linear matrix
inequality (

Q(x) S(x)

S(x)T R(x)

)
> 0

where Q(x) = Q(x)T , R(x) = R(x)T , and S(x), depends
affinely on x, is equivalent to one of the following conditions

1) Q(x) > 0, R(x)− S(x)T Q(x)−1S(x) > 0;
2) R(x) > 0, Q(x)− S(x)R(x)−1S(x)T > 0.
Theorem 2: Consider D-MASs (1) with a fixed, undi-

rected and connected communication topology G. The
distributed consensus protocol (4) globally asymptotically
solves the robust consensus problem of D-MASs (1) with
H∞-norm consensus performance bound γ if there exist a
scalar ε > 0, a matrix W with appropriate dimensions and
a positive definite matrix X such that




−X + εDDT AX − λiBW

(AX − λiBW )T −X + CT C
0 E1X − λiE2W
0 BT

ω X

0 0

(E1X − λiE2W )T XBω

−εId 0
0 −γ2Im2


 < 0 (23)

where i = 1, 2, . . . , N . Furthermore, if LMI (23) has a
feasible solution ε, W , X, then the feedback gain matrix K
of protocol (4) can be calculated by K = WX−1.

Proof: By Lemma 5, matrix inequality (16) is equivalent
to

[ −P−1 Āλi

ĀT
λi

−P + PCT CP + γ−2BωBT
ω

]
< 0. (24)

Moreover, the above inequality can be rewritten as
[ −P−1 Aλi

AT
λi

−P + PCT CP + γ−2BωBT
ω

]

+

[
D
0

]
F

[
0 Eλi

]
+

[
0 Eλi

]T
F

[
D
0

]T

< 0.

(25)

It follows from the Lemma 4 that (25) can be expressed
as
[
−P−1 + εDDT Aλi

AT
λi

−P + PCT CPγ−2BωBT
ω + ε−1ET

λi
Eλi

]

< 0. (26)

Through Lemma 5 again, matrix inequality (26) is equiv-
alent to



−P−1 + εDDT Aλi 0

AT
λi

−P + PCT CP + γ−2BωBT
ω ET

λi

0 Eλi −εI




< 0. (27)

Pre- and post-multiplying both sides of (27) by



Id 0 0
0 P−1 0
0 0 Id




letting X = P−1, W = KP−1, and applying Lemma 5
again yield LMI (23), where i = 1, 2, . . . , N . ¥

Remark 3: In Theorem 2, it can be noted that the NMI
(16) is transformed to a LMI condition (23). Subsequently,
high-order D-MASs (1) with the distributed consensus pro-
tocol (4) achieve robust consensus with a H∞ performance
index γ. Thereby the neighboring feedback matrix K also
can be obtained. Then, the local consensus protocol (4) can
be implemented by each agent in a fully distributed fash-
ion requiring no global information of the communication
topology.

Remark 4: From Theorem 2, we can also get that,
the communication disturbances have effects on the per-
formance of the control object, such as switching interac-
tion topologies. In [32], [33], the time-varying formation
tracking problems for second-order MASs with switching
interaction topologies were studied. Switching topologies
include two cases. One is that every interaction topology
of MASs has a spanning tree; another is joint-contained
spanning tree topologies. It should be mentioned that, this
approach can be easily extended to the first case, and more
details can be seen in our work [34]. There have been some
difficulties to the joint-contained spanning tree case. We
will consider it in the future.

Theorem 3: With ωωωx(k) interpreted as deterministic l2
signal, when D-MASs (5) achieve robust consensus, the fi-
nal consensus value c(k) satisfies

lim
k→∞

(
ccc(k)− 1N ⊗

((
1

N
(A + ∆A)k

N∑
i=1

xxxi(0)

)

+

k−1∑
i=0

l=k−i−1∑

l=0

j=N∑
j=1

(
1

N
(A + ∆A)iBωωωωx,j(l)

)))
= 0.

(28)

Proof: Let xxxC(k) = (U ⊗ Id)[x̃xxT
c (k), 0]T and xxxC̄(k) =

(U ⊗ Id)[0, x̃xxT
r (k)]T , then by (7), xxx(k) can be uniquely de-

composed as xxx(k) = xxxC(k) + xC̄(k). As discussed above,
we can know that if the system (5) achieves robust guar-
anteed cost consensus, the subsystem (15) should be Schur
stable, which means that the response of system (15) due
to xxxC̄(0) should satisfy limk→∞xxxC̄(k) = 0. Hence the fi-
nal consensus value c(k) is determined solely upon xxxC(k).
Since [x̃xxT

c (k), 0]T = eee1⊗x̃xx(k), we have xxxC(0) = ūuu1⊗x̃xxc(0) =
x̄xx1⊗((eeeT

1 ⊗Id)x̃xx(0)), and because x̃xx(0) = (UT⊗Id)xxx(0), then
we can obtain xxxC(0) = ūuu1 ⊗ x̃xxc(0) = ūuu1 ⊗ ((eeeT

1 ⊗ Id)x̃xx(0)),
that is to say

xxxC(0) = ūuu1 ⊗
(
(eeeT

1 ⊗ Id) ∗ (UT ⊗ Id)xxx(0)
)

= ūuu1 ⊗
(
(eeeT

1 UT ⊗ Id)xxx(0)
)

= ūuu1 ⊗
(

(
1√
N

1T
N ⊗ Id)xxx(0)

)

= 1T
N ⊗

(
1

N

N∑
i=1

xxxi(0)

)
.

Likewise, let ωωωC,x(k) = (U⊗Id)[ω̃ωωT
c,xxx(k), 0]T and ω̃ωωC̄,x(k)

= (U ⊗ Id)[0, ω̃ωωT
r,x(k)]T , then by (9), xxx(k) can be uniquely
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decomposed as ωωωx(k) = ωωωC,x(k) + ωωωC̄,x(k). If the sys-
tem (5) achieves robust guaranteed cost consensus, the re-
sponse of system (15) due to ωωωC̄,x(0) also should satisfy

limk→∞ωωωC̄,x(k) = 0. Since [ω̃ωωT
c,x(k), 0]T = e1 ⊗ ω̃ωωxxx(k), we

have ω̃ωωC,xxx(k) = ū1⊗ω̃ωωc,x(k) = ū1⊗((eT
1 ⊗Id)ω̃ωωx(k)), and be-

cause ω̃ωωx(k) = (UT ⊗ Id)ωωωx(k), then we can obtain ωωωC,x(k)
= ū1 ⊗ ω̃ωωc,x(k) = ū1 ⊗ ((eT

1 ⊗ Id)ω̃ωωx(k)), i.e.,

ωωωC,xxx(k) = ūuu1 ⊗
(
(eeeT

1 ⊗ Id) ∗ (UT ⊗ Id)ωωωx(k)
)

= ūuu1 ⊗
(
(eeeT

1 UT ⊗ Id)ωωωx(k)
)

= ūuu1 ⊗
(

(
1√
N

1T
N ⊗ Id)ωωωx(k)

)

= 1T
N ⊗

(
1

N

N∑
i=1

ωωωx,i(k)

)
.

Hence, we have

xxxC(k) = (A + ∆A)kxxxC(0)

+ 1N ⊗
k−1∑
i=0

(
(A + ∆A)iBωω̃ωωc,x(k − i− 1)

)

= 1N ⊗
((

1

N
(A + ∆A)k

N∑
i=1

xxxi(0)

)

+

k−1∑
i=0

l=k−i−1∑

l=0

(
(A + ∆A)iBωωωωC,x(l)

))

= 1N ⊗
((

1

N
(A + ∆A)k

N∑
i=1

xxxi(0)

)

+

k−1∑
i=0

l=k−i−1∑

l=0

j=N∑
j=1

(
1

N
(A + ∆A)iBωωωωx,j(l)

))

then the final consensus value ccc(k) satisfies limk→∞(ccc(k) −
xxxC(k)) = 0, k = 0, 1, 2, . . .. ¥

Corollary 1: With ωωωx(k) ≡ 0, when multi-agent system
(5) achieves robust consensus, the final consensus value ccc(k)
satisfies

lim
k→∞

(
ccc(k)− 1N ⊗

(
1

N
(A + ∆A)k

N∑
i=1

xxxi(0)

))
= 0.

(29)

Proof: This proof can be easily obtained from the proof
of Theorem 3. ¥

Remark 5: With ωωωx(k) interpreted as deterministic l2
signal, the final consensus value ccc(k) of system (5) is given
by Theorem 3. The final consensus value ccc(k) can be di-

vided into two parts, one is ((A + ∆A)k/N)
∑N

i=1 xxxi(0),
which is related to the system matrix A + ∆A and ini-
tial state x(0), the other is

∑k−1
i=0

∑j=N
j=1

∑l=k−i−1
l=0 (1/N(A

+ ∆A)iBωωωωx,j(l)), which is related to the external distur-
bance ωωωx(k). This implies that the external disturbance
ωωωx(k) has an effect on the final consensus value, and which
is also related to the system matrix A + ∆A, and initial
state xxx(0). This condition is different from that of high-
order D-MASs without parameter uncertainties and exter-
nal disturbances, which is discussed in [34]. With ωωωx(k) ≡
0, the final consensus value ccc(k) of system (5) is given by
Corollary 1. That is, in this case, the final consensus value

is only related to the system matrix A + ∆A, and initial
state xxx(0).

Remark 6: It should be pointed out that, in [26]−[28],
by recursive linear matrix inequalities (RLMIs) techniques,
the robust H∞ consensus control problem of high-order
D-MASs (1) with uncertainties/disturbances was investi-
gated over a finite horizon. They were concerned about
the boundedness of the consensus error but did not actu-
ally guarantee its convergence. Different from [26]−[28],
we consider the infinite time horizon case, which took care
of the consensusability of D-MASs rather than consensus
errors. In Theorems 1 and 2, a sufficient LMI condition
is given to guarantee that high-order D-MASs (1) with pa-
rameter uncertainties and external disturbances achieve ro-
bust consensus with a performance level γ. Comparing to
related works [25]−[28], this approach has a favorable de-
coupling feature. Specifically, note that the H∞ perfor-
mance level γmin of network (6), consisting of N agents
in D-MASs (1) under consensus protocols (4), is actually
equal to the minimal H∞ norm of a single agent (1) by
means of a state feedback controller of the form uuui = Kxxxi,
independent of the communication topology G as long as
it is connected. In addition, final consensus values of high-
order D-MASs (1) with parameter uncertainties and ex-
ternal disturbances are first given in this paper. In addi-
tion, practical consensus problems for general high-order
linear time-invariant swarm systems with interaction un-
certainties and time-varying external disturbances on di-
rected graphs were investigated in [35]. The authors paid
attention to the output consensus of continuous-time high-
order linear time-invariant swarm systems. However, the
state consensus problem of discrete-time multi-agent sys-
tems is addressed in this paper. Moreover, the external
disturbance was solved by the Lyapunov-Krasovskii func-
tional approach and the linear matrix inequality technique
in the literature, but we use the H∞ control method to deal
with it.

4 Simulations
In this section, a numerical example is given to illustrate

the effectiveness of the proposed theoretical results. We
apply the above proposed consensus protocol (4) to achieve
state alignment among 8 agents. The dynamics of them are
described by (1), where

A =




√
2

2

√
2

2
0

−
√

2

2

√
2

2
0

0 0 1


 , B =




0.2
−0.4

1




D =




0.1 0 0
0 0.2 0
0 0 0.3


 , E1 =




0.1 0.3 0
0.2 0.4 0
0 0 1




E2 =




0.2
0.1
0.3


 , F =




r1 0 0
0 r2 0
0 0 r3




and r1, r2 and r3 are uncertain parameters which satisfy
−1 ≤ r1 ≤ 1, −1 ≤ r2 ≤ 1 and −1 ≤ r3 ≤ 1. Then,
D-MASs (1) can be rewritten as

xxxi(k + 1) = (A + DFE1)xxxi(k) + (B + DFE2)uuui(k). (30)

We apply the consensus protocol (4) to achieve consensus
among the above those 8 agents under a fixed topology G,
which is shown in Fig. 1.
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Fig. 1. The interaction topology G of 8 agents.

Assume that the initial state values of the all agents
1, . . . , 8 are randomly produced with x1(0) = [1, 5,−2]T ,
x2(0) = [2, 4, 3]T , x3(0) = [1, 1, 2]T , x4(0) = [3, 2, 1]T , x5(0)
= [5, 6,−2]T , x6(0) = [−3, 3, 4]T , x7(0) = [−2,−4,−3]T ,
x8(0) = [−5,−2,−1]T , and let r1 = 0.15, r2 = 0.25, r3 =
0.15 and τmax = 3. Each agent uses protocol (4). Let γ =
1 and suppose that the exogenous disturbance inputs are
selected as ωi,x(k) = 0.1ie−0.5k sin(k). By Theorem 2, we
can get that

K = [ 0.0983 −0.0884 0.2803 ]

X =




0.8086 0.0443 0.2130
0.0443 0.6593 −0.0279
0.2130 −0.0279 1.1160


 , ε = 4.2304

W = [ 0.1353 −0.0617 0.3362 ]

In Figs. 2−4, the simulation results are given. The state
trajectories of uncertain D-MASs (1) with and without ex-
ternal disturbances are shown in Figs. 2−4 (b) and (a), re-
spectively. Final consensus values c(k) and c∗(k), which
are produced by Corollary 1 and Theorem 3, are marked
by the red asterisk and blue circle, respectively.

Fig. 2. The state 1 trajectories of D-MASs (1).

From Figs. 2−4 (a), it can be seen that the state tra-
jectories of D-MASs (1) with ωωωx(k) ≡ 0 asymptotically
converge to the common value ccc(k), which is related to
rj (j = 1, 2, 3). The final consensus value of D-MASs (1)
with parameter uncertainties is 1N ⊗ ((A + DFE1)

k(1/N

× ∑N
i=1 xxxi(0))). This is in accord with Corollary 1. Nev-

ertheless, in Figs. 2−4 (b), we can know that the common
value of D-MASs (1) is related to ωx(k), and if ωx(k) 6= 0,

c(k) is altered and asymptotically converges to

1N ⊗
(

(A + DFE1)
k

(
1

N

N∑
i=1

xxxi(0)

)

+

k−1∑
i=0

j=N∑
j=1

l=k−i−1∑

l=0

(
1 N(A + ∆A)iBωωωωxxx,j(l)

))

which is in accordance with Theorem 3. By Definition 1,
it is clear that D-MASs (1) achieves robust consensus with
protocol (4). Therefore, the correctness and validity of pro-
posed protocols and theorems are demonstrated.

Fig. 3. The state 2 trajectories of D-MASs (1).

Fig. 4. The state 3 trajectories of D-MASs (1).

5 Conclusions

The robust H∞ consensus control problem of high-order
D-MASs with parameter uncertainties and external distur-
bances is investigated in this paper. A sufficient LMI con-
dition is obtained to guarantee that D-MASs (1) achieve
robust consensus with protocol (4). Meanwhile, the con-
vergence result is given as a final consensus value. Finally,
an illustrative example is given to demonstrate the correct-
ness and effectiveness of the theoretical results. Further
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research will be conducted on the consensus problem of D-
MASs with switching topologies and time-delays.

Appendix A Graph

Let a weighted digraph (or directed graph) G = (V, E ,A)
of order N represents an interaction topology of a network
of agents, with the set of nodes V = {v1, . . . , vN}, set of
edges E ⊆ V×V, and a weighted adjacency matrixA = [aij ]
with nonnegative adjacency elements aij .

The node indexes belong to a finite index set I = {1, 2,
. . . , N}. An edge of G is denoted by eij = (vi, vj), where vi

and vj are called the initial and terminal nodes. It implies
that node vj can receive information from node vi, but not
necessarily vice versa. The adjacency elements associated
with the edges of the graph are positive if eij ∈ E while
aij = 0 if eij /∈ E . Furthermore, we assume aii = 0 for
all i ∈ I. The set of neighbors of node vi is denoted by
Ni = {vj ∈ V : (vi, vj) ∈ E}. A cluster is any subset J
⊆ V of the nodes of the graph. The set of neighbors of a
cluster NJ is defined by NJ = ∪vi∈J Ni = {vj ∈ V : vi

∈ J, (vi, vj) ∈ E}. The in-degree and out-degree of node
vi are defined as degin(vi) =

∑n
j=1 aji and degout(vi) =∑n

j=1 aij , respectively, The degree matrix of the digraph G

is a diagonal matrix ∆ = [∆ij ], where

∆ij =

{
0, i 6= j

degout(vi), i = j.

The graph Laplacian matrix associated with the digraph
G is defined as L (G) = L = ∆−A.

Appendix B Kronecker Product

Given matrices P = (pij)n×n ∈ Rm×n and Q = (qij)n×n

∈ Rp×q, their Kronecker product is defined as

P ⊗Q = [pijQ] ∈ Rmp×nq

in [36]. For matrices A, B, C and D, with appropriate
dimensions, we have the following conditions.

1) (γA)⊗B = A⊗ (γB), where γ is a constant;
2) (A + B)⊗ C = A⊗ C + B ⊗ C;
3) (A⊗B)(C ⊗D) = (AC)⊗ (BD);
4) (A⊗B)T = AT ⊗BT ;
5) Suppose that A and B are invertible, then (A⊗B)−1

= A−1 ⊗B−1;
6) If A and B are symmetric, so is (A⊗B);
7) If A and B are symmetric positive definite (respec-

tively, positive semidefinite), so is (A⊗B);
8) Suppose that A has the eigenvalues βi with associated

eigenvectors fi ∈ Rp, i = 1, . . . , p, and B has the eigenval-
ues ρi with associated eigenvectors gj ∈ Rp, j = 1, . . . , q.
Then the pq eigenvalues of (A⊗B) are βiρj with associated
eigenvectors fi ⊗ gj , i = 1, . . . , p, j = 1, . . . , q.
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