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A New Type of Fuzzy Membership Function Designed for

Interval Type-2 Fuzzy Neural Network
Jiajun Wang1

Abstract A new type of fuzzy membership function (FMF) is proposed for interval type-2 fuzzy neural network (IT2FNN) in this
paper. Three types of interval type-2 FMF (IT2FMF) can be derived from the proposed type of FMF. And each type of IT2FMF
has different shape of footprint of uncertainty (FOU). The derived IT2FMFs are applied to a simplified T2FNN to identify two
nonlinear systems. The identification performance of the derived IT2FMFs are compared with Gaussian and ellipsoidal type of
IT2FMFs through simulation. Simulation results certify that the derived IT2FMFs can achieve better identification performance
than Gaussian and ellipsoidal type of IT2FMFs with elaborately tuning of the parameters for the simplified IT2FNN.
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1 Introduction

As the extension of the type-1 fuzzy set (T1FS) theory,
the type-2 fuzzy set theory is more advanced and complex
[1]. The type-2 fuzzy set theory is further developed with
the interval type-2 fuzzy set (IT2FS) theory [2]−[4]. The
IT2FS has more advanced ability to deal with the uncer-
tainties of the system. And it is used to solve identifica-
tion, control, prediction and pattern recognition problems
[5], [6]. Compared with T1FS, the excellent processing abil-
ity of the IT2FS originates from the interval type-2 FMF
(IT2FMF). The selection of the FMF for the IT2FS has
very large effects on the performance of the IT2FS. The
research on the FMF of the IT2FS is still an open problem.
The key point of this paper is the introduction of a new
type of FMF to enhance the performance of the IT2FS.

As we known, there exist six types of IT2FMFs that can
be selected from the literatures at present, which are tri-
angular, trapezoidal, sigmoidal, pi-shaped, Guassian and
ellipsoidal type of FMFs [7], [8]. Guassian, triangular, sig-
moidal and pi-shaped type of FMFs have three parameters
that need to be updated online. Trapezoidal and ellipsoidal
type of FMFs have four updating parameters. At present,
Guassian type of IT2FMF is widely applied in the IT2FS.
And it become a standard selection in the interval type-2
fuzzy neural network (IT2FNN) [9]−[11].

The fuzzy neural network (FNN) is the hybridization of
the neural network and fuzzy system, which inherits the
learning ability from the neural network and the capability
of fuzzy reasoning to uncertain information [12]−[14]. The
Takagi-Sugeno-Kang (TSK) type of fuzzy models are effec-
tive in the system identification problems [15]−[18]. The
combination of the TSK-type with FNN can achieve su-
perior learning accuracy than Mamdani type of FNN. The
interval type-2 TSK fuzzy neural network (IT2TSKFNN)
unites the IT2FS in the antecedent part and the TSK-type
as the consequent parts. And it has the united advantages
of the IT2FS, TSK-type fuzzy set and neural network [16],
[17]. In this paper, IT2TSKFNN is selected as the target
FNN to test the performance of the proposed FMF.

Although the IT2FNN has superior performance in
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processing the uncertainties of the system than T1FNN,
IT2FNN is computationally intensive because the type-
reduction procedure is very complex. And this confines
the application of the IT2FNN. The iterative K-M algo-
rithm is the general method to realize the type-reduction
of the IT2FNN [3]. The consequent weights of almost all
the IT2FNNs except TSK-type need to be rearranged in
ascending order according to the iterative K-M algorithm.
In this paper, we adopt the simplified IT2FNN to test the
derived IT2FMFs. The simplified IT2FNN can be realized
with the computation of distribution factor qr and ql with-
out incurring the K-M iterative computation [19].

The main contribution of this paper can be given as fol-
lowing three aspects.

1) A new type of IT2FMF is proposed. Based on the
proposed IT2FMF, three type of IT2FMFs can be derived.
This make the selection of the IT2FMFs for the IT2FNN
have larger freedom.

2) The derived IT2FMFs are tested with the simplified
IT2FNN. The design procedure of the simplified IT2FNN
is given step by step. And the parameter updating compu-
tation is demonstrated in details.

3) The derived IT2FMFs for the simplified IT2FNN can
achieve better identification performance than Gaussian
and ellipsoidal type of IT2FMFs in two typical nonlinear
examples.

This paper is organized as follows. In Section 2, the pro-
posed type of FMF is introduced. In Section 3, the design
procedure of the simplified IT2FNN is presented. In Sec-
tion 4, the parameter updating rules are derived. In Section
5, the simulation studies are given to show the effectiveness
of the derived IT2FMFs. In Section 6, some conclusions are
given.

2 Introduction of IT2FMFs

2.1 Gaussian Type of IT2FMF

The Gaussian type of IT2FMF is given in Fig. 1 (a). The
mathematical expression of the Gaussian type of IT2FMF
can be expressed as

µ(x) = exp

(
−1

2

(x−m)2

σ2

)
≡ G(x, m, σ) (1)

where m is the mean value, and σ is the standard deviation
(STD), and x is the input variable. In (1), the mean value
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m and the STD σ all can be seen as uncertain values. In
this paper, the mean value m is selected as the uncertain
value (m ∈ [m1, m2], where m1 < m2) and the STD σ is
fixed. The footprint of uncertainty (FOU) of the Gaussian
type of FMF is bounded by lower MF µ and upper MF µ,
which can be defined as following equation

µ =





G(x, m2, σ), x ≤ m1 + m2

2

G(x, m1, σ), x >
m1 + m2

2

(2)

and

µ =





G(x, m1, σ), x ≤ m1

1, m1 < x ≤ m2

G(x, m2, σ), x > m2.

(3)

Fig. 1. Gaussian and ellipsoidal type of IT2FMFs.

2.2 Ellipsoidal Type of IT2FMF

The ellipsoidal type of IT2FMF is given in Fig. 1 (b). The
equation of the ellipsoidal type of IT2FMF can be defined
as following equation [8]

µ =





(
1− |x−m

σ
|a

) 1
a

, a2 < a < a1, if |x−m| < σ

0, otherwise

(4)

where m is the middle value, d is the width of the FMF, and
x is the input value. The parameters a1 and a2 determine
the area of the FOU of the ellipsoidal type of IT2FMF,
which can be selected as

a1 > 1 and 0 < a2 < 1. (5)

The boundaries of the FOU of the ellipsoidal type of
IT2FMF are the lower MF µ and the upper MF µ. The
boundary FMFs are given in Table I.

From the definition of the ellipsoidal type of IT2FMF,
we can obtain two points.

1) There are four parameters m, σ, a1 and a2 that need
to be updated in the identification of a system.

2) The computation of the derivation of the ellipsoidal
type of IT2FMF is not an easy job. It need complex com-
putation.

2.3 The Proposed IT2FMFs

Originating from the ellipsoidal type of IT2FMF, the
proposed type of FMF can be defined as following equa-
tion

µ =

{
1− |x−m

σ
|a, if |x−m| < σ

0, otherwise
(6)

where m, σ and x are the same as the definition in (4). a
is the parameter that can be used to adjust the shape of

the FOU. According to the different value of parameter a,
we can obtain three different type of IT2FMFs.

1) When a > 0 and a 6= 1, the obtained FMFs are called
exponential type.

2) When a = 1, the obtained FMF is called linear type.
According to different combination with the parameter

a, we can have three types of IT2FMFs.
1) The combination of the first case is that the upper MF

is exponential-type FMF and the lower MF is linear-type
FMF. This combination is called exponential-linear-type
IT2FMF (EL-type IT2FMF).

2) The combination of the second case is that the upper
MF is linear-type MF and the lower MF is exponential-
type MF. This combination is called linear-exponential-
type IT2FMF (LE-type IT2FMF).

3) The combination of third case is that the upper and
lower MFs are all exponential-type MFs. This combination
is called exponential-exponential-type IT2FMF (EE-type
IT2FMF).

The figures of the derived IT2FMFs are given in Fig. 2,
where subgraphs (a), (b) and (c) represent EL-type, LE-
type and EE-type IT2FMFs respectively. The upper and
lower MFs are given in Table I respectively. Compared with
the ellipsoidal type of IT2FMF, the derived IT2FMFs have
the following merits.

1) The parameters that need to be updated are re-
duced. The ellipsoidal type of IT2FMF has four kinds of
parameters that need to be updated, whereas the proposed
IT2FMF has three kinds of parameters.

2) The computation complexity is simplified. Simplifica-
tion of the computation is very important for the applica-
tion of the IT2FNN.

3) The design freedoms of the FMFs are increased with
different combination. The different combination can make
them have different performance for different systems.

3 The Design Procedure of IT2FNN

To test the effectiveness of the derived IT2FMFs, the
simplified IT2FNN is selected as the target IT2FNN [19].
The structure of the simplified IT2FNN is given in Fig. 3.
There are six layers that need to be designed in the simpli-
fied IT2FNN.

Layer 1: is the input layer. The input value xi (i = 0, 1,
. . . , n, n represents the number of input) is directly trans-
mitted to Layer 2 and Layer 4. There are no weights that
need to be updated in Layer 1.

Layer 2: is the FMF layer. In this layer, the fuzzifica-
tion operation is finished with IT2FMFs. And in Fig. 3,
the FMFs can be Gaussian, ellipsoidal or one of the de-
rived IT2FMFs. After the interval type-2 fuzzification in
Layer 2, the interval [µ

ij
, µij ] (i = 1, . . . , n represents the

actual input, j = 1, . . . , m represents the fuzzy rules for
each actual input) can be acquired.

Layer 3: is firing layer. Each node in this layer represents
one fuzzy logic rule and performs a fuzzy meet operation
using an algebraic product operation. The output of a rule
node represents the firing strength Fj of the corresponding
fuzzy rule Rj that is an interval type-1 fuzzy set. The firing
strength Fj can be computed with the following expression

Fj = [f
j
, f j ], j = 1, . . . , m (7)

f
j

=

n∏
i=1

µ
ij

, f j =

n∏
i=1

µij , i = 1, . . . , n (8)

where the index m represents the fuzzy rules for each in-
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TABLE I
The MFs of the Ellipsoidal and Derived IT2FMFs

FMF Ellipsoidal EL-type LE-type EE-type (a > 1) EE-type (0 < a < 1)

µ (1− | x−m
σ |a1 )

1
a1 1− | x−m

σ |a 1− | x−m
σ | 1− | x−m

σ |a 1− | x−m
σ | 1a

µ (1− | x−m
σ |a2 )

1
a2 1− | x−m

σ | 1− | x−m
σ |a 1− | x−m

σ | 1a 1− | x−m
σ |a

Fig. 2. The shape of FOU for the derived IT2FMFs.

Fig. 3. The structure of the simplified IT2FNN with two input, three rules and one final output.

put variable, and the index n represents the actual input
variable.

Layer 4: is the consequent layer. The node in this layer
is called TSK-type node. Each rule node in the Layer 3 has
its corresponding TSK-type node in the Layer 4. The out-
put of each node is an interval type-1 fuzzy set, denoted by
[wjl, wjr], which can be called TSK-type weights. And the
TSK-type weights can be computed as following expression

[wjl, wjr] = [c0j − s0j , c0j + s0j ]

+

n∑
i=1

[cij − sij , cij + sij ]xi (9)

where cij and sij are called consequent parameter. Each
TSK-type weight can be expressed as following

wjl =

n∑
i=0

cijxi −
n∑

i=0

sij |xi| (10)

and

wjr =

n∑
i=0

cijxi +

n∑
i=0

sij |xi| (11)

where x0 ≡ 1.
Layer 5: can be called output processing layer or type

reduction layer. The distribution factor q can be designed
to enable the adaptive adjustment of the upper and lower
value of the output. The application of the distribution
factor q can alleviate the computation in type reduction
without using the K-M iterative procedure. The output of
[yl, yr] can be computed as following expressions

yl =

(1− ql)
m∑

j=1

f jwjl + ql

m∑
j=1

f
j
wjl

m∑
j=1

(f
j
+ f j)

(12)

and

yr =

(1− qr)
m∑

j=1

f
j
wjr + qr

m∑
j=1

f jwjr

m∑
j=1

(f
j
+ f j)

(13)

where ql and qr are called left and right distribution factor.
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Layer 6: is the output layer. Because the output of
Layer 5 is an interval set, it can not be used for the output
directly. The defuzzification can be realized by computing
the average of yl and yr.

y =
yl + yr

2
. (14)

The simplified IT2FNN can reduce the computational
complexity of the IT2FNN. The parameter updating com-
putation is a key part to realize the simplified IT2FNN. The
gradient descent method (GDM) will be used in the param-
eter updating computation of the simplified IT2FNN.

4 Parameter Updating Rules

In the parameter updating design of the IT2FNN, many
different design method can be applied, such like GDM,
extended Kalman filter (EKF), and particle swarm opti-
mization (PSO) [8]. In this paper, we applied the GDM in
the parameter updating of single-output system identifica-
tion. The cost function is defined as

E =
1

2
(y(k)− yd(k))2 =

1

2
e(k)2 (15)

where yd(k) and y(k) are the desired output and the ac-
tual output of the simplified IT2FNN respectively, e(k) =
y(k)− yd(k) is the identification error and k is the sample
number. According to the GDM, the parameters can be
updated with the following algorithm

X(k + 1) = X(k)− η
∂E

∂X(k)
(16)

where X(k) can represents m, σ, a, c, s or q, and η is the
learning rate.

When the Gaussian type of FMF is selected in the sim-
plified IT2FNN, there are three kinds of parameters that
need to be updated, which are consequent parameters, dis-
tribution factors and antecedent parameters.

4.1 Consequent Parameter and Distribution Fac-
tor Updating Algorithm

The consequent parameters include c and s. The updat-
ing algorithm of ∂E

∂cij
and ∂E

∂sij
for the consequent parame-

ters can be given as the following expressions

∂E

∂cij
=

∂E

∂y

(
∂y

∂yl

∂yl

∂wjl

∂wjl

∂cij
+

∂y

∂yr

∂yr

∂wjr

∂wjr

∂cij

)

=
((1− ql + qr)f j + (1− qr + ql)f

j
)xie

m∑
j=1

(f
j
+ f j)

(17)

and

∂E

∂sij
=

∂E

∂y

(
∂y

∂yl

∂yl

∂wjl

∂wjl

∂sij
+

∂y

∂yr

∂yr

∂wjr

∂wjr

∂sij

)

=
((1− qr − ql)f

j
+ (1− ql + qr)f j)|xi|e

m∑
j=1

(f
j
+ f j)

. (18)

Remark 1: In consequent parameter updating, i = 0,
. . ., n, j = 1, . . . , m. In following antecedent parameter
updating, i = 1, . . . , n, j = 1, . . . , m.

The distribution factor include the left factor ql and right
factor qr. The updating algorithms of ∂E

∂ql
and ∂E

∂qr
for the

distribution factor can be computed with the following ex-
pressions

∂E

∂ql
=

m∑
j=1

wjl(f
j
− f j)e

m∑
j=1

(f
j
+ f j)

(19)

and

∂E

∂qr
=

m∑
j=1

wjr(f j − f
j
)e

m∑
j=1

(f
j
+ f j)

. (20)

4.2 Antecedent Parameter Updating Algorithm

The antecedent parameters include m, σ and a. The
common updating algorithm of ∂E

∂X
for the antecedent pa-

rameters can be given as following expression

∂E

∂X
=

[(
∂yl

∂f j

+
∂yr

∂f j

)
∂f j

∂µij

∂µij

∂X

+

(
∂yl

∂f
j

+
∂yr

∂f
j

)
∂f

j

∂µ
ij

∂µ
ij

∂X

]
e (21)

where X can be m, σ or a. For the simplified IT2FNN, the
partial derivative ∂yl

∂fj
, ∂yl

∂f
j

, ∂yr

∂fj
and ∂yr

∂f
j

can be computed

with the following expressions

∂yl

∂f j

=
(1− ql)wjl − yl

m∑
j=1

(f
j
+ f j)

,
∂yl

∂f
j

=
qlwjl − yl

m∑
j=1

(f
j
+ f j)

(22)

and

∂yr

∂f j

=
qrwjr − yr
m∑

j=1

(f
j
+ f j)

,
∂yr

∂f
j

=
(1− qr)wjr − yr

m∑
j=1

(f
j
+ f j)

. (23)

The computation of the partial derivatives
∂µij

∂X
and

∂µ
ij

∂X
in (21) is relation to the selection of the IT2FMFs. Their
computation with different type of IT2FMFs are given as
following parts.
4.2.1 When the Gaussian Type of IT2FMF is Se-

lected

There are three kinds of antecedent parameters that need
to be updated in Gaussian type of IT2FMF, which are m1,

m2 and σ. The computation of the partial derivatives
∂µij

∂X

and
∂µ

ij

∂X
can be given as following expressions

∂µij

∂mij1
=





(xi −mij1)µij

(σij)2
, xi ≤ mij1

0, otherwise
(24)

∂µ
ij

∂mij1
=





(xi −mij1)µ
ij

(σij)2
, xi >

mij1 + mij2

2
0, otherwise

(25)

∂µij

∂mij2
=





(xi −mij2)µij

(σij)2
, xi > mij2

0, otherwise
(26)

∂µ
ij

∂mij2
=





(xi −mij2)µ
ij

(σij)2
, xi ≤ mij1 + mij2

2
0, otherwise

(27)
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∂µij

∂σij
=





(xi −mij1)
2µij

(σij)3
, xi < mij1

(xi −mij2)
2µij

(σij)3
, xi > mij2

0, otherwise

(28)

and

∂µ
ij

∂σij
=





(xi −mij2)
2µ

ij

(σij)3
, xi ≤ mij1 + mij2

2
(xi −mij1)

2µ
ij

(σij)3
, xi >

mij1 + mij2

2
.

(29)

Equations (24)−(29) give the computation of the partial
derivatives of the Gaussian type of IT2FMF with respect

of the parameters m1, m2 and σ. When
∂µij

∂X
and

∂µ
ij

∂X
are

acquired, then the partial derivative ∂E
∂X

can be obtained
with (22) and (23).

4.2.2 When the Ellipsoidal Type of IT2FMF Is
Selected

When the ellipsoidal type of IT2FMF is selected, there
are four kinds of antecedent parameters that need to be
updated, which are m, σ, a1 and a2. The computation of

the partial derivatives
∂µij

∂X
and

∂µ
ij

∂X
for the IT2FMF can

be given in (30)−(35) at the bottom of this page.

∂µij

∂mij
=





− 1

σij

[
1−

(
mij − xi

σij

)aij1
] 1−aij1

aij1
(mij − xi

σ

)(aij1−1)

, mij − σij < xi ≤ mij

1

σij

[
1−

(
xi −mij

σij

)aij1
] 1−aij1

aij1
(xi −mij

σ

)(aij1−1)

, mij < xi ≤ mij + σij

0, otherwise

(30)

∂µ
ij

∂mij
=





− 1

σij

[
1−

(
mij − xi

σij

)aij2
] 1−aij2

aij2
(mij − xi

σ

)(aij2−1)

, mij − σij < xi ≤ mij

1

σij

[
1−

(
xi −mij

σij

)aij2
] 1−aij2

aij2
(xi −mij

σ

)(aij2−1)

, mij < xi ≤ mij + σij

0, otherwise

(31)

∂µij

∂σij
=





1

σij

[
1−

(
mij − xi

σij

)aij1
] 1−aij1

aij1
(mij − xi

σ

)aij1
, mij − σij < xi ≤ mij

1

σij

[
1−

(
xi −mij

σij

)aij1
] 1−aij1

aij1
(xi −mij

σ

)aij1
, mij < xi ≤ mij + σij

0, otherwise

(32)

∂µ
ij

∂σij
=





1

σij

[
1−

(
mij − xi

σij

)aij2
] 1−aij2

aij2
(mij − xi

σ

)aij2
, mij − σij < xi ≤ mij

1

σij

[
1−

(
xi −mij

σij

)aij2
] 1−aij2

aij2
(xi −mij

σ

)aij2
, mij < xi ≤ mij + σij

0, otherwise

(33)

∂µij

∂aij1
=





−
[
1−

(
mij − xi

σij

)aij1
] 1

aij1





1

a2
ij1

ln

[
1−

(
mij − xi

σij

)aij1
]

+

(
mij − xi

σij

)aij1

ln

(
mij1 − xi

σij

)

aij1

(
1−

(
mij − xi

σij

)aij1
)





,

mij − σij < xi ≤ mij

−
[
1−

(
xi −mij

σij

)aij1
] 1

aij1





1

a2
ij1

ln

[
1−

(
xi −mij

σij

)aij1
]

+

(
xi −mij

σij

)aij1

ln

(
xi −mij

σij

)

aij1

(
1−

(
xi −mij

σij

)aij1
)





,

mij < xi ≤ mij + σij

0, otherwise

(34)
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∂µ
ij

∂aij2
=





−
[
1−

(
mij − xi

σij

)aij2
] 1

aij2





1

a2
ij2

ln

[
1−

(
mij − xi

σij

)aij2
]

+

(
mij − xi

σij

)aij2

ln

(
mij1 − xi

σij

)

aij2

(
1−

(
mij − xi

σij

)aij2
)





,

mij − σij < xi ≤ mij

−
[
1−

(
xi −mij

σij

)aij2
] 1

aij2





1

a2
ij2

ln

[
1−

(
xi −mij

σij

)aij2
]

+

(
xi −mij

σij

)aij2

ln

(
xi −mij

σij

)

aij2

(
1−

(
xi −mij

σij

)aij2
)





,

mij < xi ≤ mij + σij

0, otherwise

(35)

and
∂µ

ij

∂aij1
= 0,

∂µij

∂aij2
= 0.

4.2.3 When the Derived IT2FMFs Are Selected

When the derived IT2FMFs are selected, there are three
kinds of antecedent parameters that need to be updated,
which are m, σ and a. The computation of the partial

derivatives
∂µij

∂X
and

∂µ
ij

∂X
for the derived IT2FMFs are

given with the following three cases.
1) EL-type IT2FMF
In the EL-type IT2FMF, the parameter a > 1. The

computation of the partial derivative
∂µij

∂X
and

∂µ
ij

∂X
of the

EL-type IT2FMF can be given in Table II.

TABLE II
∂µij

∂X
and

∂µ
ij

∂X
of EL-type IT2FMF

∂µ
∂X mij − σij < xi ≤ mij mij < xi ≤ mij + σij

∂µij
∂mij

− aij
σij

(
mij−xi

σij
)(aij−1) aij

σij
(

xi−mij
σij

)(aij−1)

∂µ
ij

∂mij
− 1

σij

1
σij

∂µij
∂σij

aij
σij

(
mij−xi

σij
)aij

aij
σij

(
xi−mij

σij
)aij

∂µ
ij

∂σij

mij−xi

σ2
ij

xi−mij

σ2
ij

∂µij
∂aij

−(
mij−xi

σij
)aij ln(

mij−xi
σij

) −(
xi−mij

σij
)aij ln(

xi−mij
σij

)

∂µ
ij

∂aij
0 0

2) LE-type IT2FMF
In the LE-type IT2FMF, the parameter 0 < a < 1. The

computation of the partial derivative
∂µij

∂X
and

∂µ
ij

∂X
of the

LE-type IT2FMF are given in Table III.

TABLE III
∂µij

∂X
and

∂µ
ij

∂X
of LE-type IT2FMF

∂µ
∂X mij − σij < xi ≤ mij mij < xi ≤ mij + σij

∂µij
∂mij

− 1
σij

1
σij

∂µ
ij

∂mij
− aij

σij
(

mij−xi
σij

)(aij−1) aij
σij

(
xi−mij

σij
)(aij−1)

∂µij
∂σij

mij−xi

σ2
ij

xi−mij

σ2
ij

∂µ
ij

∂σij

aij
σij

(
mij−xi

σij
)aij

aij
σij

(
xi−mij

σij
)aij

∂µij
∂aij

0 0

∂µ
ij

∂aij
−(

mij−xi
σij

)aij ln(
mij−xi

σij
) −(

xi−mij
σij

)aij ln(
xi−mij

σij
)

3) EE-type IT2FMF

In the computation of the partial derivative
∂µij

∂X
and

∂µ
ij

∂X
for the LE-type IT2FMF, there are two case need to

be considered. One is when 0 < a < 1, and the other is

when a > 1. The computation of
∂µij

∂X
and

∂µ
ij

∂X
for two

cases is given in Table IV and Table V.

TABLE IV
∂µij

∂X
and

∂µ
ij

∂X
of EE-type IT2FMF When 0 < a < 1

∂µ
∂X mij − σij < xi ≤ mij mij < xi ≤ mij + σij

∂µij
∂mij

− 1
aijσij

(
mij−xi

σij
)

(1−aij)
aij 1

aijσij
(

xi−mij
σij

)

(1−aij)
aij

∂µ
ij

∂mij
− aij

σij
(

mij−xi
σij

)(aij−1) aij
σij

(
xi−mij

σij
)(aij−1)

∂µij
∂σij

1
aijσij

(
mij−xi

σij
)

1
aij − 1

aijσij
(

xi−mij
σij

)
1

aij

∂µ
ij

∂σij

aij
σij

(
mij−xi

σij
)aij − aij

σij
(

xi−mij
σij

)aij

∂µij
∂aij

1
a2

ij
(

mij−xi
σij

)
1

aij ln(
mij−xi

σij
) − 1

a2
ij

(
xi−mij

σij
)

1
aij ln(

xi−mij
σij

)

∂µ
ij

∂aij
−(

mij−xi
σij

)aij ln(
mij−xi

σij
) (

xi−mij
σij

)aij ln(
xi−mij

σij
)

TABLE V
∂µij

∂X
and

∂µ
ij

∂X
of EE-type IT2FMF When a > 1

∂µ
∂X mij − σij < xi ≤ mij mij < xi ≤ mij + σij

∂µij
∂mij

1
aijσij

(
mij−xi

σij
)

(1−aij)
aij − 1

aijσij
(

xi−mij
σij

)

(1−aij)
aij

∂µ
ij

∂mij

aij
σij

(
mij−xi

σij
)(aij−1) − aij

σij
(

xi−mij
σij

)(aij−1)

∂µij
∂σij

− 1
aijσij

(
mij−xi

σij
)

1
aij 1

aijσij
(

xi−mij
σij

)
1

aij

∂µ
ij

∂σij
− aij

σij
(

mij−xi
σij

)aij
aij
σij

(
xi−mij

σij
)aij

∂µij
∂aij

− 1
a2

ij
(

mij−xi
σij

)
1

aij ln(
mij−xi

σij
) 1

a2
ij

(
xi−mij

σij
)

1
aij ln(

xi−mij
σij

)

∂µ
ij

∂aij
(

mij−xi
σij

)aij ln(
mij−xi

σij
) −(

xi−mij
σij

)aij ln(
xi−mij

σij
)

Remark 2: From the above computation, we can obtain
the following conclusions.

1) The difference realization between the FMFs mainly

focuses on the computation of
∂µij

∂X
and

∂µ
ij

∂X
.

2) Consequent parameter and distribution factor updat-
ing algorithm are all the same for Gaussian, ellipsoidal, and
the derived IT2FMFs in the simplified IT2FNN.

3) The computation of the ellipsoidal type of IT2FMF
is more complex than Gaussian and the derived IT2FMFs.
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And the computation of EL-type and LE-type IT2FMFs
are more easy to be realized than the EE-type IT2FMF.

5 Simulation Results and Analysis

To test the effectiveness of the derived IT2FMFs, the
IT2FMFs are applied in the simplified IT2FNN to identify
two typical nonlinear time-varying systems [5], [19], [20].
The structure of the system identification constructed with
MATLAB/Simulink is given in Fig. 4.

Fig. 4. The structure of the system identification with simpli-
fied IT2FNN.

To compare the performance of the derived IT2FMFs
with the selected IT2FMFs, the rules of each node in the
second layer of the simplified IT2FNN is set to be m = 3,
and the input of the simplified IT2FNN is set to be n =
2. In the simulation of the identification with simplified
IT2FNN, the common initialization data are given as the
following data

cij = 0.1, sij = 0.01, η = 0.8 (36)

where i = 0, 1, 2 and j = 1, 2, 3.
The antecedent parameters of different type of IT2FMFs

in this paper are given in Table VI, where i = 1, 2 and j =
1, 2, 3.

TABLE VI
The Initial Antecedent Parameters for Different

Type of IT2FMFs

FMF Antecedent parameters

Gaussian-type mij1 = 0, mij2 = 0, dij = 1

Ellipsoidal-type mij = 0, aij1 = 2, aij2 = 0.5, dij = 1

EL-type mij = 0, aij = 2, dij = 1

LE-type mij = 0, aij = 0.5, dij = 1

EE-type mij = 0, aij = 1, dij = 1

The integral of the absolute value of the error (IAE) is
selected as the performance criterion, and which is given as
following expression

IAE =

+∞∑

k=1

|e(k)|Ts (37)

where Ts is the sample time, and e(k) = y(k)−yd(k) is the
identification error. In the simulation, the sample time Ts

is set to be 0.001 s.

5.1 Example 1

The first nonlinear system to be identified is given as the
following expression

yd(k + 1) =
yd(k)

1 + y2
d(k)

+ u3(k) (38)

where k is the sample number. The input variables of the
simplified IT2FNN is u(k) and yd(k). The input signal is
generated with u(k) = sin(2πk/1000).

The identification results of the system in (38) are given
in Fig. 5 (a) with different type of IT2FMFs. The identifi-
cation errors and IAEs are given in Fig. 5 (b) and Fig. 5 (c).
In Fig. 5, the subscript 1, 2, 3, 4 and 5 present Gaussian,
ellipsoidal, EL-type, LE-type and EE-type IT2FMFs, re-
spectively. When the output of the system contains the
uniform random noise (between [−0.1, 0.1]), the simulation
results are given in Fig. 6 (a). And the comparison of iden-
tification errors and IAEs with disturbance are given in
Fig. 6 (b) and Fig. 6 (c). The comparison data of the IAEs
for Example 1 without and with disturbance are given in
Table VII at 2 second.

Fig. 5. Identification of Example 1 with different FMFs.

Fig. 6. Identification of Example 1 with disturbance.
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TABLE VII
The Comparison of the IAEs for Example 1

FMF Without disturbance With disturbance

Gaussian-type 6.74× 10−3 8.65× 10−2

Ellipsoidal-type 6.82× 10−3 6.3× 10−2

EL-type 6.62× 10−3 6.83× 10−2

LE-type 6.47× 10−3 6.12× 10−2

EE-type 4.68× 10−3 5.18× 10−2

5.2 Example 2

The second nonlinear system to be identified is given as
the following expression

yd(k + 1) =
f

a + y2
d(k − 1) + y2

d(k − 2)
(39)

where the parameters f a, b and c are time-varying param-
eters, and which are given as following expressions

f = yd(k)yd(k − 1)yd(k − 2)

× [yd(k − 2)− b]u(k − 1) + cu(k) (40)

a(t) = 1.2− 0.2cos

(
2πk

T

)
(41)

b(t) = 1− 0.4sin

(
2πk

T

)
(42)

c(t) = 1 + 0.4sin

(
2πk

T

)
(43)

where T is the samples per period. To test the identifi-
cation performance, the input signal is given as following
expression

u(k) =





sin(πk
25

), k < 250

1, 250 ≤ k < 500

−1, 200 ≤ k < 750

g, 750 ≤ k < 1000

(44)

where

g = 0.3sin

(
πk

25

)
+ 0.1sin

(
πk

32

)
+ 0.6sin

(
πk

10

)
. (45)

The identification results of the system in (39) are given
in Fig. 7 (a) with different FMFs. The identification errors
and IAEs are given in Fig. 7 (b) and Fig. 7 (c). And the
identification results with uniform noise between [−0.1, 0.1]
are given in Fig. 8 (a). The comparison of identification er-
rors and IAEs with disturbance are given in Fig. 8 (b) and
Fig. 8 (c). The comparison data of the IAEs for Example 2
without and with disturbance are given in Table VIII at 2
second.

5.3 Analysis and Discussion

From the simulation results and comparison, we can ac-
quire the following five conclusions.

1) The proposed type (including EL-type, LE-type and
EE-type) of IT2FMFs are effective and can be applied in
the system identification with simplified IT2FNN.

2) The derived IT2FMFs can achieve better performance
than Gaussian and ellipsoidal type of IT2FMFs with elab-
orately tuning of the parameters of the simplified IT2FNN.

TABLE VIII
The Comparison of the IAEs for Example 2

FMF Without disturbance With disturbance

Gaussian-type 2.25× 10−2 4.72× 10−2

Ellipsoidal-type 2.68× 10−2 3.63× 10−2

EL-type 2.2× 10−2 3.43× 10−2

LE-type 2.21× 10−2 3.51× 10−2

EE-type 2.16× 10−2 3.27× 10−2

Fig. 7. Identification of Example 2 with different IT2FMFs.

Fig. 8. Identification of Example 2 with disturbance.

3) Ellipsoidal type of IT2FMF can be used in the
static parameter system. And it is more robustness than
Gaussian type of IT2FMF under disturbance environment.
While when it is used in the time-varying parameter sys-
tem, the identification error is larger than Gaussian and
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the derived IT2FMFs.
4) In static system identification, the EL-type IT2FMF

has better identification accuracy than LE-type IT2FMF
with disturbance. While in time-varying system identifica-
tion, the LE-type IT2FMF has better identification accu-
racy than EL-type IT2FMF with disturbance.

5) Among the derived FMFs, the EE-type IT2FMF has
stronger identification ability than EL-type and LE-type
IT2FMFs, with or without considering the time-varying or
disturbance characteristics of the actual system.

Remark 3: Although the derived IT2FMFs can achieve
better identification performance than Gaussian and ellip-
soidal type of IT2FMFs in the above two examples, we can
not say that the derived IT2FMFs can guarantee better
performance in all kinds of environment. Because uncer-
tainty can appear different for different system, one type
of IT2FMF can not fit all the condition. This paper gives
more freedom in the selection of the IT2FMFs that can be
use in the IT2FNN design.

6 Conclusions

In this paper, a new type of FMF is proposed for the
IT2FNN. And three type of IT2FMFs can be derived with
the proposed type of FMF. The whole paper can be sum-
marized with the following three conclusions.

1) The derived three types of IT2FMFs are simpler than
ellipsoidal type of IT2FMF and have better identification
ability in system identification.

2) The derived IT2FMFs and the adoption of the distri-
bution factor q can simplify the computation of the type
reduction problem of the IT2FNN. And this combination
can make the realization of the IT2FNN an easy job.

3) The proposed IT2FMFs can give the selection of the
IT2FMFs more freedom in IT2FS. This is very meaningful
for the research of the IT2FNN.

References

1 L. A. Zadeh, “The concept of a linguistic variable and its
application to approximate reasoning-I,” Inform. Sci., vol. 8,
no. 3, pp. 199−249, 1975.

2 N. N. Karnik, J. M. Mendel, and Q. L. Liang, “Type-2 fuzzy
logic systems,” IEEE Trans. Fuzzy Syst., vol. 7, no. 6, pp. 643
−658, Dec. 1999.

3 Q. L. Liang and J. M. Mendel, “Interval type-2 fuzzy logic
systems: Theory and design,” IEEE Trans. Fuzzy Syst., vol.
8, no. 5, pp. 535−550, Oct. 2000.

4 J. M. Mendel, R. I. John, and F. L. Liu, “Interval type-2
fuzzy logic systems made simple,” IEEE Trans. Fuzzy Syst.,
vol. 14, no. 6, pp. 808−821, Dec. 2006.

5 R. H. Abiyev and O. Kaynak, “Type 2 fuzzy neural struc-
ture for identification and control of time-varying plants,”
IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4147−4159,
Dec. 2010.

6 C. T. Lin, N. R. Pal, S. L. Wu, Y. T. Liu, and Y. Y. Lin,
“An interval type-2 neural fuzzy system for online system
identification and feature elimination,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 26, no. 7, pp. 1442−1455, Jul. 2015.

7 B. I. Choi and F. C. H. Rhee, “Interval type-2 fuzzy member-
ship function generation methods for pattern recognition,”
Inform. Sci., vol. 179, no. 13, pp. 2102−2122, Jun. 2009.

8 M. A. Khanesar, E. Kayacan, M. Teshnehlab, and O. Kay-
nak, “Extended Kalman filter based learning algorithm for
type-2 fuzzy logic systems and its experimental evaluation,”

IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4443−4455,
Nov. 2012.

9 Y. Y. Lin, J. Y. Chang, and C. T. Lin, “Identification and
prediction of dynamic systems using an interactively recur-
rent self-evolving fuzzy neural network,” IEEE Trans. Neu-
ral Netw. Learn. Syst., vol. 24, no. 2, pp. 310−321, Feb. 2013.

10 Y. Y. Lin, J. Y. Chang, N. R. Pal, and C. T. Lin,
“A mutually recurrent interval type-2 neural fuzzy system
(MRIT2NFS) with self-evolving structure and parameters,”
IEEE Trans. Fuzzy Syst., vol. 21, no. 3, pp. 492−509, Jun.
2013.

11 C. H. Wang, C. S. Cheng, and T. T. Lee, “Dynamical
optimal training for interval type-2 fuzzy neural network
(T2FNN),” IEEE Trans. Syst. Man Cybernet. B, vol. 34, no.
3, pp. 1462−1477, Jun. 2004.

12 J. R. Castro, O. Castillo, P. Melin, and A. Rodriguez-
Dı́az, “A hybrid learning algorithm for a class of interval
type-2 fuzzy neural networks,” Inform. Sci., vol. 179, no. 13,
pp. 2175−2193, Jun. 2009.

13 C. F. Juang and C. Y. Chen, “Data-driven interval type-2
neural fuzzy system with high learning accuracy and im-
proved model interpretability,” IEEE Trans. Cybernet., vol.
43, no. 6, pp. 1781−1795, Dec. 2013.

14 C. F. Juang and Y. W. Tsao, “A self-evolving interval type-
2 fuzzy neural network with online structure and parameter
learning,” IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1411−
1424, Dec. 2008.

15 C. S. Chen, “TSK-type self-organizing recurrent-neural-
fuzzy control of linear microstepping motor drives,” IEEE
Trans. Power Electron., vol. 25, no. 9, pp. 2253−2265, Sep.
2010.

16 C. S. Chen, “Supervisory interval type-2 TSK neural fuzzy
network control for linear microstepping motor drives with
uncertainty observer,” IEEE Trans. Power Electron., vol. 26,
no. 7, pp. 2049−2064, Jul. 2011.

17 Y. Y. Lin, J. Y. Chang, and C. T. Lin, “A TSK-type-based
self-evolving compensatory interval type-2 fuzzy neural net-
work (TSCIT2FNN) and its applications,” IEEE Trans. Ind.
Electron., vol. 61, no. 1, pp. 447−459, Jan. 2014.

18 X. P. Xie, H. J. Ma, Y. Zhao, D. W. Ding, and Y. C. Wang,
“Control synthesis of discrete-time T-S fuzzy systems based
on a novel Non-PDC control scheme,” IEEE Trans. Fuzzy
Syst., vol. 21, no. 1, pp. 147−157, Feb. 2013.

19 Y. Y. Lin, S. H. Liao, J. Y. Chang, and C. T. Lin, “Simplified
interval type-2 fuzzy neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 25, no. 5, pp. 959−969, May 2014.

20 C. F. Juang, R. B. Huang, and Y. Y. Lin, “A recurrent self-
evolving interval type-2 fuzzy neural network for dynamic
system processing,” IEEE Trans. Fuzzy Syst., vol. 17, no. 5,
pp. 1092−1105, Oct. 2009.

Jiajun Wang graduated from Shandong
Institute of Light Industry (Qilu Univer-
sity of Technology), China, in 1997. He
received the M.Sc. degree and the Ph.D.
degree from Tianjin University, China, in
2000 and 2003. He is currently a Professor
at the School of Automation, Hangzhou Di-
anzi University, Hangzhou, China. His re-
search interests include backstepping con-
trol, sliding mode control, neural networks
and their applications in motion control

system. E-mail: wangjiajun@hdu.edu.cn


