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Asynchronous H∞H∞H∞ State Dependent Switching
Control of Discrete-time Systems With Dwell Time

Rong Li1

Abstract For a class of switched linear systems, we propose a dwell time strategy depending on the state of systems. This switching
strategy not only makes the asynchronous H∞ state-feedback switched systems stable but also shortens the active time. A new result
on stability and l2-gain analysis for switched systems is given where the Lyapunov functions are allowed to be increasing during the
running time of subsystems, at the same time, the Lyapunov functions do not contain the limit of µ. By using the dwell time
strategy depending on the state of systems, sufficient conditions for the desired H∞ controller of switched linear systems are derived.
Then the result is expanded to nonlinear switched systems. A numerical example is provided to demonstrate the effectiveness of the
proposed design approach.
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1 Introduction

Switched systems, which are efficiently used to model
many physical or man-made systems displaying features
of switching, have been extensively studied over the past
decades. Typically, switched systems consist of a finite
number of subsystems (described by differential or differ-
ence equations) and an associated switching signal govern-
ing the switching among them. The switching signals may
belong to a certain set and the sets may be various. This
differentiates switched systems from general systems, since
the solutions of the former are dependent on both system
initial conditions and switching signals. Many physical pro-
cesses exhibit switched and hybrid behavior [1]−[3], and
switching frequently occurs in many engineering applica-
tions. Due to the theoretical development as well as prac-
tical applications, analysis and synthesis of switched system
have recently gained considerable attention [4]−[10].

Recently, the H∞ control problem of switched systems
has stirred renewed research interests [11]−[19]. The goal is
to design a controller to stabilize a system while satisfying
an H∞-norm bound constraint on disturbance attenuation.
Sufficient conditions for designing a robust H∞ controller
with time-varying norm-bounded uncertainty are studied
by means of hybrid state feedback strategy in [12]. By
average dwell time methods [13], investigated the H∞ con-
troller of switched system with uncertain inputs.

While, considering the H∞ state feedback problem, a
very common assumption is that the controller is switched
synchronously with the switching of system modes, which
is quite impractical. In engineering application, since it in-
evitably takes some time to identify the active subsystem
and apply the matched controller, the real switching time
of controllers may lag behind that of practical subsystems,
that is to say, there exists asynchronous switching between
the controllers and system mode. The necessities of con-
sidering asynchronous switching for efficient control design
have been shown for mechanical or chemical systems in [20].
Recently, the asynchronous switching problem has been in-
vestigated, and some results are obtained in the studies
of switched system [21]−[26]. The stabilization of asyn-
chronous linear system has been included in [21]. Stability,
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l2-gain and asynchronous control of discrete-time switched
systems are considered in [23]. Then, the results are con-
densed to filter in [26], which discusses the stability and
l2-gain of switched linear systems.

The stability analysis of switched systems with dwell
time has received a considerable attention in the last decade
[27]−[30]. The method there do not guarantee any minimal
dwell time. The practical case, however, is that some mini-
mal time period between consecutive switching is required.
Arbitrarily fast switching may cause large state transients
at the switching points. A dwell time may be required for
these transients to subside. This is one of the reasons why
the area of switched systems with dwell time is becoming
increasingly popular. At the same time, it is found that the
most stabilizing switching law for many switched systems
with unstable subsystems obeys some dwell time. Adding
a dwell time constraint to a suboptimal switching law may
thus achieve better results.

In this paper, the robust asynchronous H∞ state de-
pendent switching of linear system with dwell time is con-
sidered. About switching signals, some works have been
done in [27]−[30]. Combined stabilizing strategies are pro-
posed in [27], and the result is improved in [27]. State-
dependent switching laws have been first considered in [27].
The method there do not guarantee any dwell time. It has
been shown in [27] that the most destabilizing switching
law of a switching law for a switched system with stable
subsystems applies a dwell time. Using the same analy-
sis, it can be seen that the most stabilizing switching law
for asynchronous switched systems obeys some dwell time.
Adding a dwell time constant to switching law may achieve
better results. Thus in our paper, minimal dwell time is
introduced, which not only meets the need of minimal time
between consecutive switching, but also compensates the
possible increment introduced by the asynchronous phe-
nomenon between the system modes and controllers. On
the other hand, the dwell time strategies depending on
state not only reduce the time of being active, but also
make that the Lyapunov function does not have the limit
of µ. All of these motivated us to study the H∞ controller
of asynchronous switched system, which is unstable within
the unmatched interval of (klkl+1) , ∀l ∈ N.

The asynchronous H∞ control problem for a class of
state dependent switching system with dwell time is in-
vestigated in this paper. Based on the dwell time approach
depending on state, sufficient conditions are developed for
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the H∞ control system. It is noted that subsystems are al-
lowed to be unstable within the unmatched interval of the
interval (klkl+1) , ∀l ∈ N. Then, the corresponding solvabil-
ity condition for the desired controller is established.

The remainder of this paper is organized as follows. The
asynchronous H∞ control of switched systems is formulated
in Section 2. Section 3 is devoted to derive the results on
stability and l2-gain analyses and formulate the problem
of asynchronous H∞ control for discrete-time switched sys-
tem. A numerical example is given in Section 4, and then,
we make a conclusion about this article in Section 5.

Notation: The notations used throughout the paper are
standard. Rn denotes the n-dimensional Euclidean space;
Nrepresents the set of nonnegative integers; the notation
P > 0 means that P is real symmetric and positive definite;
l2 [0,∞) is the space of square-integrable vector functions
over [0,∞); ‖ · ‖ denotes the Euclidean norm of a vector
and its induced norm of a matrix. In symmetric matrices
or long matrix expressions, we use a star (∗) to represent a
term that is induced by symmetry.

2 Problem Description and Prelimi-
naries

Consider a class of switched linear systems given by (1).

{
x(k + 1) = Aσx(k) + Bσu(k) + D1σω(k)

z(k) = Cσx(k) + D2σω(k)
(1)

where x(k) ∈ Rn is the state vector; u(k) ∈ Rm is the con-
trol input; ω(k) ∈ Rp is the disturbance input which be-
longs to l2 [0,∞) , z(k) ∈ Rq is the controlled output; σ is a
piece wise constant function of time k called a switching sig-
nal, which takes its values in the finite set I = {1, . . . , N},
and N > 1 is the number of subsystems.

In the paper, we design an H∞ state feedback controller
with the following general structure.

u(k) = Kix(k) (2)

where Ki ∈ Rm×n are matrices to be determined.
It is assumed that the subsystem is activated at the

switching instant kl, ∀l ∈ N. Owing to the fact, real switch-
ing time of controllers exceeds or lags behind that of the
practical subsystems, so the switching instant of the con-
troller is kl + ∆l, ∀l ∈ N, where ∆l > 0 represents the
unmatched time during which the switched system maybe
unstable.

Therefore, by substituting u(k) into system (1), we ob-
tain the closed-loop system as




x(k + 1) = (Ai + BiKj)x(k) + D1iω(k)
z(k) = Cix(k) + D2iω(k) ∀k ∈ (kl, kl + ∆l)
x(k + 1) = (Ai + BiKi)x(k) + D1iω(k)
z(k) = Cix(k) + D2iω(k) ∀k ∈ (kl + ∆l, kl+1).

(3)

Choose the Lyapunov functional candidate of the form

Vi(t) = xT (k)Pix(k). (4)

The subsequent switching time/index sequences are de-
fined as following Choose the Lyapunov functional candi-
date of the form

kl+1 =

{
kl + ∆l + ∆, if µl < 1
kl + ∆l + ∆ + Tl, if µl > 1

(5)

where ∆ =
−∆max ln(1 + β)

ln(1− α)

Tl = − ln µl

ln(1− α)

∆max
∆
= max

∀l∈
∆l

µl =
V

σ(k
+
l

)
(kl)

V
σ(k

−
l

)
(kl)

∀l ∈ N.

According to this strategy, when the lth subsystem is
activated, it should be active for the minimal dwell time
∆ to compensate the possible increment which is intro-
duced by mismatching of controllers and subsystems. Be-
sides, if µl > 1 the subsystems will be active for another
Tl = ln µl/ln α to compensate the possible increment in
switching instants, else the system will switch to the jth
subsystem immediately.

Remark 1: In this note, we propose a dwell time strategy
depending on the state of subsystems. On one hand, when
µl > 1 the increment will be compensated by more specific
decrement, in other words, the subsystem will be active for
another Tl. When µl < 1 the system will switch to another
subsystem immediately. So we can get the conclusion that
the active time of subsystem specified by dwell time strat-
egy depending on the state of system is shorter than that
of the system specified by normal dwell time strategy; on
the other hand, it is easy to see that the Lyapunov function
does not have the limit of Pi < µPj , ∀i, j ∈ I.

We give the following definition, which will play an im-
portant role in deriving our main results subsequently.

Definition 1: Given a constant γ > 0, the switched sys-
tem (3) is said to be stabilized with H∞ disturbance atten-
uation γ via switching if there exists a switching rule such
that under this switching, it satisfies

1) System (3) with ω = 0 is stable.
2) With zero-initial condition x(0) = 0, ‖ z ‖2< γ ‖ ω ‖2

holds for all nonzero ω ∈ l2
[

0 ∞ )
.

3 Main Results

3.1 Stability and Performance Analysis

In this section, sufficient conditions on stability with an
l2-gain are derived for system (3) via the dwell time strate-
gies depending on the state of system.

Theorem 1: Given scalars 0 < α < 1, β > 0 and the
switching time instants k0 < k1 < · · · < kl−1 < kl, during
[k0, kl], l = 1, 2, . . . , the closed-loop H∞ control system is
stable under the switching signal as described in the for-
mula (5), if Vi(k) satisfies

∆Vi(k) ≤
{

βVi(k), ∀t ∈ (kl, kl + ∆l)
−αVi(k), ∀t ∈ (kl + ∆l, kl+1).

(6)

Proof: Denote ∆Vi(k) = Vi(k + 1)− Vi(k). If µl−1 > 1,
in other words the lth subsystem activates for ∆l +∆+Tl.

Vσ(kl)(kl+1) ≤ (1− α)∆+TlVσ(kl)(kl + ∆l)

≤ (1 + β)∆l(1− α)∆+TlVσ(kl)(kl)

≤ (1− α)Tlµl−1Vσ(kl−1)(kl)

≤Vσ(kl−1)(kl). (7)

If µ < 1 , in other words, the lth subsystem activates
for ∆l + ∆.

Vσ(kl)(kl+1) ≤ (1− α)∆Vσ(kl)(kl + ∆l)

≤ (1 + β)∆l(1− α)∆Vσ(kl)(kl)

≤ Vσ(kl)(kl)

≤ Vσ(kl−1)(kl). (8)
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The switching signals stem from the requirement that
the value of the Lyapunov function Vσ(k)(kl+1) is less than
Vσ(kl−1). An alternative way to guarantee the decrease of
V is to require that the value of V , for another T seconds
after the switching, is less than the value it had just prior
to the switching. The latter requirement is satisfied if the
switching signals as described in (5) hold.

Therefore, we get the conclusion that the closed-loop sys-
tem is stable.

Remark 2: Note that the switched systems are active
in the intervals (consisting of matched and unmatched in-
tervals) during which a subsystem may be unstable. In
other words, the Lyapunov function gets increased in the
unmatched intervals. However, the possible increment will
be compensated by the more pronounced decrement (by
limiting the lower bound of dwell time). Thus, we can get
that the closed-loop system is stable.

Next, the H∞ performance of the system (3) is given in
the following theorem.

Theorem 2: Given scalars 0 < α < 1, β > 0 and the
switching time instants k0 < k1 < · · · < kl−1 < kl, during
[k0, kl], l = 1, 2, . . . , the closed-loop H∞ control system
is stable and has an l2-gain no greater than γs , if Vi(k)
satisfies

∆Vi(k) ≤
{

βVi(k)− Γ(k) ∀t ∈ (kl, kl + ∆l)

−αVi(k)− Γ(k) ∀t ∈ (kl + ∆l, kl+1)
(9)

where
Γ(k) = zT (k)z(k)− γ2ωT (k)ω(k)

γs = α̃−(∆+Tmax/2)γ

µmax = max
i,j∈I,i6=j

λmax(Pi)
λmin(Pj)

.

In order to study the asynchronous H∞ controller for
system (1), for conciseness, the time t1, t2, . . . , tk, . . . is set
to switching instant. Without loss of generality, we assume
that µl−2 > 1, µl−1 < 1, . . . (for other situations we can get
the same result through the same proof process), in other
words kl = kl−1 + ∆l−1 + Tl−1, kl+1 = kl + ∆l, . . ..

Vσ(kl)(kl+1)
≤ (1− α)∆Vσ(kl)(kl + ∆l)

−
kl+1−1∑

s=kl+∆l

(1− α)kl+1−s−1Γ(s)

≤ (1− α)∆(1 + β)∆lVσ(kl)(kl)

−
kl+∆l−1∑

s=kl

(1− α)∆(1 + β)kl+∆l−s−1Γ(s)

−
kl+1−1∑

s=kl+∆l

(1− α)kl+1−s−1Γ(s)

≤ Vσ(kl−1)(kl)

−
kl+∆l−1∑

s=kl

(1− α)∆(1 + β)kl+∆l−s−1Γ(s)

−
kl+1−1∑

s=kl+∆l

(1− α)kl+1−s−1Γ(s)

≤ Vσ(kl−2)(kl−1)

−
kl−1+∆l−1−1∑

s=kl−1

(1− α)∆+Tl−1(1 + β)kl−1+∆l−1−s−1Γ(s)

−
kl−1∑

s=kl−1+∆l−1

(1− α)kl−s−1Γ(s)

−
kl+∆l−1∑

s=kl

(1− α)∆(1 + β)kl+∆l−s−1Γ(s)

−
kl+1−1∑

s=kl+∆l

(1− α)kl+1−s−1Γ(s)

≤ Vσ(k0)(k0)

−
k0+∆0−1∑

s=k0

(1− α)∆(1 + β)k0+∆0−s−1Γ(s)

−
k1−1∑

s=k0+∆0

(1− α)k1−s−1Γ(s)

−
kl−1+∆l−1−1∑

s=kl−1

(1− α)∆+Tl−1(1 + β)kl−1+∆l−1−s−1Γ(s)

−
kl−1∑

s=kl−1+∆l−1

(1− α)kl−s−1Γ(s)− · · ·

−
kl+∆l−1∑

s=kl

(1− α)∆(1 + β)kl+∆l−s−1Γ(s)

−
kl+1−1∑

s=kl+∆l

(1− α)kl+1−s−1Γ(s).

Under zero initial condition, we know that

k0+∆0−1∑
s=k0

(1− α)∆(1 + β)k0+∆0−s−1Γ(s)

+
k1−1∑

s=k0+∆0

(1− α)k1−s−1Γ(s)

+
kl−1+∆l−1−1∑

s=kl−1

(1− α)∆+Tl−1(1 + β)kl−1+∆l−1−s−1Γ(s)

+
kl−1∑

s=kl−1+∆l−1

(1− α)kl−s−1Γ(s) + · · ·

+
kl+∆l−1∑

s=kl

(1− α)∆(1 + β)kl+∆l−s−1Γ(s)

+
kl+1−1∑

s=kl+∆l

(1− α)kl+1−s−1Γ(s) ≤ 0.

Therefore, we can obtain that

k0+∆0−1∑

s=k0

(1− α)∆(1 + β)k0+∆0−s−1z(s)T z(s)

+

k1−1∑

s=k0+∆0

(1− α)k1−s−1z(s)T z(s)

+

kl−1+∆l−1−1∑

s=kl−1

(1− α)∆+Tl−1(1 + β)kl−1+∆l−1−s−1

z(s)T z(s)

+

kl−1∑

s=kl−1+∆l−1

(1− α)kl−s−1z(s)T z(s)

+

kl+∆l−1∑

s=kl

(1− α)∆(1 + β)kl+∆l−s−1z(s)T z(s)

+

kl+1−1∑

s=kl+∆l

(1− α)kl+1−s−1z(s)T z(s)

≤
k0+∆0−1∑

s=k0

(1− α)∆(1 + β)k0+∆0−s−1γ2ωT (s)ω(s)

+

k1−1∑

s=k0+∆0

(1− α)k1−s−1γ2ωT (s)ω(s)
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+

kl−1+∆l−1−1∑

s=kl−1

(1− α)∆+Tl−1(1 + β)kl−1+∆l−1−s−1

γ2ωT (s)ω(s)

+

kl−1∑

s=kl−1+∆l−1

(1− α)kl−s−1γ2ωT (s)ω(s)

+

kl+∆l−1∑

s=kl

(1− α)∆(1 + β)kl+∆l−s−1γ2ωT (s)ω(s)

+

kl+1−1∑

s=kl+∆l

(1− α)kl+1−s−1γ2ωT (s)ω(s).

So we can get

(1− α)(∆+Tmax)

kl+1∑

s=k0

zT (s)z(s)

≤ (1 + β)∆max

kl+1∑

s=k0

γ2ωT (s)ω(s)

≤ (1− α)−∆

kl+1∑

s=k0

γ2ωT (s)ω(s). (10)

When l →∞ , we can get

∞∑

s=k0

zT (s)z(s) ≤
∞∑

s=k0

(1− α)−(2∆+Tmax)γ2ωT (s)ω(s). (11)

¥
Remark 3: The proof of disturbance attenuation level is

different from [24], in which the result is got under zero
initial condition Vi(kl) = 0, ∀l ∈ I. In this paper, we pro-
vided a better result about weighted l2-gain under zero ini-
tial condition Vi(k0) = 0; besides the result is suitable for
any positive number ∆max, which does not contain limit of
Tmax > 1 in [24].

3.2 H∞ Controller Design

Now, based on the conditions on stability with a l2-gain
in Theorem 1 and Theorem 2, sufficient conditions for the
existence of controller (2) are presented in the following
theorem. Then, the admissible H∞ controller parameters
can be given.

Theorem 3: Consider switched linear system (3) and let
0 < α < 1, β > 0 be given constants. If there exist matri-
ces Si, Vi and Ui, ∀i ∈ I, such that for ∀i, j ∈ I, i 6= j, the
following inequalities hold

Φi =




−I 0 CiVi D2i

∗ −Si AiVi + BiUi D1i

∗ ∗ (1−α)(Si−Vi−V T
i ) 0

∗ ∗ ∗ −γ2I


<0 (12)

Φij =




−I 0 CiVj D2i

∗ −Si AiVj + BiUj D1i

∗ ∗ (1+β)(Si−Vj−V T
j ) 0

∗ ∗ ∗ −γ2I


<0 (13)

then there exists a set of mode-dependent stabilizing con-
trollers with asynchronous delay such that system (3) is

stable with an H∞ performance index γs for the switch-
ing signal (5). Moreover, if (13) and (14) have a feasible
solution, the admissible controller can be given by

Ki = UiV
−1

i . (14)

Proof: When t ∈ (tk + ∆k, tk+1) , we can get

∆Vi(k) +αVi(k)

= Vi(k + 1)− (1− α)Vi(k)

= xT (k)

[ −P−1
i Ai + BiKi

∗ −(1− α)Pi

]
x(k) (15)

∆ Vi(k) + αVi(k) + zT (k)z(k)− γ2ωT (s)ω(s)

= ((Ai + BiKi)x(k) + D1iω(k))T Pi((Ai + BiKi)x(k)

+D1iω(k))− γ2ωT (s)ω(s)

+(Cix(k) + D2iω(k))T (Cix(k)

+D2iω(k))− (1− α)xT (k)Pix(k)

= ηT (k)Θiη(k) (16)

where η(k) = (xT (k), ωT (k))T .

Θi =




−I 0 Ci D2i

∗ −P−1
i Ai + BiKi D1i

∗ ∗ −(1− α)Pi 0
∗ ∗ ∗ −γ2I




similarly, when t ∈ (tk, tk + ∆k),we can get

∆Vi(k)− βVi(k) = Vi(k + 1)− (1 + β)Vi(k)

= xT (k)

[ −P−1
i Ai + BiKj

∗ −(1 + β)Pi

]
x(k)

(17)

∆Vi(k)− βVi(k) + zT (k)z(k)− γ2ωT (s)ω(s)

= ((Ai + BiKj)x(k) + D1iω(k))T Pi((Ai + BiKj)x(k)

+D1iω(k))− γ2ωT (s)ω(s)

+(Cix(k) + D2iω(k))T (Cix(k) + D2iω(k))

−(1− α)xT (k)Pix(k)

= ηT (k)Θijη(k)

Θij =




−I 0 Ci D2i

∗ −P−1
i Ai + BiKj D1i

∗ ∗ −(1 + β)Pi 0
∗ ∗ ∗ −γ2I


 < 0

Setting Si
∆
= P−1

i and Ui = KiVi, from the fact

(Si − Vi)S
−1
i (Si − Vi)

T > 0 and (Si − Vj)S
−1
i (Si − Vj)

T >

0, we can get the following inequalities: −ViS
−1
i V T

i <

Si − Vi − V T
i and −VjS

−1
i V T

j < Si − Vj − V T
j . Then,

performing a congruent transformation to the inequality
Θi ≤ 0 and Θij ≤ 0 via diag

{
I I V T

i I
}

and

diag
{

I I V T
j I

}
, we can obtain (13) and (14). From

Theorem 1 and Theorem 2, we can get that the closed-loop
system is stable with an l2-gain. ¥

Remark 4: In Theorem 3, the conditions of H∞ stability
are got for asynchronous switched linear system. We can
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get the same result for asynchronous switched system with
nonlinear from (19).

x(k + 1) = Aσx(k) + Bσu(k) + D1σω(k) + Eif(x(k))

z(k) = Cσx(k) + D2σω(k). (18)

In this paper, without loss of generality, we always as-
sume that f(0) = 0. For vector-valued functions f , we
assume:

[f(x)−f(y)−W1(x−y)]T [f(x)−f(y)−W2(x− y)]<0

∀x, y ∈ Rn (19)

where W1, W2 ∈ Rn×n are known real constant matrices,
and W1 + W2 is a positive definite matrix [27].

Corollary 1: Consider switched nonlinear system (19)
and let 0 < α < 1, β > 0 be given constants and W1, W2

be given matrices. If there exist matrices Si > 0, Vi > 0
and Ui, ∀i ∈ I, such that for ∀i, j ∈ I, i 6= j, the following
inequalities hold

Ψi =




−I 0 CiVi

∗ −Si AiVi + BiUi

∗ ∗ (1− α)(Si − Vi − V T
i )

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
0 D2i 0
Ei D1i 0

Vi

^

W 2 0 Vi

^

W 1

−I 0 0
∗ −γ2I 0
∗ ∗ −I




< 0

(20)

Ψij =




−I 0 CiVj

∗ −Si AiVj + BiUj

∗ ∗ (1 + β)(Si − Vj − V T
j )

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
0 D2i 0
Ei D1i 0

Vi

^

W 2 0 Vi

^

W 1

−I 0 0
∗ −γ2I 0
∗ ∗ −I




< 0 (21)

where
^

W 1 = (W T
1 −W T

2 )
/√

2,
^

W 2 = (W T
1 + W T

2 )
/
2, then

there is a set of mode-dependent stabilizing controllers with
asynchronous delay such that system (19) is stable with
an H∞ performance index γs for the switching signal (5).
Moreover, if (21) and (22) have a feasible solution, then the
admissible controller can be given by

Ki = UiV
−1

i . (22)

Proof: From (20), we can get

[
x(k)

f(x(k))

]T
[

^

W −^

W 2

∗ I

] [
x(k)

f(x(k))

]
≤ 0 (23)

where
^

W = (W T
1 W2 + W T

2 W1)
/
2.

Follow the same line, together with (24), when t ∈
(tk + ∆k, tk+1), we can get

∆Vi(k) + αVi(k)

≤
[

x(k)
f(x(k))

]T




−P−1
i Ai + BiKi Ei

∗ −(1− α)Pi −
^

W
^

W 2

∗ ∗ −I




×
[

x(k)
f(x(k))

]

∆Vi(k)− βVi(k) + zT (k)z(k)− γ2ωT (s)ω(s)

≤ [
x(k) f(x(k)) ω(k)

]T
Ωij

[
x(k) f(x(k)) ω(k)

]

where

Ωi =




−I 0 Ci 0 D2i

∗ −P−1
i Ai + BiKi Ei D1i

∗ ∗ −(1− α)Pi −
^

W
^

W 2 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −γ2I




.

When t ∈ (tk, tk + ∆k) , we can get

∆Vi(k)− βVi(k)

≤
[

x(k)
f(x(k))

]T




−P−1
i Ai + BiKj Ei

∗ −(1 + β)Pi −
^

W
^

W 2

∗ ∗ −I




×
[

x(k)
f(x(k))

]

∆Vi(k)− βVi(k) + zT (k)z(k)− γ2ωT (s)ω(s)

≤ [
x(k) f(x(k)) ω(k)

]T
Ωij

[
x(k) f(x(k)) ω(k)

]

where

Ωi =




−I 0 Ci 0 D2i

∗ −P−1
i Ai + BiKj Ei D1i

∗ ∗ −(1 + β)Pi −
^

W
^

W 2 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −γ2I




.

From the fact

(W1−W2)
T (W1−W2) = W T

1 W1−W T
1 W2−W T

2 W1+W T
2 W2

we can get that

−W T
1 W2 −W T

2 W1 ≤ (W1 −W2)
T (W1 −W2).

Then performing a congruent transformation to the in-
equality Θi ≤ 0 and Θij ≤ 0 via diag

{
I I Vi I

}
and

diag
{

I I Vj I
}

, we can obtain (21) and (22). From
Theorem 1 and Theorem 2, we can get that the closed-loop
system is stable with an l2-gain. ¥
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4 Numerical Example

In this section, we give an example to demonstrate the
effectiveness of the proposed method.

Example: Considering the system (1) with two subsys-
tems, and the parameters of each subsystem are given as
follows:

A1 =

[
0.3 0.3
0.9 −0.2

]
, A2 =

[
1 −0.4

−0.3 0.4

]

B1 =

[ −0.3
−0.6

]
, B2 =

[ −1.4
−0.1

]

D11 =

[
0.1
0.1

]
, D12 =

[ −0.3
0.3

]

C1 =
[

0.5 0.1
]
, C2 =

[ −0.4 −0.2
]

D21 = 0.5, D22 = 0.1
Let α = 0.8, β = 0.3, and ∆max = 1, we consider

the asynchronous switching in the design phase and turn
to Theorem 2, by utilizing LMI Toolbox, we can get
γ = 2.5615, γs = 4.5614 and the controller parameters are
obtained as follow: K1 = [ 1.2853 −0.2038 ], K2 =

[ 0.8182 −0.4078 ].
The simulation results are given in Figs. 1 and 2. The

switching signals are shown in Fig. 1, the system state
response under the switching signal is shown in Fig. 2.
From the simulation results, we can get that the switching

Fig. 1. The switching signal.

Fig. 2. The state.

signal of the controller is delayed by the switching signal
of the subsystem, and the system state is stable under the
design of switching signals.

Integrating the whole simulation results, we can get that
the desired switched controller is feasible and effective for
systems (1) under the admissible switching signals.

5 Conclusion

A new method for the stability and l2-gain of state-
dependent switching law under dwell time constraint is
introduced. By allowing the subsystems to be unstable
within a bounded time of the interval [kl, kl+1) , ∀l ∈ N,
the more general conditions for H∞ controller have been
derived and formulated. Then the corresponding controller
is obtained. An example is given to illustrate the validity
of the obtained theoretical results.
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