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Dynamic Behaviors of Generalized Fractional

Chaotic Systems
Yufeng Xu1

Abstract In view of a new generalized fractional calculus proposed recently, this paper is devoted to applying the generalized
fractional derivatives to study new generalized fractional chaotic systems. The chaotic properties depending on the new generalized
fractional derivative are discussed and shown graphically. The generalized fractional derivative is described in the Caputo sense,
and the finite difference approach for solving the generalized fractional chaotic system is presented. Since the generalized fractional
derivative includes many existing fractional derivatives as special cases, we hope more attention will be brought into this field in the
near future.
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1 Introduction

Fractional calculus and fractional differential equations
have received considerable interest in the recent forty years.
Fractional derivative means that the order of differentia-
tion can be an arbitrary real number and even it can be
a complex number. Fractional derivative modelling has
been applied to many scientific and engineering fields, such
as quantum mechanics [1], viscoelasticity and rheology [2],
electrical engineering [3], electrochemistry [4], biology [5],
biophysics and bioengineering [6], signal and image pro-
cessing [7], mechatronics [8], and control theory [9]−[11].
Although few mathematical issues of fractional derivative
remain unsolved, most of the difficulties have been over-
come, and the applications of fractional calculus in above
fields indicate that the fractional models can depict the
property and behavior of a real-world problem more accu-
rately. For a comprehensive review of fractional calculus,
we refer readers to some monographs [12]−[14] and refer-
ences therein. In contrast to integer order derivative, the
way of identifying fractional derivative is not unique. There
are several types of definitions, such as Riemann-Liouville
derivative, Caputo derivative, Grünwald-Letnikov deriva-
tive, and so on. More details can be found in [13, Chapter
2]. In the recent years, the study of dynamical system with
fractional order derivative becomes more and more popular
[15]−[19]. Moreover, the dynamics in fractional dynamical
system is more interesting.

Returning back to the fractional derivative, since it has
several different definitions, how to develop a generalized
form which can unify all the existing fractional derivatives
becomes one important topic in fractional calculus [20]−
[22]. Recently, a class of new generalized fractional in-
tegral and generalized fractional derivative is introduced
in [22]. The new generalized fractional integral and gen-
eralized fractional derivative depend on a scale function
and a weight function, which makes them more general.
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When the scale function and the weight function reduce to
some specific cases, the generalized fractional operators will
reduce to Riemann-Liouville fractional integral, Riemann-
Liouville fractional derivative and Caputo fractional deriva-
tive and so on. However, the study of this new general-
ized fractional integral and generalized fractional deriva-
tive are in the very beginning stage now [23]−[26]. In [24],
we show that in generalized fractional diffusion equation,
the scale function allows the response domain to be scaled
differently. It is required that the scale function should
be strictly monotonically increasing or decreasing. A con-
vex increasing scale function will compress the response
domain towards to the initial time. A concave increasing
scale function will stretch the response domain away from
the initial time. The weight function allows the response
to be assessed differently at different time, since in many
applications, we may require an event to be weighed dif-
ferently at different time point. For example, modeling of
memory of a child may require a heavy weight at current
time point, whereas the same for an older person may re-
quire more weight on the past. To be an initial attempt of
application to chaotic dynamical systems, in this paper, we
define a class of new generalized fractional chaotic systems
by replacing the original derivatives with the new gener-
alized fractional derivative, then apply a finite difference
scheme to study the numerical solutions of two different
generalized fractional chaotic systems, namely generalized
fractional Lotka-Volterra system (GFLVS) and generalized
fractional Lorenz system (GFLS). Their complex dynamics
will be discussed, and the dynamic behavior depending on
the weight and scale function will be shown graphically.

The rest of this paper is organized as follows: In Section
2, the preliminaries of fractional calculus are given. The
new generalized fractional integral and generalized frac-
tional derivative are shown. A finite difference approach
for solving equations with generalized fractional derivative
is carried out. In Section 3, we define the chaotic systems
using the generalized fractional derivative of Caputo type,
i.e., the GFLVS and GFLS. Some interesting dynamics of
those two systems are shown graphically. Finally, the con-
clusions are drawn in Section 4.
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2 Mathematical Preliminaries

In this section, we introduce the preliminaries of gener-
alized fractional derivatives, and show a proper numerical
method for differential equations with such derivatives.

2.1 Generalized Fractional Calculus

Let us begin with the common fractional operators. In
calculus, the n-fold integral of an integrable function u(t)
is defined as

Inu(t) =

n times︷ ︸︸ ︷∫ t

0

· · ·
∫ t

0

u(s)ds · · · ds =

∫ t

0

(t− s)n−1

(n− 1)!
u(s)ds

where t ≥ 0, and u(0) is well-defined. Replacing the posi-
tive integer n by a real number α > 0, we have the following
definition.

Definition 1 [13]: The left Riemann-Liouville fractional
integral of order α > 0 of a function u(t) is defined as

(Iα
0+u) (t) =

1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds (1)

provided the integral is finite, where Γ(α) is the Gamma
function.

The Riemann-Liouville fractional integral plays an im-
portant role in defining fractional derivatives. There are
two basic approaches to define the fractional derivative,
i.e., “first integration then differentiation” and “first differ-
entiation then integration”. The corresponding fractional
derivatives are called Riemann-Liouville fractional deriva-
tive and Caputo fractional derivative, and the definitions
are given as follows.

Definition 2 [13]: The left Riemann-Liouville fractional
derivative of order n − 1 < α < n of a function u(t) is
defined as

(Dα
0+u) (t) =

1

Γ(n− α)

(
dn

dtn

) ∫ t

0

(t− s)n−α−1u(s)ds (2)

provided the right side of the identity is finite.
Definition 3 [13]: The left Caputo fractional derivative

of order n− 1 < α < n of a function u(t) is defined as

(cDα
0+u) (t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1u(n)(s)ds (3)

provided the right side of the identity is finite.
Besides above, there also exist right Riemann-Liouville

integral and derivative, and right Caputo fractional deriva-
tive [13]. Mathematically, the Riemann-Liouville and Ca-
puto fractional operators are used in applications fre-
quently. In most real-world models, we always employ the
left Caputo fractional derivative. One reason is that we
will study generalized fractional dynamical system later,
and the derivative is taken with respect to time variable.
In physical models, time is always running forward. The
other reason is that in the differential equations with Ca-
puto fractional derivative, the initial conditions are taken
in the same form as for integer-order differential equations
which have clear physical meanings in the practical appli-
cation and can be easily measured [14]. In what follows,
we will introduce the generalized fractional integral and
derivative proposed in [22]. They extend nearly all the
existing fractional operators. Now we list the generalized

fractional integral and derivative defined on positive half
axis. They will be used to define the generalized fractional
chaotic systems in next section.

Definition 4 [22]: The left generalized fractional integral
of order α > 0 of a function u(t) with respect to a scale
function σ(t) and a weight function w(t) is defined as

(
Iα
0+;[σ,w]u

)
(t) =

[w(t)]−1

Γ(α)

∫ t

0

w(s)σ′(s)u(s)

[σ(t)− σ(s)]1−α
ds (4)

provided the integral exists, where σ′(s) indicates the first
derivative of the scale function σ.

Definition 5 [22]: The left generalized derivative of order
m of a function u(t) with respect to a scale function σ(t)
and a weight function w(t) is defined as

(
Dm

[σ,w;L]u
)
(t) = [w(t)]−1

[(
1

σ′(t)
Dt

)m

(w(t)u(t))

]
(5)

provided the right-side of equation is finite, where m is a
positive integer.

Definition 6 [22]: The Caputo type left generalized frac-
tional derivative of order α > 0 of a function u(t) with
respect to a scale function σ(t) and a weight function w(t)
is defined as

(
Dα

0+;[σ,w]u
)
(t) =

(
Im−α
0+;[σ,w]D

m
[σ,w;L]u

)
(t) (6)

provided the right-side of equation is finite, where m− 1 ≤
α < m, and m is a positive integer. Particularly, when 0 <
α < 1, we have

(
Dα

0+;[σ,w]u
)
(t) =

[w(t)]−1

Γ(1− α)

∫ t

0

[w(s)u(s)]′

[σ(t)− σ(s)]α
ds. (7)

2.2 Finite Difference Method

Now we introduce a finite difference method for solv-
ing differential equations with generalized fractional deriva-
tive. Consider the following generalized fractional differen-
tial equation:

{(
Dα

0+;[σ,w]u
)
(t) = f(t, u(t)), 0 < t ≤ T

u(0) = u0

(8)

where 0 < α < 1 and T is the final time. Without loss
of generality, on a uniform mesh 0 = t0 < t1 < · · · <
tj < tj+1 < · · · < tN = T , the Caputo type generalized
fractional derivative of u(t) can be approximated as

(Dα
0+;[σ,w]u)(tj+1)

=
[w(tj+1)]

−1

Γ(1− α)

∫ tj+1

0

[w(s)u(s)]′

[σ(tj+1)− σ(s)]α
ds

=
w−1

j+1

Γ(1− α)

j∑

k=0

∫ tk+1

tk

[w(s)u(s)]′

[σ(tj+1)− σ(s)]α
ds

≈ w−1
j+1

Γ(1− α)

j∑

k=0

∫ tk+1

tk

wk+1uk+1−wkuk

tk+1−tk

[σj+1 − σ(s)]α
ds

≈
j∑

k=0

(
Aj

kuk+1 −Bj
kuk

)
(9)

where
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Aj
k =

w−1
j+1wk+1

Γ(2− α)(σk+1 − σk)

× [
(σj+1 − σk)1−α − (σj+1 − σk+1)

1−α]

Bj
k =

w−1
j+1wk

Γ(2− α)(σk+1 − σk)

× [
(σj+1 − σk)1−α − (σj+1 − σk+1)

1−α]

k = 0, 1, 2, . . . , j, uj = u(tj), wj = w(tj), and σj = σ(tj).
Therefore, we obtain the finite difference scheme:

j∑

k=0

(
Aj

kuk+1 −Bj
kuk

)
= f(tj+1, uj+1) (10)

and the corresponding iteration scheme as

uj+1 =





1

A
j
j

[
fj −

j−1∑
k=0

(
Aj

kuk+1 −Bj
kuk

)
+ Bj

j uj

]
,

j = 1, 2, . . . , N − 1
1

A0
0

(
f0 + B0

0u0

)
, j = 0

(11)

where fj = f(tj , uj).
In what follows, we will apply this method to solve the

generalized fractional chaotic systems. The numerical anal-
ysis of the above scheme can be found in [26].

3 Dynamic Behavior of Generalized
Fractional Chaotic Systems

In this section, we introduce two nonlinear dynamical
systems but redefine them with Caputo type generalized
fractional derivative. The classical and fractional senses
are special cases of the new generalized fractional system
below.

3.1 Generalized Fractional Lotka-Volterra and
Generalized Fractional Lorenz System

Replacing the derivative with the generalized fractional
derivative defined by (7), we define the generalized frac-
tional Lotka-Volterra system (GFLVS) as





Dα1
0+;[σ,w]x = ax− bxy + mx2 − sx2z

Dα2
0+;[σ,w]y = −cy + dxy

Dα3
0+;[σ,w]z = −pz + sx2z

(12)

where 0 < α1, α2, α3 < 1 (α1, α2, α3 can be the equal or
different) are the orders of the derivative and parameters
a, b, c, d are positive. a represents the natural growth rate
of the prey in the absence of predators, b represents the
effect of predator on the prey, c represents the natural death
rate of the predator in the absence of prey, d represents
the efficiency and propagation rate of the predator in the
presence of prey, and m, p, s are positive constants.

By selecting the parameters a = 1, b = 1, c = 1, d = 1,
m = 2, s = 2.7, p = 3 and the initial condition [x0, y0, z0]
= [1.5, 1.5, 1.5], when α1 = α2 = α3 = 0.95, (12) represents
the generalized fractional Lotka-Volterra chaotic system
and the phase portraits of the system (12) are described
through Figs. 1 (a) and 1 (b). In Fig. 1 (a), the chaotic phe-
nomenon is shown. Moreover, the GFLVS reduces to the
fractional Lotka-Volterra system as σ(t) = t and w(t) = 1.

In Fig. 1 (b), we see that when the scale function is speci-
fied as a power function, and the weight function is taken
as an exponential function, the chaotic attractor vanishes
and then a stable equilibrium point appears.

Similarly, we define the generalized fractional Lorenz sys-
tem (GFLS) as





Dα1
0+;[σ,w]x = r(y − x)

Dα2
0+;[σ,w]y = x(ρ− z)− y

Dα3
0+;[σ,w]z = xy − βz

(13)

where r is the Prandtl number, ρ is the Rayleigh number
and β is the size of the region approximated by the system.
The fractional order 0 < α1, α2, α3 < 1 may take different
values.

By taking the parameters r = 10, ρ = 28, β = 8/3,
and the initial condition [x0, y0, z0] = [0.5, 0.5, 0.5], when
α1 = α2 = α3 = 0.99, (13) represents the generalized frac-
tional Lorenz chaotic system and the phase portraits of
the system (13) are described through Figs. 1 (c) and 1 (d).
In Fig. 1 (c), the chaotic attractor of fractional Lorenz sys-
tem is presented. When we take scale function as a power
function, and weight function as exponential function, the
GFLS remains chaotic. However, the shape of the attractor
changes, which is shown in Fig. 1 (d).

Fig. 1. Phase portraits of GFLVS (top row, (a) and (b)) and

GFLS (bottom row, (c) and (d)).

3.2 Analysis of the Influence of Scale and Weight
Functions

Now we analyze the influence of the scale and weight
functions on the responses of generalized fractional differ-
ential equation. For simplicity, we consider

Dα
0+;[σ,w]u(t) = Au(t) + f(t) (14)

where A 6= 0 is a constant.
Equation (14) is equivalent to

[w(t)]−1

Γ(1− α)

∫ t

0

[w(s)u(s)]′

[σ(t)− σ(s)]α
ds = Au(t) + f(t). (15)
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Let v(t) = w(t)u(t), we have

1

Γ(1− α)

∫ t

0

v(s)′

[σ(t)− σ(s)]α
ds = Av(t) + w(t)f(t). (16)

According to [13], we deduce the solution of (16) as:

v(t) = Eα (A[σ(t)− σ(0)]α) v0

+

∫ t

0

(σ(t)− σ(s))α−1

× Eα,α[A(σ(t)− σ(s))α]w(s)f(s)ds (17)

which implies that

u(t) =
w(0)

w(t)
Eα (A[σ(t)− σ(0)]α) u0

+
1

w(t)

∫ t

0

(σ(t)− σ(s))α−1

× Eα,α[A(σ(t)− σ(s))α]w(s)f(s)ds (18)

where u0 is the initial condition, and E is the Mittag-Leffler
function.

In (18), we observe that how the weight and scale func-
tions influence the behavior of (14). First of all, the weight
function cannot be zero in the domain, otherwise solution
u(t) will go to infinity. Second, the scale function cannot be
periodic, and if it is, the generalized fractional derivative
will be infinity at t = s. For an intuitive comprehension,
we present some numerical simulations in the following.

3.3 Dynamics of GFLVS and GFLS Depend on
Scale and Weight Functions

The fractional chaotic systems are sufficiently general-
ized by using the generalized fractional derivative, since
many existing fractional derivatives, as well as integer or-
der derivatives, are special cases of the generalized frac-
tional derivative. In our numerical experiments, we find
many interesting dynamical behaviors of generalized frac-
tional chaotic systems which are never found in common
fractional or integer order chaotic systems. Here we present
some particular simulation results. However, our discussion
depends on Figs. 2 and 3, and others figures are not shown
here.

First, we simulate the influence of scale function on dy-
namics of chaotic systems. In GFLVS, we take fractional or-
der α1 = α2 = α3 = 0.95, weight function w(t) = exp(1.2t),
and other parameters are the same as before. In GFLS, we
select fractional order α1 = α2 = α3 = 0.99, weight func-
tion w(t) = exp(0.1t), and other parameters are the same
as before. The dynamic behaviors of GFLVS and GFLS
with scale function σ(t) = t and t1.14 are individually pre-
sented in Fig. 2.

Second, we simulate the influence of weight function on
dynamics of chaotic systems. In GFLVS, we take fractional
order α1 = α2 = α3 = 0.95, scale function σ(t) = t, and
other parameters are the same as before. In GFLS, we se-
lect fractional order α1 = α2 = α3 = 0.99, scale function
σ(t) = t, and other parameters are the same as before.
The dynamic behaviors of GFLVS with weight function
w(t) = exp(0.8t), exp(1.3t), and GFLS with weight func-
tion w(t) = exp(2 + 0.5t) and exp(2 + 0.2t) are presented
in Fig. 3.

Fig. 2. Influence of scale function σ(t) on GFLVS (top row, (a)

and (b)) and GFLS (bottom row, (c) and (d)).

Fig. 3. Influence of weight function w(t) on GFLVS (top row,

(a) and (b)) and GFLS (bottom row, (c) and (d)).

Finally, to end this section, we make some remarks based
on the numerical experiments above. Some other figures are
not listed here for shortening the length of paper.

1) The GFLVS is chaotic with scale function σ(t) = t,
weight function w(t) is a nonzero constant, and fractional
order αi = 0.95, i = 1, 2, 3 [27]. However, From Fig. 1 (a),
Fig. 2 (a) and Fig. 3 (a), we may see that as the weight func-
tion varies, the chaotic attractor vanishes and then a limit
cycle emerges or the system converges to a stable equilib-
rium point. Furthermore, from Fig. 2 (a) and Fig. 2 (b), we
observe that as the scale function varies, the limit cycle
tends to be a stable equilibrium point. From Fig. 3 (a) and
Fig. 3 (b), it is shown that as the weight function varies,
the limit cycle can be generated from a stable equilibrium
point.

2) The GFLS is chaotic with scale function σ(t) = t,
weight function w(t) is a nonzero constant, and fractional
order

∑3
i=1 αi > 2.91 [28]. In simulation, on one hand,

Figs. 1 (c) and 1 (d), indicate that with suitable scale and
weight functions, the GFLS also has a chaotic attractor. On
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the other hand, Fig. 1 (c), Fig. 1 (d), Fig. 2 (c), Fig. 2 (d),
and Fig. 3 (d) imply that the scale and weight functions
can influence the shape and position of chaotic attractor.
From Figs. 3 (c) and 3 (d), we observe that with some suit-
able weight function, the chaotic attractor tends to be an
asymptotically stable equilibrium point.

3) Our previous work [23]−[26] verified that in gener-
alized fractional integral and generalized fractional deriva-
tive, the basic property of scale function σ(t) is that it
changes the time axis, which means that if the time do-
main is specified as [0, T ], then the response of the dynam-
ical system is obtained over [σ(0), σ(T )], provided the scale
function is monotone increasing. Since the chaotic dynam-
ical systems are sensitive to the initial conditions, when
we take different scale functions in generalized fractional
chaotic system, many different dynamical behaviors will be
drawn.

4) A similar observation to weight function can be found
in [23]−[26], which shows that in generalized fractional in-
tegral and generalized fractional derivative, the basic prop-
erty of weight function w(t) is that it puts different weights
for function in different positions of domain. The classical
fractional operators have memory property which makes
them excellent tools to model the diffusion process with
heredity. Generally, in left Caputo type generalized frac-
tional derivative, the monotonic increasing weight function
is coincident with the inner memory property of fractional
operator, while the monotonic decreasing weight function
can destroy this inner property. One can also follow our
numerical method and try other scale and weight functions
in numerical experiments.

5) In Figs. 2 and 3, one can observe that both changing
the scale and weight functions make the systems change
between different dynamical behavior (e.g., limit cycle and
stable equilibrium point). These phenomena can be re-
garded as general cases for generalized fractional chaotic
systems. We shall guess that either scale function or weight
function would influence the dynamics of generalized frac-
tional chaotic systems. In Fig. 2, the weight function is
fixed so that the influence of scale function on GFLVS and
GFLS is presented. Similarly, in Fig. 3, the scale function
is fixed so that the influence of weight function on GFLVS
and GFLS is shown. From (18), we clearly see that the
scale function plays an important role in scaling the long
time behavior of dynamics since it is located in the general-
ized exponential function, and the weight function provides
a different average since it lies inside the integral, and it is
a variable coefficient simultaneously. Apparently, the be-
havior of function u depends on the changing of scale and
weight functions.

4 Conclusions

In this paper, we presented a class of new generalized
fractional chaotic system, using the new generalized frac-
tional derivative proposed recently. Many dynamical sys-
tems with integer or fractional order derivatives can be
extended by replacing the derivative with the generalized
fractional derivative. Therefore, the new generalized frac-
tional dynamical systems considered in this paper can ex-
hibit more complex dynamic behaviors. In simulations, we
show that the dynamical behaviors of such systems not
only depend on fractional order, but also depend on the
scale and weight functions.
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