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Robust HHH∞∞∞ Fuzzy Output-feedback Control With Both

General Multiple Probabilistic Delays and Multiple

Missing Measurements and Random Missing Control
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Abstract In this paper, the robust H∞-control problem is reported for a class of uncertain discrete-time fuzzy systems with
both multiple probabilistic delays and multiple missing measurements and random missing control from the fuzzy controllers to
the actuator. A sequence of random variables including accounting for the probabilistic communication delays and the random
missing control are thought as mutually independent and obey the Bernoulli distribution. The measurement-missing phenomenon
can be assumed to occur stochastically. Assumption that the missing probability for each sensor satisfies a certain probabilistic
distribution in the interval [ 0 1 ] is given. Much attention is focused on design of H∞ the fuzzy output feedback controllers to ensure
that the resulting close-loop Takagi-Sugeno (T-S) system is exponentially stable in the mean square. The developed method makes
disturbance rejection attenuation satisfy a given level by means of the H∞-performance index. Intensive analysis is employed to
reach the sufficient conditions about the existence of admissible output feedback controllers which satisfies the exponential stability
as well as the prescribed H∞ performance. In addition, the cone-complementarity linearization procedure is utilized to transform the
controller-design problem into a sequential minimization one which can be solved by the semi-definite program method. Simulation
results conform the feasibility as weil as the effectiveness of the proposed design method.
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1 Introduction

Since recent few decades, some researchers focus their en-
ergy on the robust stability and controller design problems
about the networked-control systems (NCSs) with some
uncertain parameters because some networked-control sys-
tems have been succeeded in applications in modern com-
plicated industry processes, e.g., aircraft and space shuttle,
nuclear power stations, high-performance automobiles, etc.
The fuzzy-logic control based on the Takagi-Sugeno (T-S)
is widely used to dealing with complex nonlinear systems
because it has simple dynamic structure and highly accu-
rate approximation to any smooth nonlinear function in
any compact set. One can consult [1]−[8] and the other
cited literature therein [9]−[31]. Data-packet dropout is an
important issue to be addressed in the networked-control
systems [6], [32]. Zhang [33] solves the problem of H∞ es-
timation for a class of Markov jump linear systems but he
neglect possible dropout in practice. Reference [34] reports
the problem of H∞ stability of discrete-time switched linear
system with average dwell time and with no dropout. In [6],
piecewise Lyapunov function is proposed to analyze robust
of the nonlinear NCSs without time-delay issue. Random
data-packet dropout and time delay are well considered but
the controlled NCSs are linear systems in [32]. Reference
[8] discusses the problem of robust H∞ output feedback
control for a class of continuous-time Takagi-Sugeno (T-S)
fuzzy affine dynamic systems with parametric uncertain-
ties and input constraints on ignoring some nonlinearities
induced by system with data-packet dropout and random
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time delay. Reference [5] investigates the robust H∞ sta-
bility of a class of half nonlinear NCSs with multiple prob-
abilistic delays and multiple missing measurements regard-
less of the dropout in the forward path. According to above
consideration, we investigate a class of new nonlinear NCSs,
in which not only sensors communicate with controllers by
network but also controllers do with actuator in the same
manner.

The highlights of this paper, which lie primarily on the
new research problems and new system models, are sum-
marized as follows:

1) A new model is established, in which the controllers
communicate with the actuator by a wireless network and
the random missing control from the controller to the ac-
tuator occurs and the sensors do with the controllers in the
same manner.

2) The investigation on the T-S fuzzy model is used for
a class of complex systems that describe the modeling er-
rors, disturbance rejection attenuation, probabilistic delay,
missing measurements and missing control within the same
framework.

The rest of this paper is organized as follows. The
problem under consideration is formulated in Section 2.
Development of robust H∞ fuzzy control performance on
the exponentially stability the closed-loop fuzzy system are
placed in Section 3. Section 4 gives design of robust H∞
fuzzy controller. An illustrative example is given in Section
5, and we conclude the paper in Section 6.

Notation 1: The notation used in the paper is fairly stan-
dard. Rn denotes the n-dimensional real vectors; Rm×n

denotes the n-dimensional matrix; and I and 0 represent
the identity matrix and zero matrix, respectively. The no-
tation P > 0 (P ≥ 0) means that P is real symmetric and
positive definite (semi-definite), tr(M) refers to the trace
of the matrix M , and ‖ ·‖2 stands for the usual l2 norm. In
symmetric block matrices or complex matrix expressions,
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we use an “?” to represent a term that is induced by sym-
metry, and diag{· · · } stands for a block-diagonal matrix.
In addition, E{x} and E{x|y} will, respectively, mean ex-
pectation of x and expectation of x conditional on y.

2 Problem Formulation

In this note, the output feedback control problem for
discrete-time fuzzy systems in NCSs is taken in our consid-
eration, where the frame-work is depicted in Fig. 1.

Fig. 1. Framework of output feedback control systems over
network environment.

The sensors are connected to a network, which are shared
by other NCSs and susceptible to communication delays
and missing measurements or pack dropouts). As Fig. 1
depicts, pack dropouts from the controller to actuator can
take place stochastically. The fuzzy systems with multiple
stochastic communication delays and uncertain parameters
can be read as follows:

Plant Rule i: If θ1(k) is Mi1, and θ2(k) is Mi2, and, . . .,
and θp(k) is Mip, then

x(k + 1) = Ai(k)x(k) + Adi

h∑
m=1

αm(k)x(k − τm(k))

+ B1iu(k) + D1iv(k)

ỹ(k) = Cix(k) + D1iv(k)

z(k) = Czi(k) + B2iu(k) + D3iv(k)

x(k) = φ(k) ∀ k ∈ Z−, i = 1, . . . , r (1)

where Mij is the fuzzy set, r stands for the number of
If-then rules, and θ(k) = [θ1(k), θ2(k), . . . , θp(k)] is the
premise variable vector, which is independent of the input
variable u(k). x(k) ∈ Rn is the state vector, u(k) ∈ Rm, ỹ
∈ Rs is the process output, z(k) ∈ Rq is the controlled out-
put, v(k) ∈ Rp presents a vector of exogenous inputs, which
belongs to l2[0,∞), τm(k) (m = 1, 2, . . . , h) are the com-
munication delays that vary with the stochastic variables
αm(k), and φ(k) (∀ k ∈ Z−) is the initial state.

The stochastic variables αm(k) ∈ R (m = 1, 2, . . . , h) in
(1) are assumed to satisfy mutually uncorrelated Bernoulli-
distributed-white sequences described as follows:

Prob{αm(k) = 1} = E{αm(k)} = ᾱm

Prob{αm(k) = 0} = 1− ᾱm.

In this note, one can make the random communication-
time delays satisfy the following assumption that the time-
varying τm(k) (m = 1, 2, . . . , h) are subject to dt ≤ τm(k)
≤ dT . The matrices Ai(k) = Ai + ∆Ai(k), Czi(k) = Czi +

∆Czi(k), where Ai, Adi, B1i, B2i, Ci, Czi, D1i, D2i, and D3i

are known constant matrices with compatible dimensions.
∆Ai(k) and ∆Czi(k) with the time-varying norm-bounded
uncertainties satisfy

[
∆Ai(k)
∆Czi(k)

]
=

[
Hai

Hci

]
F (k)E (2)

with Hai, Hci being constant matrices and F T (k)F (k) ≤ I,
∀ k.

In this note, the packet dropout (the miss-measurement)
read as

yc(k) = ΞCix(k) + D2i(k)

=

s∑

l=1

βlCilx(k) + D2iv(k)

u(k) = W (k)uc(k) = W (k)Ckixc(k) (3)

where Ξ = diag{β1, . . . , βs} with βl (l = 1, 2, . . . , s) being s
unrelated random variables, which are also unrelated with
αm(k) and W (k) denoting the random packet missing from
the controllers to the actuator. One can assume that βl has
the probabilistic-density function ql(s) (l = 1, 2, . . . , s) on
the interval [0, 1] with mathematical expectation µl and
variance σ2

l . Cil = diag{0, . . . , 0︸ ︷︷ ︸
l−1

, 1, 0, . . . , 0︸ ︷︷ ︸
s−l

}Ci. We denote

the stochastic pack dropouts from the controller to the ac-
tuator by W (k) = diag{ω1(k), . . . , ωm(k)}, where ωl (l =
1, 2, . . . , m) are mutually unrelated random variables and
obey Bernoulli distribution with mathematical expectation
ω̄l and varianceρland assumed to be unrelated with αm(k).
For a given pair of (x(k), u(k)), the final output of the fuzzy
system is read as

x(k + 1) =

r∑
i=1

hi(θ(k))[Ai(k)x(k) + B1,iu(k)

+ Adi

h∑
m=1

x(k − τm(k)) + D1iv(k)]

yc(k) =

r∑
i=1

hi(θ(k))[ΞCix(k) + D2iv(k)]

z(k) =

r∑
i=1

hi(θ(k))[Czi(k)x(k) + B2iu(k) + D3iv(k)]

(4)

where the fuzzy-basis functions are described as

hi(θ(k)) =
ϑi(θ(k))

r∑
i=1

ϑi(θ(k))

ϑi(θ(k)) =

p∏
j=1

Mij(θj(k))

with Mij(θj(k)) being the grade of membership of θj(k)
in Mij . It is clear that ϑi(θ(k)) ≥ 0, i = 1, 2, . . . , r,∑r

i=1 ϑi(θ(k)) > 0, ∀ k, and hi(θ(k)) ≥ 0, i = 1, 2, . . . , r,∑r
i=1 hi(θ(k)) = 1, ∀ k. In the sequel, we denote hi =

hi(θ(k)) for brevity.
In the note, the fuzzy dynamic output-feedback con-

troller for the fuzzy system (4) is given as
Controller Rule i: If θ1(k) is Mil and θ2(k) is Mi2 and,

. . ., and θp(k) is Mip then
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{
xc(k + 1) = Akixc(k) + Bkiyc(k)

u(k) = W (k)Ckixc(k)
(5)

with xc(k) ∈ Rn being the controller state along with the
controller parameters Aki, Bki and Cki to be determined.
Naturally, the overall fuzzy output-feedback controller is
read as





xc(k + 1) =
r∑

i=1

hi[Akixc(k) + Bkiy(k)]

u(k) =
r∑

i=1

hiW (k)Ckixc(k), i = 1, 2, . . . , r.
(6)

Combining (6) with (4), we can obtain the closed-loop
system described as





x̄(k + 1) =
r∑

i−1

r∑
j=1

hihj [(Aij + Bij)x̄(k) + Dijv(k)

+
h∑

m=1

(Ādmi + Ãdmi)x̄(k − τm(k)]

z(k) =
r∑

i=1

r∑
j=1

hihj [C̄ij(k) + ¯̄Cij ]x̄(k) + D3iv(k)

(7)

where

x̄(k) =

[
x(k)
xc(k)

]
, Aij =

[
Ai(k) B1iW̄Ckj

BkiΞ̄Cj Aki

]

Bij =

[
0 B1iW̃ (k)Ckj

BkiΞ̃Cj 0

]

Ādmi =

[
ᾱmAdi 0

0 0

]
, Ãdmi =

[
α̃mAdi 0

0 0

]

Dij =

[
D1i

BkiD2j

]
, C̄ij(k) =

[
Czi(k) B2iW̄Ckj

]

¯̄Cij(k) =

[
0 B2iW̃ (k)Ckj

]

with α̃m(k) = αm(k)−ᾱm(k) and ω̃j(k) = ωj(k)−ω̄j(k). It
is evident that E{α̃m(k)} = 0 and that E{ω̃j(k)} = 0 and
that E{α̃2

m(k)} = ᾱm(1− ᾱm) = σ2
m and that E{ω̃2

j (k)} =

ω̄j(1− ω̄j) = ρ2
j .

Denote

x̄(k − τ)

=
[
x̄T (k − τ1(k)) x̄T (k − τ2(k)) · · · x̄T (k − τh(k))

]T

ξ(k) =
[

x̄T (k) x̄T (k − τ) vT (k)
]T

then (7) can also be rewritten as




x̄(k + 1) =
r∑

i=1

r∑
j=1

hihj

[
Aij + Bij , Ẑmi+ ∆Ẑmi, Dij

]
ξ(k)

z(k) =
r∑

i=1

r∑
j=1

hihj

[
C̄ij + ¯̄Cij , 0, D3i

]
ξ(k)

(8)

where Ẑmi = [Ād1i, . . . , Ādhi] and ∆Ẑmi = [Ãd1i, . . . , Ãdhi].
In order to smoothly formulate the problem in the note, we
introduce the following definition.

Definition 1: For the system (7) and every initial con-
ditions φ, the trivial solution is said to be exponentially
mean square stable if, in the case of v(k) = 0, there exist
constants δ > 0 and 0 < κ < 1 such that E{‖x̄(k)‖2} ≤
δκk sup−dM≤i≤0 E{‖φ(i)‖2}, ∀ k ≥ 0.

We will develop techniques to settle the robust H∞ dy-
namic output feedback problem for the discrete-time fuzzy
system (7) subject to the following conditions:

1) The fuzzy system (7) is exponentially stable in the
mean square.

2) Under zero-initial condition, the controlled output
z(k) satisfies

∞∑

k=0

E
{‖z(k)‖2} ≤ γ2

∞∑

k=0

E
{‖v(k)‖2} (9)

for all nonzero v(k), where γ > 0 is a prescribed scalar.
Remark 1: The proposed new model has the function

that not only the controllers communicate with the actua-
tor by wireless but also the sensors do with the controllers
by the same manner.

3 Development of Robust HHH∞∞∞ Fuzzy
Control Performance

At first, we give the following lemma, which will be
adopted in obtaining our main results.

Lemma 1 (Schur complement): Given constant matrices
S1, S2, S3, where S1 = ST

1 and 0 < S2 = ST
2 , then S1 +

ST
3 S−1

2 S3 < 0 if and only if
[

S1 ST
3

S3 −S2

]
< 0 or

[ −S2 S3

ST
3 S1

]
< 0.

Lemma 2 (S-procedure) [5]: Letting L = LT and H
and E be real matrices of appropriate dimensions with F
satisfying FF T ≤ I, then L+HFE +ET F T HT < 0 if and
only if there exists a positive scalar ε > 0 such that L +
ε−1HHT + εET E < 0, or equivalently




L H εET

HT −εI 0
εE 0 −εI


 < 0.

Lemma 3: For any real matrices Xij for i, j = 1, 2, . . . ,
r and n > 0 with appropriate dimensions, we have [35]

r∑
i=1

r∑
j=1

r∑

l=1

r∑

l=1

hihjhkhlX
T
ijΛXkl ≤

r∑
i=1

r∑
j=1

hihjX
T
ijΛXij .

Theorem 1: For given controller parameters and a pre-
scribed H∞ performance γ > 0, the nominal fuzzy system
(7) is exponentially stable if there exist matrices P > 0 and
Qk > 0, k = 1, 2, . . . , h, satisfying

[
Πi ?

0.5Σii

∧
]

< 0 (10)

[
4Πi ?
Σij

∧
]

< 0, 1 ≤ i < j ≤ r (11)

where

Πi = diag

{
− P +

h∑

k=1

(dT − dt + 1)Qk, α̂ĂT
diP̆ Ădi

− diag{Q1, Q2, . . . , Qh},−γ2I

}
(12)

α̂ = diag {ᾱ1(1− ᾱ1), . . . , ᾱh(1− ᾱh)}
Ădi = diag{Âdi, . . . , Âdi︸ ︷︷ ︸

h

}

Čij =
[
σ1Ĉ

T
11ijP, . . ., σsĈ

T
1sijP, ρ1Ĉ

T
k1ijP, . . ., ρmĈT

kmijP
]T
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P̌ = diag{P, . . . , P︸ ︷︷ ︸
s+m

}

∧
= diag{−P̌ ,−P,−I, diag{−I, . . . ,−I︸ ︷︷ ︸

m

}}

P̆ = diag{P, . . . , P︸ ︷︷ ︸
h

}

Âdi =

[
Adi 0
0 0

]

Σij =


Čij +Čji 0 0

PAij +PAji PẐmi+PẐmj PDij +PDji

C̄ij +C̄ji 0 D3i+D3j

[0 ρ1B2iCkj1+ρ1B2jCki1] 0 0

..

.
..
.

..

.

[0 ρmB2iCkjm+ρmB2jCkim] 0 0




.

Proof:
Let

Θj(k) = {x(k − τj(k), x(k − τj(k) + 1, . . . , x(k)}

χ(k) = {Θ1(k)
⋃

Θ2(k)
⋃

. . .
⋃

Θh(k)} =

h⋃
j=1

Θj(k)

where j = 1, 2, . . . , h. We consider the following Lyapunov
functional for the system of (7): V (χ(k)) =

∑3
i=1 Vi(k),

where

V1(k) = x̄T (k)P x̄

V2(k) =

h∑
j=1

k−1∑

i=k−τj(k)

x̄T (i)Qj x̄(i)

V3(k) =

h∑
j=1

−dm∑

m=−dM +1

k−1∑

i=k+m

x̄T (i)Qj x̄(i)

with P > 0, Qj > 0 (j = 1, 2, . . . , h) being matrices to be
determined.

E[∆V |x(k)] = E[V (χ(k + 1))|χ(k)]− V (χ(k))

= E[(V (χ(k + 1))− V (χ(k)))|χ(k)]

=

3∑
i=1

E[∆Vi|χ(k)]. (13)

According to (7), we have

E{∆V1|χ(k)}
= E

[
(x̄T (k + 1)P x̄(k + 1)− x̄T (k)P x̄(k))|χ(k)

]

≤ ξT (k)

r∑
i=1

r∑
j=1

Ωijξ(k)

where

Ωij = E








AT
ijPAij + BT

ijPBij − P

?

?

AT
ijPẐmi AT

ijPDij

ẐT
miPẐmi + ∆ẐT

miP∆Ẑmi ẐT
miPDij

? DT
ijPDij








Bij =

[
0 0

BkiΞ̃Cj 0

]
+

[
0 B1iω̃(k)Ckj

0 0

]

E{BT
ijPBij}

=

s∑

l=1

σ2
l

[
0 0

BkiCjl 0

]T

P

[
0 0

BkiCjl 0

]

+

m∑

l=1

ρ2
l

[
0 B1iCkjl

0 0

]T

P

[
0 B1iCkjl

0 0

]

= (P̌−1Člij)
T P̌ (P̌−1Člij)

P̌ = diag{P, . . . , P︸ ︷︷ ︸
s+m

}

Ĉ1lij =

[
0 0

BkiCjl 0

]

Ĉklij =

[
0 B1iCkjl

0 0

]

Čij =
[
σ1Ĉ

T
11ijP, . . . , σsĈ

T
1sijP, ρ1Ĉ

T
k1ijP, . . . , ρmĈT

kmijP
]T

E
{

∆ẐT
miP∆Ẑmi

}

=

h∑
m=1

ᾱm(1− ᾱm)

[
Adi 0
0 0

]T

P

[
Adi 0
0 0

]

=

h∑
m=1

ÂT
diPÂdi = α̂ĂT

diP̆ Ădi

α̂ = diag{ᾱ1(1− ᾱ1), . . . , ᾱh(1− ᾱh)}
Ădi = diag{Âdi, . . . , Âdi︸ ︷︷ ︸

h

}

E{∆V2|χ(k)} ≤ E

{
h∑

j=1

(x̄T (k)Qj x̄(k)

− x̄T (k − τj(k))Qj x̄(k − τj(k))

+

k−dm∑

i=k−dM +1

x̄T (i)Qj x̄(i))|χ(k)

}

E{∆V3|χ(k)} = E

{
h∑

j=1

((dT − dt)x̄
T (k)Qj x̄(k)

−
k−dm∑

i=k−dm+1

x̄T (i)Qj x̄(i))|χ(k)

}
.

It is clear that

E{∆V2|χ(k)}+ E{∆V3|χ(k)} ≤ ξT (k)Tijξ(k)

with

Tij = diag

{
h∑

k=1

(dT − dt + 1)Qk,

− diag{Q1, Q2, . . . , Qh}, 0
}

.
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Therefore, we have E{∆V |χ(k)} ≤ ξT (k)Γijξ(k), where
Γij = Ωij + Tij . Due to

E
{

zT (k)z(k)− γ2vT (k)v(k)
}

≤ ξ(k)

r∑
i=1

r∑
j=1

hihjE
{

[C̄ij + ¯̄Cij , 0, D3i]
T

×[C̄ij + ¯̄Cij , 0, D3i]− diag{0, 0, γ2I}
}

ξ(k)

we can obtain

E
{

zT (k)z(k)− γ2vT (k)v(k) + ∆V (k)
}

≤ ξT (k)(ΩT
ijdiag{P, I}Ωij

+ ZT
ijdiag{P̌ , I}Zij + P̄ )ξ(k)

where

Ωij =

[
Aij Ẑmi Dij

C̄ij 0 D3i

]

akijt =

[ [
0 ρtB2iCkjt

]
0 0

]T

Dij =

[
akij1 . . . akijm

]T

Zij =

[
[P̌−1Čij , 0, 0]

Dij

]

P̄ = diag

{
− P +

h∑

k=1

(dT − dt + 1)Qk, α̂ĂT
diP̆ Ădi

− diag{Q1, Q2, . . . , Qh},−γ2I

}
.

Define J(n) = E
∑n

k=0[z
T (k)z(k) − γ2vT (k)v(k)], we

have

J(n) = E

n∑

k=0

[
zT (k)z(k)− γ2vT (k)v(k) + ∆V (χ(k))

]

− EV (χ(n + 1))

≤ E

n∑

k=0

[
zT (k)z(k)− γ2vT (k)v(k) + ∆V (χ(k))

]

≤
n∑

k=0

r∑
i=1

r∑
j=1

hihjξ
T (k)(ΩT

ijdiag{P, I}Ωij

+ ZT
ijdiag{P̌ , I}Zij + P̄ )ξ(k)

=

n∑

k=0

r∑
i=1

h2
i ξ

T (k)(ΩT
iidiag{P, I}Ωii

+ ZT
iidiag{P̌ , I}Zii + P̄ )ξ(k)

+
1

2

n∑

k=0

r∑
j=1,i<j

hihjξ
T (k)

×
[
(Ωij + Ωji)

T diag{P, I}(Ωij + Ωji)

+ (Zij + Zji)
T diag{P̌ , I}(Zij + Zji) + 4P̄

]
ξ(k).

According to Schur complement, we can conclude from
(10) and (11) that J(n) < 0. Letting n →∞, we have

∞∑
n

E
{‖z(k)‖2} ≤ γ2

∞∑
n

E
{‖v(k)‖2} .

According to Schur complement again, we know that
E{∆V |x(k)} < 0 if and only if (10) and (11) hold true. Fur-
thermore, one can easily verify the fact that the discrete-
time nominal (7) with v(k) = 0 is exponentially stable. ¥

4 Design of Robust HHH∞∞∞ Fuzzy Con-
troller

In this section, we are devoted to how to determine the
controller parameters in (6) such that the closed-loop sys-
tem (7) is exponentially stable with H∞ performace.

By Theorem 1, one can easily draw the conclusion as
follow:

Theorem 2: For a prescribed constant γ > 0, the nom-
inal fuzzy system (7) is exponentially stable if there exist
positive definite matrices P > 0, L > 0, Qk > 0 (k = 1, 2,
. . . , h), and Ki and C̄ki such that

Γ1 =

[
Πi ?

0.5Σ̄ii Λ̄

]
< 0, i = 1, 2, . . . , r (14)

Γ2 =

[
4Πi ?
Σ̄ij Λ̄

]
< 0, 1 ≤ i < j ≤ r (15)

PL = I (16)

hold, then the nominal system (7) is exponentially stable

with disturbance attenuation γ, where
∧̄

= diag{−L̄,−L,
−I, diag{−I, . . . ,−I︸ ︷︷ ︸

m

}}

Σ̄ij =




Φ11ij + Φ11ji 0 0
Φ21ij + Φ21ji Φ22ij + Φ22ji Φ23ij + Φ23ji

Φ31ij + Φ31ji 0 Φ33ij + Φ33ji

Φ41ij + Φ41ji 0 0




(17)

Il = diag{0, . . . , 0︸ ︷︷ ︸
l−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−l

}, Ki =

[
Aki Bki

]

C̄ki =

[
0 Cki

]
, Ē =

[
0
I

]
, ¯̄E =

[
I
0

]

Āi =

[
Ai 0
0 0

]
, B̄1i =

[
B1i

0

]
, Ril =

[
0 0

Cil 0

]

D̄1i =

[
D1i

0

]
, D̄2i =

[
0

D2i

]

Φ11ij =




σ1ĒKiRj1

...
σsĒKiRjs

ρ1Ēβ1iI1C̄kj

...
ρmĒβ1iImC̄kj




, Φ41ij =




ρ1B2iI1C̄kj

...
ρmB2iImC̄kj




Φ21ij = Āi + ĒKiR̄j + B̄1idiag{w1, . . . , wm}C̄kj

Φ31ij = C̄zi + B2idiag{w1, . . . , wm}C̄kj

C̄zi =
[

Czi 0
]
, L̄ = diag{L, . . . , L︸ ︷︷ ︸

s+m

}

Φ22ij = Ẑmi, Φ23ij = Dij , Φ33ij = D3i.
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Proof: We rewrite the parameters in Theorem 1 in the
following form:

Aij = Āi + ĒKiR̄j + B̄1idiag{w1, . . . , wm}C̄kj

Ĉlij = ĒKiRjl

C̄ij = C̄zi + B2idiag{w1, . . . , wm}C̄kj

Dij = D̄1i + D̄1iKiD̄2j .

Pre- and post-multiplying the (10) and (11) by diag{I,
I, I, P̌−1, P−1, I, . . . , I︸ ︷︷ ︸

m

} and Letting L = P−1, we have

(14)−(16) and complete the proof easily. Now we will point
out that the robust H∞ controller parameters can be de-
termined in light of Theorem 2. ¥

Theorem 3: For given scalar γ > 0, if there exist positive
define matrices P > 0, L > 0, Qk > 0 (k = 1, 2, . . . , h), and
matrices Ki, C̄ki of proper dimensions and a constant ε > 0
such that

[
Γ1 ?
Ξii diag{−εI,−εI}

]
< 0,

i = 1, 2, . . . , r (18)[
Γ2 ?
Ξij diag{−εI,−εI}

]
< 0,

1 ≤ i < j ≤ r (19)

PL = I (20)

hold, where

Ξii =

[
0 0 0 0 [HT

ai 0] HT
ci 0

ε[E 0] 0 0 0 0 0 0

]

Ξij =

[
0 0 0 0 [HT

ai + HT
aj 0] HT

ci + HT
cj 0

ε[E 0] 0 0 0 0 0 0

]

then the uncertain fuzzy system (7) is exponentially stable
and the controller parameters Ki and C̄ki can be obtained
naturally.

Proof: Replace Āi, Āj , C̄zi, and C̄zj in Theorem 2
by Āi + 4Āi(k), Āj4Āj(k), C̄zi + 4C̄zi(k), and C̄zj +
4C̄zj(k), respectively, where

4Āi(k) =

[ 4Ai(k) 0
0 0

]
, 4C̄zi(k) = [4Czi(k) 0].

According to Lemma 1, (18) and (19) can be rewritten
as follows:

Γ1 + H1F (k)E + ET F (k)T HT
1 < 0

Γ2 + H2F (k)E + ET F (k)T HT
2 < 0

where

E = [E 0]

H1 =
[

0 0 0 0 [HT
ai 0] HT

ci 0
]

H2 =
[

0 0 0 0 [HT
ai + HT

aj 0] HT
ci + HT

cj 0
]
.

According to Lemma 1 along with Schur complement,
we can easily obtain (18) and (19). ¥

In order to solve (18), (19) and (20), the cone-
complementarity linearization (CCL) algorithm proposed
in [36] and [37] is used in this note.

The nonlinear minimization problem: min tr(PL) sub-
ject to (18) and (19) and

[
P I
I L

]
≥ 0. (21)

The following algorithm [5] is borrowed to solve the
above problem.

Algorithm 1:
Step 1: Find a feasible set (P0, L0, Qk(0), Ki(0), C̄ki(0))

satisfying (18), (19) and (21). Set q = 0.
Step 2: Solving the linear matrix inequality (LMI) prob-

lem, min tr(PL(0) + P(0)L) subject to (18), (19) and (21).
Step 3: Substitute the obtained matrix variables (P , L,

Qk, Ki(0), C̄ki) into (14) and (15). If conditions(14) and
(15) are satisfied with |tr(PL)−n| < δ for some sufficiently
small scalar δ > 0, then output the feasible solutions. Exit.

Step 4: If q > N , where N is the maximum number of
iterations allowed, then output the feasible solutions (P , L,
Qk, Ki, C̄ki), and exit. Else, set q = q + 1, and goto Step
2.

5 An Illustrative Example

we give an illustrative examples to explain the proposed
model is effective and feasible in this section.

Example 1: Consider a T-S fuzzy model (1). The rules
are given as follows:

Plant Rule 1: If x1(k) is h1(x1(k)) then





x(k + 1) = A1(k)x(k) + Ad1

h∑
m=1

αm(k)x(k − τm(k))

+ B11u(k) + D11v(k)

y(k) = ΞC1x(k) + D21v(k)

z(k) = Cz1(k)x(k) + B21u(k) + D31v(k)

(21)

Plant Rule 2: If x1(k) is h2(x1(k)) then





x(k + 1) = A2(k)x(k) + Ad2

h∑
m=1

αm(k)x(k − τm(k))

+ B12u(k) + D12v(k)

y(k) = ΞC2x(k) + D22v(k)

z(k) = Cz2(k)x(k) + B22u(k) + D32v(k)

(22)

The given model parameters are written as follows:

A1 =




1 0.2 0
0.1 0.1 0.1
0.1 0.2 0.2


 , D11 =




0.1
0
0




Ad1 =




0.03 0 −0.01
0.02 0.03 0
0.04 0.05 −0.1


 , B11 =




1 1
0.4 1
0 1




D31 =



−0.1

0
0.1


 , C1 =

[
1 0.8 0.7

−0.6 0.9 0.6

]

C2 =

[
0.1 0.8 0.7
−0.6 0.9 0.6

]
, D21 =

[
0.15
0

]

D22 =

[
0.1
0

]
, Cz1 =




0.2 0 0
0 0 0
0 0 0.1



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B21 =




1 1
0 1
0 1


 , Ha1 =




0.1
0.1
0.1


 , Hc1 =




0.1
0

0.1




Ha2 =




0.1
0

0.1


 , Hc2 =




0.1
0

0.5


 , D32 =




0.1
0

0.1




E =




0.1
0.1
0.1




T

, A2 =




1 −0.38 0
−0.2 0 0.21
0.1 0 −0.55




B12 =




1 0
1 1
0 1


 , Ad2 =




0 0.01 −0.01
0.02 0.03 0
0.04 0.05 −0.1




D12 =




0.1
0

0.1


 , Cz2 =




0.1 0 0
0.2 0 0.2
0 0.1 0.2




B22 =




1 0
0 1
1 1


 .

Assume that the time-varying communication delays sat-
isfy 2 ≤ τm ≤ 6 (m = 1, 2) and

ᾱ1 = E{α1(k)} = 0.8, ᾱ2 = E{α2(k)} = 0.6

ω̄1 = E{ω1(k)} = 0.4, ω̄2 = E{ω2(k)} = 0.6.

Assume also that the probabilistic density functions of
β1 and β2 in [0 1] are read as

q1(s1) =





0, s1 = 0

0.1, s2 = 0.5

0.9, s3 = 1

, q2(s2) =





0, s2 = 0

0.2, s2 = 0.5

0.8, s3 = 1

.

(23)

The membership functions are described as

h1 =





1, x0(1) = 0∣∣∣∣
sin(x0(1))

x0(1)

∣∣∣∣ , else

h2 = 1− h1. (24)

Now, we are to design a dynamic-output feedback par-
alleled controller in the form of (6) such that (7) is expo-
nentially stable with a given H∞ norm bound γ. In the
example, we assume γ = 0.9 and obtain the desired H∞
controller parameters as follows

Ak1 =



−0.0127 −0.0083 −0.0317
0.0229 0.0149 0.0221
−0.0588 −0.0429 −0.0654




Ak2 =



−0.1365 −0.1296 −0.0570
−0.0107 −0.0095 0.0239
−0.0125 −0.0129 −0.0260




Bk1 =



−0.3236 0.1389
0.0291 −0.0043
−0.3077 0.1867




Bk2 =




0.1664 0.0834
0.1374 −0.0712
−0.4340 0.5688




Ck1 =

[
0.1355 0.0856 0.1789
0.0311 0.0209 0.0372

]

Ck2 =

[
0.0110 0.0464 0.0731
0.0832 0.0622 0.0502

]
.

We take the initial conditions x0 = [1 0 − 1]T , xc0

= [0 0 0]T for the simulation purpose and let external
disturbance v(k) = 0. Fig. 2 depicts the state responses
for the uncontrolled fuzzy systems, which are unstable. We
can see the fact that the closed-loop fuzzy systems are ex-
ponentially stable from the Fig. 3.

Fig. 2. State evolution x(k) of uncontrolled systems.

Fig. 3. State evolution x(k) of controlled systems.

In order to illustrate the disturbance-attenuation perfor-
mance,we take the external disturbance

v(k) =





0.3, 20 ≤ k ≤ 30

−0.2, 50 ≤ k ≤ 60

0, else.

Fig. 4 presents the controller-state evolution xc(k), Fig. 5
plots the state evolution of the controlled output z(k), and
Fig. 6 shows the output feedback controller. From Figs. 3−
6, one can see that the convergence rate is rapid and ef-
fective. By the above simulation results, we can draw the
conclusion that our theoretical analysis to the robust H∞
fuzzy-control problem is right completely.

Remark 2: The above simulation is performed on
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the basis of the software MATLAB 7.0 and the cone-
complementarity linearization algorithm may takes several
minutes because of choosing initial feasible set.

Fig. 4. Output feedback controller xc(k).

Fig. 5. Controlled output z(k).

Fig. 6. Output feedback controller u(k).

6 Conclusion

In this paper, we establish general networked systems
model with multiple time-varying random communication

delays and multiple missing measurements as weil as the
random missing control and discuss its robust H∞ fuzzy-
output feedback-control problem. The proposed system
model includes parameter uncertainties, multiple stochas-
tic time-varying delays, multiple missing measurements,
and stochastic control input missing. The control strategy
adopts the parallel distributed compensation. We obtain
the sufficient conditions on the robustly exponential sta-
bility of the closed-loop T-S fuzzy-control system by using
the CCL algorithm and the explicit expression of the de-
sired controller parameters. An illustrative simulation ex-
ample further shows that the fuzzy-control method to the
proposed new control model is feasible and the new con-
trol model can be used for future applications. Whether
to construct piecewise Lyapunov functions [8] to solve the
proposed control model or not is an interesting topic and
in active thought.
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fuzzy Itô stochastic delay systems via dynamic output feed-
back,” IEEE Trans. Syst. Man Cybern. B Cybern., vol. 39,
no. 5, pp. 1308−1315, Oct. 2009.

5 H. L. Dong, Z. D. Wang, D. W. C. Ho, and H. J. Gao, “Ro-
bust H∞ fuzzy output-feedback control with multiple prob-
abilistic delays and multiple missing measurements,” IEEE
Trans. Fuzzy Syst., vol. 18, no. 4, pp. 712−725, Aug. 2010.

6 J. B. Qiu, G. Feng, and H. J. Gao, “Fuzzy-model-based
piecewise H∞ static-output-feedback controller design for
networked nonlinear system,” IEEE Trans. Fuzzy Syst., vol.
18, no. 5, pp. 919−934, Oct. 2010.

7 J. B. Qiu, G. Feng, and H. J. Gao, “Observer-based piecewise
affine output feedback controller synthesis of continuous-
time T-S fuzzy affine dynamic systems using quantized mea-
surements,” IEEE Trans. Fuzzy Syst., vol. 20, no. 6, pp. 1046
−1062, Dec. 2012.

8 J. B. Qi, G. Feng, and H. J. Gao, “Static-output-feedback
H∞ control of continuous-time T-S fuzzy affine systems via
piecewise Lyapunov functions,” IEEE Trans. Fuzzy Syst.,
vol. 21, no. 2, pp. 245−261, Apr. 2013.

9 Y. Y. Cao and P. M. Frank, “Analysis and synthesis of non-
linear time-delay systems via fuzzy control approach,” IEEE
Trans. Fuzzy Syst., vol. 8, no. 2, pp. 200−211, Apr. 2000.

10 B. Chen, X. P. Liu, S. C. Tong, and C. Lin, “Observer-based
stabilization of T-S fuzzy systems with input delay,” IEEE
Trans. Fuzzy Syst., vol. 16, no. 3, pp. 652−663, Jun. 2008.

11 B. Chen and X. P. Liu, “Delay-dependent robust H∞ control
for T-S fuzzy systems with time delay,” IEEE Trans. Fuzzy
Syst., vol. 13, no. 4, pp. 544−556, Aug. 2005.

12 H. J. Gao, Y. Zhao, and T. W. Chen, “H∞ fuzzy control of
nonlinear systems under unreliable communication links,”
IEEE Trans. Fuzzy Syst., vol. 17, no. 2, pp. 265−278, Apr.
2009.



1664 ACTA AUTOMATICA SINICA Vol. 43

13 X. F. Jiang and Q. L. Han, “On designing fuzzy controllers
for a class of nonlinear networked control systems,” IEEE
Trans. Fuzzy Syst., vol. 16, no. 4, pp. 1050−1060, Aug. 2008.

14 C. Lin, Q. G. Wang, T. H. Lee, and Y. He, “Design of
observer-based H∞ control for fuzzy time-delay systems,”
IEEE Trans. Fuzzy Syst., vol. 16, no. 2, pp. 534−543, Apr.
2008.

15 X. W. Liu, “Delay-dependent H∞ control for uncertain fuzzy
systems with time-varying delays,” Nonlinear Anal. Theory
Methods Appl., vol. 68, no. 5, pp. 1352−1361, Mar. 2008.

16 M. Liu, D. W. C. Ho, and Y. G. Niu, “Stabilization of marko-
vian jump linear system over networks with random commu-
nication delay,” Automatica, vol. 45, no. 2, pp. 416−421, Feb.
2009.

17 S. K. Nguang and P. Shi, “Fuzzy H∞ output feedback control
of nonlinear systems under sampled measurements,” Auto-
matica, vol. 45, no. 12, pp. 2169−2174, Dec. 2003.

18 S. K. Nguang and P. Shi, “H∞ fuzzy output feedback con-
trol design for nonlinear systems: An LMI approach,” IEEE
Trans. Fuzzy Syst., vol. 11, no. 3, pp. 331−340, Jun. 2003.

19 M. Sahebsara, T. W. Chen, and S. L. Shah, “Optimal H∞
filtering in networked control systems with multiple packet
dropouts,” Syst. Control Lett., vol. 57, no. 9, pp. 696−702,
Sep. 2008.

20 P. Seiler and R. Sengupta, “An H∞ approach to net-
worked control,” IEEE Trans. Automat. Control, vol. 50,
no. 3, pp. 356−364, Mar. 2005.

21 S. L. Sun, L. H. Xie, and W. D. Xiao, “Optimal full-order and
reduced-order estimators for discrete-time systems with mul-
tiple packet dropouts,” IEEE Trans. Signal Process., vol. 56,
no. 8, pp. 4031−4038, Aug. 2008.

22 Z. D. Wang, D. W. C. Ho, Y. R. Liu, and X. H. Liu, “Ro-
bust H∞ control for a class of nonlinear discrete time-delay
stochastic systems with missing measurements,” Automat-
ica, vol. 45, no. 3, pp. 684−691, Mar. 2009.

23 H. N. Wu, “Delay-dependent H∞ fuzzy observer-based con-
trol for discrete-time nonlinear systems with state delay,”
Fuzzy Sets Syst., vol. 159, no. 20, pp. 2696−2712, Oct. 2008.

24 H. N. Wu and K. Y. Cai, “H2 guaranteed cost fuzzy
control for uncertain nonlinear systems via linear matrix
inequalities,” Fuzzy Sets Syst., vol. 148, no. 3, pp. 411−429,
Dec. 2004.

25 F. W. Yang, Z. D. Wang, Y. S. Hung, and M. Gani, “H∞
control for networked systems with random communica-
tion delays,” IEEE Trans. Automat. Control, vol. 51, no. 3,
pp. 511−518, Mar. 2006.

26 D. Yue, E. G. Tian, Y. J. Zhang, and C. Peng, “Delay-
distribution-dependent stability and stabilization of T-S
fuzzy systems with probabilistic interval delay,” IEEE
Trans. Syst. Man Cybern. Part B, Cybern., vol. 39, no. 2,
pp. 503−516, Apr. 2009.

27 H. G. Zhang, M. Li, J. Yang, and D. D. Yang, “Fuzzy model-
based robust networked control for a class of nonlinear sys-
tems,” IEEE Trans. Syst. Man Cybern. Part A, Syst. Hum.,
vol. 39, no. 2, pp. 437−447, Mar. 2009.

28 L. Q. Zhang, Y. Shi, T. W. Chen, and B. Huang, “A new
method for stabilization of networked control systems with
random delays,” IEEE Trans. Automat. Control, vol. 50, no.
8, pp. 1177−1181, Aug. 2005.

29 Y. Zhao, J. Wu, and P. Shi, “H∞ control of non-linear dy-
namic systems: A new fuzzy delay partitioning approach,”
IET Control Theory Appl., vol. 3, no. 7, pp. 917−928, Jul.
2009.

30 M. X. Liu, X. T. Liu, Y. Shi, and S. Q. Wang, “T-S fuzzy-
model-based H2 and H∞ filtering for networked control sys-
tems with two-channel Markovian random delays,” Dig. Sig-
nal Process., vol. 27, pp. 167−174, Apr. 2014.

31 L. Qiu, Y. Shi, F. Q. Yao, G. Xu, and B. G. Xu, “Network-
based robust H2/H∞ control for linear systems with two-
channel random packet dropouts and time delays,” IEEE
Trans. Cyber., vol. 45, no. 8, pp. 1450−1462, Aug. 2015.

32 L. X. Zhang, “H∞ estimation for discrete-time piecewise ho-
mogeneous Markov jump linear systems,” Automatica, vol.
45, no. 11, pp. 2570−2576, Nov. 2009.

33 L. X. Zhang, N. G. Cui, M. Liu, and Y. Zhao, “Asynchronous
filtering of discrete-time switched linear systems with aver-
age dwell time,” IEEE Trans. Circ. Syst. I Regul. Pap., vol.
58, no. 5, pp. 1109−1118, May 2011.

34 W. Assawinchaichote, S. K. Nguang, P. Shi, and E. Boukas,
“H∞ fuzzy state-feedback control design for nonlinear sys-
tems with D-stability constraints: An LMI approach,” Math.
Comput. Simul., vol. 78, no. 4, pp. 514−531, Aug. 2008.

35 X. P. Guan and C. L. Chen, “Delay-dependent guaranteed
cost control for T-S fuzzy systems with time delays,” IEEE
Trans. Fuzzy Syst., vol. 12, no. 2, pp. 236−249, Apr. 2004.

36 L. El Ghaoui, F. Oustry, and M. A. Rami, “A cone comple-
mentarity linearization algorithm for static output-feedback
and related problems,” IEEE Trans. Automat. Control, vol.
42, no. 8, pp. 1171−1176, Aug. 1997.

37 H. J. Gao, Z. D. Wang, and C. H. Wang, “Improved H∞ con-
trol of discrete-time fuzzy systems: A cone complementarity
linearization approach,” Inf. Sci., vol. 175, no. 1−2, pp. 57−
77, Sep. 2005.

Bishan Zhang received the M.S. degree
from Chongqing University, China, in 2003.
He is currently an Associate Professor with
the School of Mathematics and Comput-
ing Science, Guilin University of Electronic
Technology, Guilin, China. His research in-
terests include robust control, neural net-
works and their applications in motion con-
trol system. Corresponding author of this
paper. E-mail: bshzhang30@sina.com

Zhongjun Ma received the M.S. degree
from the Kunming University of Science
and Technology, Kunming, China, in 2004,
and the Ph.D. degree from Shanghai Uni-
versity, Shanghai, China, in 2007. He
is currently a Professor with the School
of Mathematics and Computing Science,
Guilin University of Electronic Technology,
Guilin, China. His research interests in-
clude multiagent systems, nonlinear sys-
tems, and complex networks.

E-mail: mzj1234402@163.com

Meixiang Yang received the M.S. de-
gree from Guilin University of Electronic
Technology, China, in 2006. She is cur-
rently a Lecturer at the School of Mathe-
matic and Computing Science, Guilin Uni-
versity of Electronic Technology, Guilin,
China. Her research interests include ro-
bust control, optimal control and their ap-
plications in motion control system.
E-mail: meixiangyang2016@163.com


