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Abstract In this paper, we formulate and investigate a
memristive neural networks with time-varying delays and syn-
chronous switching. Conditions are derived which ensure the
existence of an equilibrium point and uniform stability for state
trajectories of the memristive neural network. The analysis in
the paper employs results from the theory of Lyapunov function.
Moreover, the proposed stability conditions are straightforward
and convenient which can reflect the impact of time-varying de-
lays on the stability. The simulation results demonstrate the
effectiveness of the theoretical results.
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1 Introduction
The “memristor”, an abbreviation for memory resistor,

is the fourth basic circuit element along with resistors, ca-
pacitors and inductors which were studied by Chua [1] in
1971. Chua et al. [2] showed that the value of the memris-
tor, called memristance, is the function of electric charge q
given as M(q) = dϕ

dq
, where ϕ represents the magnetic flux.

On May 1, 2008, the Hewlett-Packard (HP) research team
proudly announced that they had built a prototype of the
memristor with an official publication in Nature [3].

As we know, the memristive neural network is a pre-
requisite in many applications such as signal processing,
pattern recognition, systems control and intelligent circuit
[4]−[11]. Because of the special nonlinear structure and its
important applications, the theoretical analysis of memris-
tive neural network is a very important issue for research.
Memristive switching neural network is one of the study
branches. Switching system is a hybrid system, which con-
sists of several subsystems and a switching rule. Neural
networks with switching behavior are called switching neu-
ral networks. Because of the special nature of memristor,
there are many researchers who have been interested in in-
vestigating memristive switching neural networks [12]−[15].

It is known that time delay affects the dynamic behav-
iors of neural networks enormously, and delay-dependent
stability criteria are of little conservatism, therefore many
important results have been established for time-delay sys-
tem [16]−[18]. According to the feature of memristor and
the current characteristics, we know there exists a fixed
switching time between memristors’ two states, thus, the
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memristor is a switching system itself. Motivated by the
above discussion, the main aim in this paper was to estab-
lish a memristive neural network with time-varying delays
and put some external switching signals which are syn-
chronous with the fixed switching time between memris-
tors’ two states. This memristive system is not only a time-
delay system but also a switching system, we can call the
system memristive neural networks with time-varying de-
lays and synchronous switching. This is a new system that
is never studied before, we will establish stability criteria
for this system in this paper. The method of this paper
can be extended to study some other memristive neural
networks.

According to the feature of memristor and the current
characteristics, in this paper, we apply a simple mathemat-
ical model of the memristance as follows [19]:

M(u(t)) =





M ′, u̇(t) > 0

M ′′, u̇(t) < 0

lim
τ→t−

M(u(τ)), u̇(t) = 0
(1)

where u is the voltage applied to the memristor, u̇(t) is
the derivative of u with respect to time t. M ′ ≤ M ′′, M ′

and M ′′ are the memristances when u̇(t) > 0 and u̇(t) < 0
respectively. When u̇(t) = 0, limτ→t−M(u(τ)) means that
the memristance keeps the current value.

The rest of this paper is organized as follows. In Sec-
tion 2, we put forward a memristive neural network with
time-varying delays and synchronous switching model, then
make a brief description. In Section 3, we analyze the sys-
tem in brief via Lyapunov function. In Section 4, one ex-
ample is given to illustrate our results. Finally, in Section
5 we give the conclusion, in Section 6 we give the acknowl-
edgments.

2 Model Description
We consider the following memristive neural networks

with time-varying delays and synchronous switching model:

żi(t) =− diσ(t)zi(t) +

n∑
j=1

aij(zi − zj)σ(t)f̃j(zj(t))

+

n∑
j=1

bij(zi − zj)σ(t)g̃j(zj(t− τij(t))) + Siσ(t)

i = 1, 2, . . . , n (2)

where zi(t) is the state variable of the ith neuron, γ = σ(t)
is the switching signal which takes value in the finite set Σ
= {1, 2, . . . , N}, diγ is the ith neuron’s self-feedback con-
nection weight at the switching signal of γ, aij(zi − zj)γ

and bij(zi − zj)γ are, respectively, memristive connection
weights and those associated with time delays at the switch-
ing signal of γ, Siγ is the external constant inputs at the
switching signal of γ, τij(t) is time-varying delays for the
system. n denotes the number of neurons in the indicated
neural networks. f̃i(·) and g̃i(·) are the ith activation func-
tions and those associated with time delays, respectively.

System (2) can be rewritten in the following vector form

ż(t) = P (z)

=−Dσ(t)z(t) + A(z)σ(t)f̃(z(t))

+ B(z)σ(t)g̃(z(t− τ(t))) + Sσ(t). (3)

By applying the theories of set-valued maps and differ-
ential inclusions, the memristive neural network (3) has
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the same solution set as the following differential inclusion
equation [19]−[21]:

ż(t) ∈ co{P (z)}
=−Dσ(t)z(t) + Aσ(t)f̃(z(t))

+ Bσ(t)g̃(z(t− τ(t))) + Sσ(t), i = 1, 2, . . . , n (4)

where Dγ = diag(d1γ , d2γ , . . . , dnγ), γ ∈ {1, 2, . . . , N}. For
some time t, σ(t) = γ, we say that ith neural network (Di,
Ai, Bi) is activated at time t. Assume that the function
σ(t) is right-continuous, that is, σ(t) = σ(t+). The time t
is called the switching time if σ(t) 6= σ(t−). And

Aσ(t) = (ξj
iσ(t)(t)a

′
ij + (1− ξj

iσ(t)(t))a
′′
ij)n×n

Bσ(t) = (ξj
iσ(t)(t)b

′
ij + (1− ξj

iσ(t)(t))b
′′
ij)n×n

ξj
iσ(t)(t) are arbitrary constants such that 0 ≤ ξj

iσ(t)(t)

≤ 1 and ξj
iσ(t)(t) + ξi

jσ(t)(t) = 1. f̃(z(t)) = [f̃1(z1(t)),

f̃2(z2(t)), . . . , f̃n(zn(t))]T , g̃(z(t)) = [g̃1(z1(t)), g̃2(z2(t)),
. . ., g̃n(zn(t))]T . τ(t) is the time delay with τ̃ ≤ τ(t) ≤ τ̄ .
Sγ is the external input, Sγ = (S1γ , S2γ , . . . , Snγ)T . As-
sume P (z) is locally bounded, according to the Lemma 2
in [19], the existence of the solution of (4) is ensured.

The differential inclusion equation (4) means that there
exist sets diag{d1γ , d2γ , . . . , dnγ}, diag{S1γ , S2γ , . . . , Snγ}
and {ξi

jσ(t)(t)} such that

żi(t) =− dizi(t) +

n∑
j=1

[ξij(t)a
′
ij + (1− ξij(t))a

′′
ij)]f̃j(zj(t))

+

n∑
j=1

[ξij(t)b
′
ij + (1− ξij(t))b

′′
ij)]

+ g̃j(zj(t− τij(t))) + Si, i = 1, 2, . . . , n. (5)

Moreover, we assume that the initial conditions of the
system (4) are of the form

zi(t) = φi(t), t ∈ [−τ, 0], t ∈ [− max
1≤i,j≤n

]

where φi(·) denote real-valued continuous functions defined
on [−τ, 0].

Suppose that z∗ = (z∗1 , z∗2 , . . . , z∗n)T is an equilibrium
point of system (2). Let x(t) = z(t) − z∗, then system (4)
can be rewritten as follows

ẋ(t) = −Dσ(t)x(t) + Aσ(t)f(x(t)) + Bσ(t)g(x(t− τ(t)))
(6)

where

f(x(t)) = (f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T

fn(xn(t)) = f̃n((xn(t)) + z∗n)− f̃n(z∗n)

g(x(t− τ(t))) = (g1(x1(t− τ(t))),

g2(x2(t− τ(t))), . . . , gn(xn(t− τ(t))))T

gn(xn(t− τ(t))) = g̃n(xn(t− τ(t) + z∗n)− g̃n(z∗n).

Transform (6) into the following form

ẋi(t) = − dixi(t) +

n∑
j=1

[ξij(t)a
′
ij + (1− ξij(t))a

′′
ij)]fj(xi(t))

+

n∑
j=1

[ξij(t)b
′
ij + (1− ξij(t))b

′′
ij)]gj(xi(t− τij(t)))

i = 1, 2, . . . , n (7)

where fj(xi(t)) = f̃j(xj(t) + x∗j ) − f̃j(x
∗
j ) and gj(xi(t)) =

g̃j(xj(t) + x∗j )− g̃j(x
∗
j ).

The initial conditions of system (4) will be transformed
into the following form

xi(s) = φi(s)− z∗i = ϕi(s), s ∈ [−τ, 0], t = max
1≤i,j≤n

{τij}.

The following assumptions and definition are made on
system (2) throughout this paper.

Assumption 1: There exist positive constants Fi, Gi, i
= 1, 2, . . . , n, and fi(0) = 0, gi(0) = 0 such that, for all
arguments

0 ≤ fi(xi)− fj(xj)

xi − xj
≤ Fi, 0 ≤ gi(xi)− gj(xj)

xi − xj
≤ Gi.

Assumption 2: τij : [0, +∞) → [0, +∞) is continuously
differentiable, and 0 ≤ τij ≤ τ̄ , τ ′ij ≤ R < 1.

Assumption 2 ensures that t− τij has differential inverse
function denoted by ϕij(t) and inft>0{ϕ′ij(t)} > 0.

Definition 1 [22]: Let us consider the set-valued map
φ(x) defined as:

φ(x) =
⋂
σ>0

⋂

µ(N)=0

K[y(t, Bσ(x)) \N ]

where K[U ] represents the closure of convex hull of set U ,
i.e., K[U ] = co(U). µ[U ] denotes the Lebesgue measure
of set U , N is an arbitrary set with measure zero. When
y(t, x) is locally bounded, there exists a set N t

0 ⊂ Rn and
µ(N t

0) = 0, such that φ(x) = co{ν : there exists a set {xi}
that satisfies xi /∈ N t

0

⋃
N and ν = lim y(t, xi)} for any t ≥

0, N ⊂ Rn and µ(N) = 0.

3 Analysis of Memristive Synchronous
Switching Neural Networks

Theorem 1: Assume that there exist positive constants
λi (i = 1, 2, . . . , n), µ, ν ∈ [0, 1], and positive constants ε
such that the following condition holds:

θ = max
1≤i≤n

sup
t≥0

{−2(di − ε)λi

+ λi

n∑
j=1

[F 2µ
j |aij |max + G2ν

j e2ετ̄ |bij |max]

+

n∑
j=1

λj [F
2(1−µ)
j |aij |max

+ G
2(1−ν)
j |bij |maxϕ

′
ij(t)]}x2

i (t) < 0 (8)

then the trivial solution of (7) is exponentially stable, and
we say the system (2) is globally exponentially stable.

Proof: We can choose the following nonnegative Lya-
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punov function candidate for system (7)

V (t) =

n∑
i=1

λi{x2
i (t)e

2εt

+

n∑
i=1

G
2(1−ν)
j

∫ ϕij(t)

t

∣∣ξij(t)b
′
ij + (1− ξij(t))b

′′
ij

∣∣

× x2
j (s− τij(s))e

2ε(s−τij(s))ds} (9)

where t > 0, and then compute the upper and right Dini
derivative along the trajectories of system (7)

D+V (t) =

n∑
i=1

λi{2xi(t)[−di(xi(t))

+

n∑
j=1

(ξij(t)a
′
ij + (1− ξij(t))a

′′
ij)fj(xi(t))

+

n∑
j=1

(ξij(t)b
′
ij + (1− ξij(t))b

′′
ij)

× gj(xi(t− τij(t)))]e
2εt + x2

i (t)e
2εt

+

n∑
j=1

G
2(1−ν)
j |(ξij(t)b

′
ij + (1− ξij(t))b

′′
ij)|

× x2
j (t)ϕ

′
ij(t)e

2εt −
n∑

j=1

G
2(1−ν)
j |(ξij(t)b

′
ij

+ (1− ξij(t))b
′′
ij)| × x2

j (t− τij(t))e
2ε(t−τij(t))}

≤
n∑

i=1

λie
2εt{−2(di − ε)x2

i (t)

+

n∑
j=1

|aij |max2(F µ
j |xi(t)|)× (F 1−µ

j |xj(t)|)

+

n∑
j=1

|bij |max2(eετij(t)Gν
j |xi(t)|)

× (e−ετij(t)G1−ν
j |xj(t− τij(t))|)

+

n∑
j=1

G
2(1−ν)
j |bij |maxx

2
j (t)ϕ

′
ij(t)

×−
n∑

j=1

G
2(1−ν)
j |bij |maxx

2
j (t− τij(t))}

≤
n∑

i=1

λie
2εt{−2(di − ε)x2

i (t)

+

n∑
j=1

|aij |maxF
2µ
j x2

i (t)

+

n∑
j=1

|aij |maxF
2(1−µ)
j x2

j (t)

+

n∑
j=1

|bij |maxe
2ετij(t)G2ν

j x2
i (t)

+

n∑
j=1

|bij |maxe
−2ετij(t)G

2(1−ν)
j x2

j (t− τij(t))

+

n∑
j=1

|bij |maxG
2(1−ν)
j x2

j (t)ϕ
′
ij(t)

−
n∑

j=1

G
2(1−ν)
j |bij |maxe

2ετij(t)x2
j (t− τij(t))

≤
n∑

i=1

λie
2εt{−2(di − ε)λi

+ λi

n∑
j=1

[F 2µ
j |aij |max + G2ν

j e2ετ̄ |bij |max]

+

n∑
j=1

λj [F
2(1−µ)
j |aij |max

+ G
2(1−ν)
j |bij |maxϕ

′
ij(t)]}x2

i (t)

≤ max
1≤i≤n

{λi(di − ε)(−2 + α)}
n∑

i=1

x2
i (t)e

2εt

= max
1≤i≤n

θ

n∑
i=1

x2
i (t)e

2εt. (10)

Therefore, when θ < 0

V (t) ≤ V (0), t ≥ 0. (11)

After a series of calculations according to (9), we can
obtain

V (0) =

n∑
i=1

λix
2
i (0) +

n∑
i=1

n∑
j=1

λiG
2(1−ν)
j=i

×
∫ ϕij(0)

0

|ξij(t)b
′
ij + (1− ξij(t))b

′′
ij |

× x2
j (s− τij(s)e

2ε(s−τij(s)))ds (12)

≤ max
1≤i≤n

{λi}(1 + nK)(1−R)−1

× max
1≤j≤n

{G2(1−ν)
j=1 }‖φ‖22 (13)

where K = max1≤i≤n sup−τij(0)≤t≤0

∑n
i=1

∫ 0

−τij(0)
|bij |maxds,

and ξ = s− τij(s) = ϕ−1
ij (s).

Based on Lemma 1 in [4], we get
∑n

i=1

∫∞
0

x2
i (t)e

2εtdt <
∞. From (8), we obtain

min
1≤i≤n

{λi}e2εt
n∑

i=1

x2
i (t) ≤

n∑
i=1

x2
i (t)λie

2εt ≤ V (t). (14)

Combining (10), (11) and (13), we can get

‖x(t)‖2 ≡
(

n∑
i=1

x2
i (t)

) 1
2

≤ χθ‖φ‖2e−εt (15)

where

χθ =




max
1≤i≤n

{λi}
min

1≤i≤n
{λi}




1
2 (

1 + nK(1−R)−1) max
1≤i≤n

{
G

2(1−ν)
j=1

}
.

(16)

Therefore, the equilibrium point z∗ of the memristive
neural networks system is globally exponentially stable.
Thus, the proof of Theorem 1 is completed. ¥
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The proposed criteria satisfy not only the case of binary-
value memristor connection weight like previous results but
also the case of the memristor connection weight changing
continuously with the time. Moreover, we can say that the
criteria of the system called memristive neural networks
with time-varying delays and synchronous switching are
firstly established.

Remark 1: In many other papers, the authors only
considered the case of binary-value memristor connection
weight. In the present paper, we relax this limitation and
assume the memristor connection weight is changing con-
tinuously with the time, and the polarity of the voltage is
also applied to the memristor.

4 An Illustrative Example
Example 1: The vector form of the memristive system

(2) is as follows

ż(t) =−Dσ(t)z(t) + A(z)σ(t)f̃(z(t))

+ B(z)σ(t)g̃(z(t− τ(t))) + Sσ(t).

Consider the switching system with Σ ∈ {1, 2}, D1 =
diag(1, 1), D2 = diag(5, 5), external input S1 = S2 =
(0, 0)T , time delay τ = 0.2− 0.05 sin2(t).

A(z) =

(
0.4 a12

a21 0.2

)
, B(z) =

( −0.2 b12

b21 −0.15

)

in which

a12 =

{−1.5, ż1 > ż2

0.5, ż1 < ż2
, a21 =

{
0.25, ż1 > ż2

−1, ż1 < ż2

b12 =

{
0.6, ż1 > ż2

−0.5, ż1 < ż2
, b21 =

{
0.7, ż1 > ż2

−0.15, ż1 < ż2

and f̃i(x) = g̃i(x) = (ex − e−x)/(ex + e−x), i = 1, 2, . . . , n,
which implies that Fi = Gi = 1/2. We can obtain that

|A|max =

(
0.4 1.5
1 0.2

)
, |B|max =

(
0.2 0.6
0.7 0.15

)
.

Choose λ1 = λ2 = 1, ε = 1, it is easy to verify that those
conditions satisfied Theorem 1, and system (2) is globally
exponentially stable with convergence rate ε based on The-
orem 1. Time response curves for memristive neural net-
work with time-varying delays and synchronous switching
are as shown in Fig. 1.

Fig. 1 Time response curves for memristive neural network with
time-varying delays and synchronous switching.

5 Conclusions
In this paper, we have studied the global exponential

stability of memristive neural networks with time-varying
delays and synchronous switching. Simple and easy crite-
ria for exponential stability are obtained. As a result, one
numerical example has been presented to illustrate effec-
tiveness of the proposed theory. The method of this paper
may be extended to study some other memristive neural
networks.
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