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Abstract In this work, the affine point set matching is formulated under a variational Bayesian framework and the model points are
projected forward into the scene space by a linear transformation. A directed acyclic graph is presented to represent the relationship
between the parameters, latent variables, model and scene point sets and an iterative approximate algorithm is proposed for the
estimation of the posterior distributions over parameters. Furthermore, the anisotropic covariance is assumed on the transition
variable and one Gaussian component is provided for the inference of outlier points. Experimental results demonstrate that the
proposed algorithm achieves good performance in terms of both robustness and accuracy.
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Point set matching is an important and well-studied
problem in the fields of computer vision and arises in a
variety of applications in other fields such as pattern recog-
nition and computer graphics. The feature points in an im-
age can be used for 2D-3D shape representation, alignment,
registration and recognition[1−4]. The point set match-
ing methods usually fall into two categories of matching
strategies: 1) matching with prior correspondences between

points[5−8], and 2) estimating the mapping function and

point correspondences simultaneously[9−10]. In this paper,
we focus on the study of affine point set matching without
the prior point-to-point correspondence under probabilistic
framework.

Iterative closest point (ICP) algorithm is one of most
popular methods for point set matching problems, which
obtains the rigid transforming matrix T by minimizing the
mean-squares objective function between two point sets[11].
Although ICP is attractive for its efficiency, it can be eas-
ily trapped into local minima due to the strict selection of
the best point-to-point assignment and is sensitive to ini-
tialization of transformation and choice of threshold which
is needed to accept or reject a match[12]. Typical soft as-
signment registration is kernel correlation (KC) algorithm,
which models each individual point sets by a kernel den-
sity function and then quantifies the (dis)similarity between

them using an entropy measure[9]. The performance of
KC method may be undermined under the circumstance
of large-scale outliers for the absence of explicit noise and
outlier models.

In recent years, probabilistic approach attracts more at-
tention for solving point set matching problems. Chui
and Rangarajan proposed mixture point matching (MPM)
for point registration by use of a Gaussian mixture model
with isotropic covariance, and an expectation maximization
(EM) algorithm is proposed for the solution to maximum a

posteriori (MAP) estimation of model parameters[13]. Co-
herent point drift (CPD) is another well-known EM-like
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point registration method which also assumes one same
isotropic covariance for all the mixture components[14]. In-
stead of the isotropic assumption, Horaud et al. introduced
an expectation conditional maximization for point regis-
tration algorithm for the issue of matching rigid and ar-
ticulated shapes, where anisotropic covariance is assumed
on each individual Gaussian components instead of the
isotropic covariance[15]. Without the use of EM-like up-
dates, Jian and Vemuri directly minimized KL-divergence
between the distributions of model and scene point sets[12].
This formulation leads to a non-linear optimization prob-
lem under nonconvex rigidity constraints. Ma et al. made
use of L2E estimator for point set registration base on the
assumption of one isotropic covariance and a coarse-to-fine
deterministic annealing optimization[16]. All of the afore-
mentioned algorithms utilize an extra uniform distribution
to alleviate the influence of outliers. Recently, student′s-t
mixture model was proposed for the non-rigid registration
to overcome the vulnerability of Gaussian mixture model
(GMM) to outliers and data longer than normal tails[17].
Though student distribution provides better performance
in terms of outliers points than Gaussian distribution, the
absence of outlier model would impair the generalization
capability of this mixture model, especially in the case of
multiple clusters of outliers.

As the Bayesian framework for point set matching, Gu
and Kanade presented a multi-level generative model for
the alignment of face images, in which the prior distribution
of shape is modeled as Gaussian mixtures with constrained
isotropic covariance and the deformation and transforma-
tion parameters are estimated by an EM updates under an
MAP objective function[4]. Rangarajan et al. proposed
Bayesian network for the relational shape matching in the
absence of outlier model, and the pairwise correspondences
between the template graphs and the data are estimated
by Bethe free energy approach[18]. Zhou et al. presented a
Bayesian mixture model to describe shape distribution and
feature point visibility, where an EM algorithm is proposed
to find the MAP estimation of the model parameters[19].
These aforementioned approaches provide the point estima-
tions of transformation and correspondence, they are thus
less prone to local optima for the absence of uncertainty
modeling for the transformation parameters and outliers.

In order to provide a full Bayesian inference for model,
Green and Mardia proposed a hierarchical graph models to
match unlabeled or partial labeling points[20]. Their ap-
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proach is based on Poisson process for hidden true point
locations and Markov chain Monte Carlo (MCMC) is ap-
plied to the simultaneous estimation of matching and trans-
forming. Czogiel et al. presented a Bayesian modeling of
the predicted field overlap between pairs of point sets, and
the posterior inference of molecular alignment is carried
out using MCMC stochastic simulation as well[21]. Unlike
stochastic approximation, variational inference is a kind
of deterministic techniques for posterior approximation[22]

and provides a monotonously increased lower bound for
the true posteriors. Klami presented a point set match-
ing solution to feature points matching based on Bayesian
canonical correlation analysis (CCA), which disregards the
transformation between two data sets and explicitly finds
the correspondence between two point sets[23]. Simpson et
al. propose a variational Bayesian registration framework
to infer the level of regularization in the non-rigid registra-
tion and make a linear approximation to the transformation
by taking a first order Taylor series expansion[18]. In their
model, the target image data is assumed as being gener-
ated from a source image and the correspondences between
points does not need not to be estimated during the regis-
tration process.

In this paper, we propose a probabilistic approach for
the estimation of affine matching between two point sets
under variational Bayesian framework. The contribution
of our work can be summarized as follows. 1) The match-
ing process is divided into two sub-phases, i.e., regression
and clustering, where the regression phase estimates the
affine transformation between two point sets and the clus-
tering phase establishes the correspondences between point
pairs. 2) Anisotropic covariance is assumed on each indi-
vidual transformed model points to model the uncertainty
of scattered scene points and thus the distribution of scene
set is model by a Gaussian mixture model. 3) An extra
Gaussian component is introduced to model the outliers
and the outlier distribution is also estimated during the
EM-like approximation process. Furthermore, comparison
studies are made on synthetic and real data sets between
our method and other state-of-the-art matching algorithms
and the proposed approach demonstrates comparable per-
formance in terms of both robustness and accuracy.

1 Problem formulation

The point set matching problem can be formulated as
follows. Given a shape model set M (in the form of a vec-
tor of landmarks) consisting of K points, and a collection
of points in scene S, consisting of N points. The task of
point set matching or point set registration is to find the
correspondences between the model and scene points with
a transformation T from M to S under certain objective
function F , while allowing outliers. The point set matching
problem can be formulated under probabilistic integration
as follows[24]:

p(S|M) =

∫
p(S, T |M)p(T )dT (1)

Here M = {mmmk}K
k=1 is the model point set containing K

feature components and S = {sssn}N
n=1 is the scene point

set containing N data points, where mmmk and sssn are D × 1
vectors, D is the dimension of individual point of model and
scene, T is the transformation function. As affine point set
matching is concerned, T = {AAA,bbb}, where AAA is a D × D
affine transformation matrix and bbb is a D × 1 translation
vector.

As the point numbers of model and scene may be differ-
ent, we introduce a latent random variable X = {xxxk}K

k=1,
which is called transition variable in this work, such that
xxxk = AAAmmmk + bbb. It is obvious that the connection between
model and scene sets can be established via the transition
variable X . If the mapping uncertainty is assumed to be
on each transition variable xxxk, for example, Gaussian white
noise with precision matrix ΨΨΨ, the distribution of p(X|M)
can be written as a typical statistical form of regression:

p(X|AAA,bbb,M,ΨΨΨ) =

K∏

k=1

N (xxxk|AAAmmmk + bbb,ΨΨΨ−1) (2)

After the transformation of model, one Gaussian mixture
model with K components can be obtained in the scene
space. Therefore, the scene data points can be seen as
being generated from the Gaussian mixture model whose
centers provide an internal structure according to the affine
transformed model points.

For each scene observation, a 1-of-(K + 1) binary vec-
tor zzzn with elements {znk, k = 0, 1, · · · , K} is assumed
on sssn to indicate which mixture the scene point is gen-
erated from. In order to model the outliers in the scene,
an extra Gaussian component is added into the mixtures
instead of the often-used uniform distribution. The sub-
script of outlier component is represented by 0 for simplic-
ity, and xxx0 and ΛΛΛ0 are the mean and covariance of outlier
component, respectively. The random variable zzzn indicates
which component of mixture model data sssn belongs to. Let
Z = {zzzn, n = 1, · · · , N} denotes the collection of indicator
variables. Given X , Z and ΛΛΛ, the conditional probability
of S can be written as follows:

p(S|Z,X ,ΛΛΛ) =

N∏
n=1

K∏

k=0

N (sssn|xxxk,ΛΛΛ−1
k )znk (3)

where {ΛΛΛk}K
k=0 are the precision matrices for the Gaus-

sian components of mixture model. The coverage of outlier
component is controlled by the prior scale matrix and the
scattering of outlier points in the scene set.

As one can see from (3), the “data collapses” will occur in
the case of N ≈ K under the maximum likelihood frame-
work, because the mixture components can easily ‘collapse’
on some specific data points and there will present singular-
ities in the estimation of parameters[22]. On the contrary,
the Bayesian framework naturally avoids this kind of sin-
gularities for the reason that the prior is introduced into
the matching of points.

The indicator variable Z is controlled by the mixing co-
efficient πππ, which is the proportion of points in terms of
each component to the whole size of scene. The conditional
probability of indicator variable given πππ can be written as
follows:

p(Z|πππ) =

N∏
n=1

K∏

k=0

π
znk
k (4)

π0 is the mixing proportion of the number of outliers to
the total number of scene points. The prior over mixing
proportions πππ is a Dirichlet distribution with parameter
ααα0, which is the prior sample size for each component, and
has the following probability formulation:

p(πππ|ααα0) = C(ααα0)

K∏

k=0

πk
α0

k−1 (5)
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where C(ααα0) is normalization constant.

Following the idea of MacKay[25] and Neal[26], hierarchi-

cal prior is assumed to be on affine transformation ÃAA = [AAA
bbb] in order to perform automatic relevance determination

over the entries of ÃAA. Each column of the ÃAA has a Gaussian
prior with zero mean and a different precision parameter ννν
which is drawn from a Gamma distribution with parame-
ters ccc0 and ddd0:

p(ÃAA|ννν) =

D+1∏
j=1

p(Ã·j |νj) =

D+1∏
j=1

N (Ã·j |000,
III

νj
) (6)

and

p(ννν|ccc0, ddd0) =

D+1∏
j=1

Gamma(νj |c0
j , d

0
j ) (7)

where III is a D ×D identity matrix.
The noise precision matrix ΨΨΨ is assumed to be Wishart

distribution with prior degree of freedom λ and prior scale
matrix UUU0, which has the following distribution form:

p(ΨΨΨ|λ0,UUU0) =
1

C(λ0,UUU0)
|ΨΨΨ|λ0−D−1

2 e−
1
2 tr(UUU0−1

ΨΨΨ) (8)

where | · | is the determinant of matrix, tr(·) is the trace
function, and C(λ0,UUU0) is normalization constant.

Similar to the noise precision ΨΨΨ, precision ΛΛΛk of each in-
dividual mixture components is also assumed to be under
Wishart distribution with prior degree of freedom γ0

k and
prior scale matrix WWW 0

k, which has the following probability:

p(ΛΛΛ|γγγ0,WWW 0) =

K∏

k=0

1

C(γ0
k,WWW 0

k)
|ΛΛΛk|

γ0
k−D−1

2 e−
1
2 tr(WWW0

k
−1

ΛΛΛk)

(9)

where C(γ0
k,WWW 0

k) is normalization constant for Wishart dis-
tribution as well. Generally, γ0

0 and WWW 0
0 in terms of outlier

mixture are preset according to the prior information of
outliers. A lower prior scale matrix WWW 0

0 produces a broader
covariance of the posterior of outlier mixture and endows
equal probabilities over the scattered outliers.

There are seven random variables governing the prob-
abilistic point set matching model: 1) transition variable
X , which dominates the centers of Gaussian mixtures, 2)

transformation matrix ÃAA = [AAA bbb], 3) precision matrix ΨΨΨ with
regard to the D-dimensional zero-mean regression noise, 4)
hierarchical prior ννν, which performs automatic relevance
determination over AAA and bbb, 5) precision matrix ΛΛΛ of tran-
sition and outlier mixtures, 6) indicator latent variable Z,
and 7) mixing coefficient πππ determining the indicator vari-
able.

There are four groups of prior parameters need to be pre-
set over the latent variables ΨΨΨ, ννν, πππ and ΛΛΛ: 1) ccc0 and ddd0 are
prior shape and inverse-scale parameters of ννν, 2) λ0 and UUU0

are prior degree of freedom and scale matrix of noise ΨΨΨ, 3)
γγγ0 and WWW 0 are prior degree of freedom and scale matrix of
component precision ΛΛΛ, and 4) ααα0 is the prior sample size
of mixing coefficients πππ.

2 Bayesian point set matching

In this work, the affine point set matching is formulated
under a full probabilistic framework, and all of the pa-
rameters are assumed as random variables. Furthermore,

conjugate prior distributions are presumed on these vari-
ables in order that the posteriors will keep the same form
as the priors. The affine matching process can be intu-
itively illustrated as a graphical model, which is shown in
Fig. 1. According to (2) and (3), affine point set matching
is divided into two statistical subphases: regression and
clustering, and these two subphases are connected by the
transition variable X , which can also be observed in the
graphical model. This division is important for Bayesian
point set matching problem because it avoids nonlinear op-
timization over complex objective functions and a lot of
statistical tools can be directly applied to the estimation of
parameters.

Fig. 1 Directed acyclic graph representing the point set
matching (The top plate notation denotes the kth component
of model M and the bottom plate notation denotes repetitions
over the nth scene S point. Circled nodes are random variables

and the shading ones are observations in the graph.)

According to this directed graph illustrated in Fig. 1, the
conditional probability p(S|M) can be written as follows

p(S|M) =

∫
p(S|X ,Z,ΛΛΛ)p(X|ÃAA,M,ΨΨΨ)p(Z|πππ)×

p(πππ|ααα0)p(ΛΛΛ|WWW 0, γγγ0)p(ÃAA|ννν)p(ννν|ccc0, ddd0)× (10)

p(ΨΨΨ|UUU0, λ0)dXdZdÃAAdΛΛΛdΨΨΨνννdπππ

The log-marginal likelihood log p(S|M) is the objective
function for the variational approximation, and it is diffi-
cult to optimize this function directly because the integral
is in the logarithm function. However, the log-marginal
likelihood can be decomposed into the summation of two
items as log p(S|M) = F(q) + KL(q||p), where F(q) is a
functional of approximate posterior q(x) and KL(q||p) is
the KL-divergence between true posterior p(x) and approx-
imate posterior q(x) over random variable x. F(q) is called
negative free energy and produces a lower bound to the
log p(S|M), which can be written as follows:

F(q) =
〈
log p(S|X ,Z,ΛΛΛ)

〉
q(X )q(Z)q(ΛΛΛ)

+
〈
log p(X|ÃAA,M,ΨΨΨ)

〉
q(X )q(ÃAA)q(ΨΨΨ)

+H[q(X )]+
〈
log p(Z|πππ)

〉
q(Z)q(πππ)

+H[q(Z)]+
〈
log p(πππ|ααα0)

〉
q(πππ)

+H[q(πππ)]+
〈
log p(ΛΛΛ|WWW 0, γγγ0)

〉
q(ΛΛΛ)

+H[q(ΛΛΛ)]+
〈
log p(ÃAA|ννν)

〉
q(ÃAA)q(ννν)

+H[q(ÃAA)]+
〈
log p(ννν|ccc0, ddd0)

〉
q(ννν)

+H[q(ννν)]+
〈
log p(ΨΨΨ|UUU0, λ0)

〉
q(ΨΨΨ)

+H[q(ΨΨΨ)] (11)

where H[p(x)] = − ∫
p(x) log p(x)dx is the entropy of ran-

dom variable x and 〈·〉 is the expectation operator. By tak-
ing the variational optimization of F(q) in terms of each in-
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dividual approximate posteriors, one obtains a series of ap-
proximate posteriors with respect to the random variables,
and the KL-divergence between the approximate posterior
and the true posterior is also minimized during the approx-
imate process.

It should be mentioned that our model is substantially
different with other GMM-like point set matching models,
such as MPM[13], CPD[14] and GMM-L2[12], in the follow-
ing respects: 1) The full probabilistic model explicitly ac-
counts for the matching uncertainty between two point sets
and all the parameters are assumed with prior distributions
for statistical inference. 2) Anisotropic covariance is pre-
sumed on the noise, outlier and each individual mixture
components of the transition variable. 3) Bayesian frame-
work provides our model with the ability to draw inference
from variables, noise and outliers, and avoids the singu-
larities while one component collapses on one data point,
which arises frequently in the point-to-point matching.

Our approach is also fundamentally different with the
other variational matching methods such as the variational
Bayesian matching[23] and the probabilistic inference of im-
age registration[8] in terms of the model setting. In fact, the
variational Bayesian matching generally focuses on the nat-
ural language processing, for example the document align-
ment, sentence alignment or word alignment[23]. This ap-
proach directly infers the unknown co-occurrence between
observations and has less consideration about the trans-
formation between two data sets. This method cannot be
directly applied to the alignment of two point sets with co-
ordinates. On the contrary, the probabilistic image regis-
tration presumes the correspondences between two images
are preset in the form of pixel-to-pixel correspondences,
so there is no correspondence finding step in the model.
These two methods may provide intuition for the point set
matching problems in the estimation of transformation and
correspondence.

3 Variational posterior distribution

According to the direct acyclic graph, the posterior ap-
proximate distribution q(x) can be factorized into a product
of a series of distributions, thus the priors and posteriors
preserve the same distribution form under the conjugate-
exponential structure. The variational approximate poste-
riors over latent variables and parameters can be written
as follows:

1) Transition variable X : The posterior of transition
variable X is also a product of independent Gaussian distri-
butions in terms of xxxk with mean µµµxxxk

and covariance ΣΣΣxxxk ,
which is expressed as follows:

q(X ) =

K∏

k=1

q(xxxk) =

K∏

k=1

N (xxxk|µµµxxxk
,ΣΣΣxxxk ) (12)

where

ΣΣΣ−1
xxxk

=

N∑
n=1

〈
znkΛΛΛk

〉
q(Z)q(ΛΛΛ)

+
〈
ΨΨΨ

〉
q(ΨΨΨ)

(13)

µµµxxxk
=ΣΣΣxxxk

[ N∑
n=1

〈
znkΛΛΛksssn

〉
q(Z)q(ΛΛΛ)

+
〈
ΨΨΨ(AAAmmmk + bbb)

〉
q(ΨΨΨ)q(ÃAA)

]

The mean and covariance of latent variable X are a combi-
nation of model and scene information. The transition vari-
able X plays a core role in our Bayesian point set matching
because it divides and combines the regression phase and
the clustering phase during the approximation process.

2) Affine transformation AAA and bbb: Following the idea of

Beal and Ghahramani[27], the posterior over transformation

is factorized over the rows of ÃAA = [AAA bbb] and the precision

parameter ννν is placed over each column of ÃAA. The posterior

of ÃAA is a product of D Gaussian distributions, which can
be written as follows:

q(ÃAA) =

D∏
q=1

q(ÃAAq) =

D∏
q=1

N (ÃAAq|µµµÃAAq
,ΓΓΓÃAAq

) (14)

where µµµÃAAq
and ΓΓΓÃAAq

denote the posterior mean and covari-

ance over the qth row of ÃAA, respectively. The variational
posterior updates are provided as follows:

ΓΓΓ−1

ÃAAq
=

[
ΥΥΥq

AAAAAA ΥΥΥq
AAAbbb

ΥΥΥq
bbbAAA ΥΥΥq

bbbbbb

]
(15)

µµµÃAAq
=

[
µµµAAAq

µµµbbbq

]T

with

ΥΥΥq
AAAAAA = diag{〈νννAAA〉q(ννν)}+ 〈ΨΨΨqq〉q(ΨΨΨ)

K∑

k=1

mmmkmmm
T
k

ΥΥΥq
bbbbbb = 〈νbbb〉q(ννν) + K〈ΨΨΨqq〉q(ΨΨΨ)

ΥΥΥq
AAAbbb = 〈ΨΨΨqq〉q(ΨΨΨ)

K∑

k=1

mmmk = ΥΥΥq T
bbbAAA (16)

µµµAAAq
= [ΓΓΓq·]AAAAAA

[
〈ΨΨΨqq〉q(ΨΨΨ)

K∑

k=1

〈xxxk,qmmm
T
k 〉q(X )

]

µµµbbbq
= [ΓΓΓq]bbbbbb

[
〈ΨΨΨqq〉q(ΨΨΨ)

K∑

k=1

〈xxxk,q〉q(X )

]

The posterior distribution over ÃAA has a block diagonal co-
variance structure, which is a D×(D+1)×(D+1) matrix.

3) Affine transformation precision ννν: The posterior of

precision parameter ννν in terms of the lth column of ÃAA is
also a Gamma distribution and the updating parameters
are expressed as follows:

cl = c0
l +

D

2
(17)

dl = d0
l +

1

2

D∑
q=1

〈Ã2
ql〉

4) Indicator variables Z: The approximate distribution
of Z takes the same functional form as the prior p(Z|πππ),
which is expressed as follows:

q(Z) =

N∏
n=1

K∏

k=1

q(znk) =

N∏
n=1

K∏

k=1

r̂
znk
nk (18)

where

r̂nk =
1

Znk
exp

{
〈log πk〉q(πππ) +

1

2
〈log |ΛΛΛk|〉q(ΛΛΛ)−

1

2

[〈
(sssn − xxxk)TΛΛΛk(sssn − xxxk)

〉
q(ΛΛΛ)q(X )

] }
(19)

where Znk is a normalization constant for each data point,
such that

∑K
k=1 r̂nk = 1. The two expectations in terms of

the responsibility r̂nk are evaluated as follows:
〈
log πk

〉
q(πππ)

= ψ(αk)− ψ(α̂)
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〈
log |ΛΛΛk|

〉
q(ΛΛΛ)

=

D∑
q=1

ψ

(
γk + 1− q

2

)
+ D log 2 + log |WWW k|

where ψ(·) is the digamma function, | · | is the determinant
of matrix, and γk is the posterior update of the degree of
freedom for ΛΛΛk.

5) Mixing coefficient πππ: The posterior of kth component
of πππ is updated according to αk, which is expressed as fol-
lows

αk = α0
k +

N∑
n=1

r̂nk (20)

6) Noise precision matrix ΨΨΨ: The variational posterior
for the noise precision ΨΨΨ is also a Wishart distribution and
the updates of degree of freedom and scale matrix are ex-
pressed as follows:

λk = λ0 + K (21)

UUU−1 = diag

{
UUU0−1

+

K∑

k=1

〈
(xxxk −AAAmmmk − bbb)×

(xxxk −AAAmmmk − bbb)T
〉

q(X )q(ÃAA)

}

The diag operator sets the off-diagonal terms to zero.
7) Precision matrix ΛΛΛ of the Gaussian mixtures: The

posterior of the component precision ΛΛΛ is a Wishart dis-
tribution as well. The updates of degree of freedom and
precision matrix in terms of each individual components
can be expressed as follows

γk = γ0
k +

N∑
n=1

〈
znk

〉
q(Z)

WWW−1
k = WWW 0

k
−1

+

N∑
n=1

〈
znk(sssn − xxxk)(sssn − xxxk)T

〉
q(Z)q(X )

(22)

8) Outlier mean xxx0 and precision ΛΛΛ0: In order to sim-
plify the posterior of outliers, the prior outlier mean is pre-
sumed to be on the original, and xxx0 and ΛΛΛ0 are assumed to
be mutually independent with other means and precisions
of mixture components. Then the posterior updates of the
outlier distribution can be written as follows:

γ0 = γ0
0 +

N∑
n=1

〈
zn0

〉
q(Z)

xxx0 =
1

γ0

N∑
n=1

〈
zn0sssn

〉
q(Z)

WWW−1
0 = WWW 0

0
−1

+

N∑
n=1

〈
zn0(sssn − xxx0)(sssn − xxx0)

T〉
q(Z)

(23)

Equations (12) to (23) are the posterior updates with
respect to these random variables and parameters of our
model. The EM-like updates produce a lower bound
to approximate the log-marginal likelihood and the KL-
divergence between approximate posterior q(x) and true
posterior p(x) is also minimized during iterative updates.

4 Numerical solutions

The update equations (12)∼ (23) are coupled and there-
fore must be solved iteratively. This is achieved by starting

with initial guess of the parameters and cycling through
the updating equations in terms of the moments until con-
vergence. The learning steps of our method may be con-
veniently implemented according to Algorithm 1, which is
illustrated in a pseudo-code form.
Algorithm 1. Variational Bayesian for forward
affine point set matching (VBPSM)
1. Input:

M = {mmmk}K
k=1,S = {sssn}N

n=1, εF

2. Initialization:
hyperparameters: ccc0, ddd0, ααα0, UUU0, λ0, WWW 0, γγγ0;
transformations: AAA and bbb.
3. Reconstruct: X = {xxxk}K

k=1.
4. repeat
5. Infer the latent variable Z using (19).
6. Update the mixing coefficient ααα using (20).
7. Update the degree of freedom and scale matrix γγγ and
WWW using (22).
8. Update the prior shape and inverse-scale ccc and ddd using
(17).
9. Infer the transformation parameters AAA and bbb using (15)
and (16).
10. Infer the transition variable X using (13).
11. Update the noise degree of freedom and scale matrix λ
and UUU using (21).
12. Update the outlier degree of freedom, mean and scale
matrix γγγ0, xxx0 and WWW 0 using (23).
13. Evaluate the negative free energy F using (11).
14. until |F(t + 1)−F(t)| < εF .

Fig. 2 illustrates the evolution of variational approxima-
tion process of q(X ) and negative free energy. q(X ) approx-
imates to the distribution of scene data points as the nega-
tive free energy increasing approached to the lower bound
of log-marginal likelihood. The stopping condition for the
iterative process is either when εF drops below 1e−8 or
iteration numbers reaches 200. On average the algorithm
converges in 1∼ 3 seconds and requires about 80∼ 130 it-
erations on 2D data sets.

Table 1 The comparison of computational time

Dataset Points GMM-L2 (s) CPD (s) VFC-L2E (s) VBPSM(s)

Chinese 105 1.48 1.13 8.49 3.75

road 277 10.11 19.03 5.61 10.32

For a single iteration, the computational cost of up-
dating the posteriors are approximately O(D3KN) and
O(D2(N +D)K) by examining (19) and (22), respectively.
In general, the coordinate dimension D is 2 or 3, so the
computation complexity of our method is approximately
O(NK). It is obvious that the Bayesian estimation of full
posterior probability increases the computational complex-
ity than the point estimation methods, such as CPD and
VFC-L2E. Especially, one needs to compute the inverse ma-
trix for the estimation of covariance matrix, which increases
about D3 times than the point estimation method.

A down-sampling of model points will be helpful for
large-scale registration problems in order to construct
sparse centers. A simple computational comparison is
shown in Table 1 in terms of GMM-L2, CPD, VFC-L2E
and our method. It should be noted that there are still lots
of works left for future computational optimization, includ-
ing prior parameters optimization, algorithm optimization
for large-scale point set registration and variable inference
during the learning process.
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Fig. 2 (a)∼ (d) Evolution of VBPSM with respect to 2D-fish data. Model and scene are represented by black ‘+’ and gray ‘o’,
respectively. The mixture components of q(X ) are illustrated by the ellipses with transformed model points as centers. (e) The

evolution of negative free energy

Under variational Bayesian framework, the prior plays
an important role in the point set matching process. In
general, the hyperparameters of prior distribution are pre-
set according to the prior knowledge. In our model, the
elements of ccc0 and ddd0 are set to be 0.001 and 0.001, respec-
tively, which means non-informative prior on affine trans-

formation ÃAA
[28]

. The element in ααα0 is set to be 1, which
indicates that point-to-point correspondence. As the terms
of noise are concerned, λ0 and UUU0 are set to be D +1 and
10×III, respectively, which means the posterior is deter-
mined predominantly by the regression error and the prior
has less influence on the approximate posterior.

Fig. 3 The influence of prior scale matrix WWW 0 on the matching
performance ((a) The matching error and the range of rotation
convergence in terms of different prior scale matrix; (b) The

matching result of VBPSM with rotation angle 30°. The
model, scene and transition mixtures X are illustrated on the
top layer. The approximate distribution of p(S|M) is shown

under the data.)

Precision ΛΛΛ controls the matching accuracy and robust-
ness in our approach and it also takes advantage of Baysian
method to overcome the ‘data collapses’ by introducing
prior into the point-to-point matching. Through the obser-
vation of (22), the posterior WWW is composed of two terms:
the prior WWW 0 and the data sssn. Therefore, if just one data
point coincides with the transition center, the prior WWW 0

will take effect to avoid the singularity. Furthermore, the
prior scale matrix WWW 0 has an effect for overcoming local
optima and achieving higher matching accuracy during the
matching process. For example, a smaller WWW 0 leads to a
smaller posterior precision ΛΛΛ and a wider mixture covari-
ance. Although wider covariance causes more inaccurate
point-to-point alignment, the larger uncertainty provides
the model with the ability to be less prone to local min-
ima. On the contrary, fine point-to-point matching (narrow
posterior covariance) is at the expense of being apt to be
trapped into local minima.

Fig. 3 illustrates the influence of prior scale matrix WWW 0 on
matching performance and Fig. 3 (b) gives the variational

approximate in the case of WWW 0 = 35×I. The scene points
are obtained by rotating model from −80◦ to 80◦. In the
case of lower prior WWW 0, the range of convergence is wider
with lower matching accuracy. On the contrary, higher
prior produces more accurate matching result with more
difficulty in convergence. Therefore, an empirical coarse-
to-fine strategy is proposed for the variational approximate
point set matching, that is, firstly taking advantage of small
value of prior scale matrix WWW 0 to grasp the main tendency
of scene points, and then using the higher prior value to ob-
tain more precise matching results. This strategy is similar
to tuning annealing temperature T in VFC-L2E

[11] and
MPM[14], and the coarse-to-fine correlation matching[29].
In this paper, prior WWW 0 is increased from 0.1×I to 20×I
for the subphases of approximation and the γ0

k is set to
2× (D+1) according to the work of Fraley and Raftery[30].

5 Experimental results

In this section, we present some results from the ap-
plication of our method to both synthetic and real data
sets including 2D and 3D point sets. Quantitative exper-
iments are also provided for the performance comparison
with other competing point set matching algorithms. Our
method is referred to as VBPSM for these affine point set
matching experiments. The algorithm is implemented in
Matlab v7.12 and tested on an Intel Core2 CPU 2.67GHz
with 4GB RAM.

5.1 2D affine point set matching

Firstly, VBPSM is applied to matching various clean 2D
point sets in order to test validity of our approach1. Mod-
erate deformations of scene data sets are obtained by the
following affine transformations from model set: 1) trans-
lating model with a displacement [Tx Ty] = [−3.6 0.5], 2)
scaling the point set with Sx =1.1, Sy =1.3 with respect to
x and y axes, respectively, 3) rotating the point set with
an angle between −50◦ ∼ 50◦, and 4) finally, shearing the
shape with shx =0.4 and shy =−0.15. Fig. 4 shows the
matching results from VBPSM on five data sets. As one
can see from the results, VBPSM obtains good matching
performance on these clean data sets and it can also pro-
vide an anisotropic covariance over each individual transi-
tion components.

In the second quantitative experiment, we test the con-
vergence performance of VBPSM on five clean 2D data sets
in comparison with KC[9], GMM-L2[13] and CPD[15] meth-
ods. Each data set is rotated from −π to π and the four
algorithms are performed on the alignment of the original
point set with the rotated one. The range of convergence
angles is reported in Table 2 with respect to these four

1The fish-1 data set was obtained from https://sites.google.com/site/myronenko[31]. The road dataset was obtained from http://www.

cs.cmu.edu/~ytsin/KCReg/
[9] and the other datasets were obtained from http://www.cise.ufl.edu/~anand/students/chui/research.html

[13].
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methods on five data sets. The comparison shows that
VBPSM algorithm achieves comparable performance to the
other three approaches in terms of rotation, except that the
KC method achieve the best convergence range than the
others on the road data.

In the third quantitative experiment, two quantitative
comparisons are conducted on four affine point set match-
ing algorithms. These experimental results are imple-
mented on 2D fish-2 and Chinese character data in Fig. 2.
As in previous experiments, the scene data sets are gen-
erated by the following affine moderate transformations of
original model point set: 1) translating model with a dis-
placement [Tx Ty] = [−0.50 0.50], 2) scaling the point set
with Sx = 1.20, Sy = 1.15 with respect to x and y axes, re-
spectively, 3) rotating the point set with angle 30◦, and 4)
finally, shearing the shape with shx =0.10 and shy =0.15.

Since the true affine parameters are known in advance, the
Euclidean norm between the true transformation and the
estimated affine parameters is used as the metric of match-
ing accuracy with respect to KC, GMM-L2, CPD and our
method. For each level of noise, we conduct 20 runs and
take the mean of these 20 results as measurement to com-
pare the performance of four algorithms.

To test the ability of these algorithms to occlusion, we
delete a certain number of points from at head part of one
fish and points from at the tail part of another. The deleted
points is increased from 1 to 21. In the robust-to-outlier
test, we increase the ratio of the number of outliers to the
number of scene data points from 0.2 to 2.0, and the clean
model set is transformed to match the corrupted scene.
The outliers are generated from uniform distributions with
respect to each outliers-to-data level.

Fig. 4 The application of VBPSM on various 2D data sets ((a)∼ (e) Initial setup of model (black ‘+’) and scene(gray ‘o’) in terms
of (from left to right) fish-1, contour, fish-2, road and Chinese datasets; (f)∼ (j) Matching results. The transition variable X is

illustrated with mean (gray ‘+’) and covariance (black ellipse) around model points.)

Table 2 Convergence range of KC[9], GMM-L2[12], CPD[14] and VBPSM methods in terms of rotation angles (in degree) on five
2D datasets

Dataset VBPSM CPD GMM-L2 KC

fish-1 [−70◦ 70◦] [−67◦ 67◦] [−65◦ 66◦] [−65◦ 78◦]

fish-2 [−93◦ 94◦] [−69◦ 69◦] [−70◦ 70◦] [−77◦ 70◦]

contour [−96◦ 96◦] [−87◦ 86◦] [−91◦ 91◦] [−87◦ 86◦]

road [−113◦ 110◦] [−115◦ 53◦] [−103◦ 104◦] [−115◦ 127◦]

Chinese [−91◦ 91◦] [−73◦ 72◦] [−62◦ 62◦] [−88◦ 90◦]

Fig. 5 Performance comparison of KC[9], GMM-L2[12], CPD[14] and VBPSM on (a) fish-2 data with different missing points and
(b) Chinese character with different outliers to data ratio (x-axis is the ratio of the number of outliers to the number of clean scene

points.)
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Fig. 6 Performance comparisons of KC[9], GMM-L2[12], CPD[14] and VBPSM methods on data with missing points and outliers
(Top row is initialization with model (black ‘+’) and scene (gray ‘o’). Row 2 ∼ 5 are matching results obtained from four methods

(black ‘+’ is the transformed center from model).)

Fig. 5 illustrates these two quantitative comparison re-
sults. In the missing points experiment in Fig. 5 (a), we
observe that when the number of deleted points is larger
than 20, none of these algorithms is able to achieve a suc-
cessful alignment. VBPSM obtains successful matching re-
sults even when the maximum number of missing points
reaches 20, whereas the maximum numbers of CPD and
GMM-L2 are 15 and 17, respectively. As far as the outlier
test is concerned, Fig. 5 (b) demonstrates that VBPSM has
better matching performance than KC, GMM-L2 and CPD
with respect to every ratio level. It is evident that VBPSM
achieves more accurate matching performance compared to
KC, GMM-L2 and CPD, especially in the presence of out-
liers and missing data.

As is the case of most other matching algorithms, the
proposed algorithm iteratively performs local updates and
is thus prone to local optima as well. However, VBPSM
performs well in practice as reported in these experiments,
because the variational framework explicitly accounts for
matching uncertainty and is thus less prone to local optima.
Fig. 6 gives the matching results from the four algorithms
with respect to missing data and outliers at different noise
level.

In fact, VBPSM provides not only the means of the
transformed points but also their covariances with respect
to these ones. The uncertainty of transition variable X
will be a variate according to the relative locations of scene
points to the transformed model point set. As far as other
matching methods are concerned, the covariances are all
presumed to be same so as to simplify the matching al-
gorithm. The anisotropic covariance in terms of individual
mixture endows VBPSM the flexibility to model the match-
ing uncertainty of each data points in essence.

5.2 3D affine point set matching

In the 3D point set matching experiment, VBPSM is ap-
plied to 3D face matching experiment and the results are
demonstrated in Fig. 7. There are N =392 points of model
and scene, respectively. In this experiment, we firstly per-

form our method on clean data and then test the validity
of our method on noised data. In the noise experiment
setup, we first delete 64 data points around the left eye in
scene. After that, SNR= 20 Gaussian white noise is added
to each point of model and scene, respectively. Finally,
0.2×N uniformly distributed outliers are independently be-
ing appended to the model and scene.

Fig. 7 The matching results of VBPSM on 3D face data with
and without noise
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Fig. 8 Performance comparison of GMM-L2[12], CPD[14], VFC-L2E[11] and VBPSM on CMU house sequence dataset in terms of
different outlier-to-data ratios w, which are 0.0, 0.2 and 0.4, respectively. (a)∼ (c): ROC curves obtained from data with separation

frames 40; (d)∼ (f): ROC curves obtained from data with separation frames 60; (g)∼ (i): ROC curves obtained from data with
separation frames 80; (j)∼ (l): ROC curves obtained from data with separation frames 100

Fig. 7 (a) and Fig. 7 (c) demonstrate the initial setups for
clean and the noised cases. Fig. 7 (b) and Fig. 7 (d) provide
the matching results obtained using VBPSM. One can see

from the results that VBPSM achieves good performance
on 3D face data not only in the clean case but also in the
presence of Gaussian noise, outliers and missing points.
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Fig. 9 Alignment of two astronaut images

5.3 Quantitative comparison

In the quantitative comparison, quantitative experi-
ments are conducted on CMU house sequence2. There are
totally 111 toy house images from different viewpoints, and
30 landmark points are manually marked as known corre-
spondence. Uniform outliers are added to the model and
scene simultaneously, and a set of outlier points are ap-
pended to both sets with the same outlier-to-data ratio w.
Image pairs spaced by 40, 60, 80 and 100 frames are se-
lected for the comparison of matching accuracy, and four
point set matching algorithms are applied to these data
sets in terms of outlier-to-data ratios of w =0.0, w =0.2
and w =0.4, respectively. The parameters are tuned for
the best at the outlier-to-data ratio w =0.0 and separation

frames=40, and they are kept unchanged in the other cases
for these four algorithms.

Fig. 8 illustrates the receiver operating characteristic
(ROC) curves obtained by these algorithms. For outlier-
to-data ratio w =0.0, CPD, VFC and VBPSM achieve al-
most the same matching performance, whereas the area
under ROC curve (AUC) is almost equal to 1. As the
outlier-to-data ratio w increases, our method achieves bet-
ter performance than the other three algorithms in all of
these cases. The full probabilistic modeling of uncertainty
endows VBPSM robustness to outliers and the ability of
being less prone to local minima. Though the other three
algorithms achieve good performance in the data without
outliers, their matching ability may be ruined greatly in

2http://vasc.ri.cmu.edu/idb/html/motion/house/index.html
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the presence of spurious outliers.

5.4 Real applications

In this experiment, we perform image registration of
two astronaut photos of earth by VBPSM. The images are
downloaded from the “The Gateway to Astronaut Pho-
tography of Earth” program of Image Science and Anal-
ysis Laboratory, NASA-Johnson Space Center. Two pho-
tographes, ISS006-E-54433 and ISS006-E-54434, are cam-
era captures of San Diego bay, North Island of California
from the international space station in the same day of May
2003. These photographes are converted to gray images
of size 639× 647 from their original color JPG format for
convenience sake. There are 172 and 163 corners extracted
from two images respectively by Harris corner detector, as
shown in Fig. 9 (a) and Fig. 9 (b). In our experiment, no pu-
tative matches are assumed for forward image alignment,
and we conduct the point set matching directly on the de-
tected feature points in two images.

In this paper, we propose a coarse-to-fine strategy to
align the two images by VBPSM algorithm. In the coarse
phase, we perform VBPSM to match the two feature point
sets and then a responsibility matrix between two point sets
is obtained, as is shown in Fig. 10 (a). There are outliers in
both feature point sets after the first step and these outliers
would deteriorate alignment. Fig. 9 (c) provides the projec-
tion of feature points of image 1 on image 2, and Fig. 9 (d)
gives the alignment result obtained using the affine param-
eters estimated by VBPSM.

It is evident that there are a number of mismatches be-
tween these two point sets after coarse matching and these
outliers will blur the composite image, as is shown in the
white window in left bottom of Fig. 9 (d). As the responsi-
bility matrix between two feature points has been obtained
after the coarse estimation of affine transformation, one
can find these corresponding point pairs by the observa-
tion of response amplitude r̂nk. The corresponding point
pairs are obtained by the following steps: 1) Finding the
most probable corresponding point in image 1 with respect
to each point in image 2 by maximizing the responsibil-
ity matrix along the column, 2) Finding the most probable
corresponding point in image 2 with respect to each point
in image 1 by maximizing the responsibility matrix along
the row, 3) If the two corresponding positions are same and
the response r̂nk at this position is greater than a threshold,

then these two feature points are assumed to be correspond-
ing pair. The threshold is empirically set to be 0.2 in this
experiment.

After the elimination of spurious points, VBPSM algo-
rithm is re-run on these two new point sets. Fig. 10 (b)
shows the re-estimated responsibility matrix. Fig. 9 (e)
provides the projection of corresponding point pairs, and
Fig. 9 (f) demonstrates the merging result of two images af-
ter the the fine matching. As one can see from the result,
most outliers are excluded by this method, and the detected
inlying point pairs are adequate to achieve a good estima-
tion of the affine transformation between two images. The
blurring effect is eliminated after the fine step, which can
be seen from the content in the white window of Fig. 9 (f)
by comparing with that of Fig. 9 (d).

6 Conclusion

In this work, we propose a variational approximation al-
gorithm for affine point set matching under Bayesian frame-
work. Matching two point sets is considered as a probabilis-
tic inference process, where the transformed model points
are represented by Gaussian mixtures and the scene set is
treated as data points. Furthermore, the affine transforma-
tion parameters are assumed to be uncertain as well, and
thus the probabilistic distribution is placed over each indi-
vidual parameters. Under the variational Bayesian frame-
work, an iteratively updating algorithm is formulated to
obtain the approximate posteriors of parameters, and the
negative free energy approaches to the lower bound of log
marginal probability.

The contributions of this work can be summarized as
the follows. A graphical model is presented for the affine
point set matching and a fully probabilistic approxima-
tion is derived for the inference of the matching uncer-
tainty, which has not been exactly derived in previous work
to our knowledge. A closed form solution is formulated
to approximate the posterior distributions of latent vari-
ables under the probabilistic framework. To be mentioned,
the approximate distribution is not restricted to Gaussian
mixtures, other probabilistic model, such as Student mix-
tures which is robust to outliers, can be conveniently in-
troduced under this framework. The proposed algorithm
demonstrates robust and accurate performance in compari-
son with other state-of-the-art point registration algorithms
on various synthetic and real datasets.

Fig. 10 Responsibility matrix r̂nk between feature points in two images
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