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SAR Image Despeckling by Sparse Reconstruction

Based on Shearlets
JI Jian1 LI Xiao1, 2 XU Shuang-Xing1, 2 LIU Huan1 HUANG Jing-Jing1

Abstract Synthetic aperture radar (SAR) image is usually polluted by multiplicative speckle noise, which can affect further
processing of SAR image. This paper presents a new approach for multiplicative noise removal in SAR images based on sparse
coding by shearlets filtering. First, a SAR despeckling model is built by the theory of compressed sensing (CS). Secondly, obtain
shearlets coefficient through shearlet transform, each scale coefficient is represented as a unit. For each unit, sparse coefficient is
iteratively estimated by using Bayesian estimation based on shearlets domain. The represented units are finally collaboratively
aggregated to construct the despeckling image. Our results in SAR image despeckling show the good performance of this algorithm,
and prove that the algorithm proposed is robustness to noise, which is not only good for reducing speckle, but also has an advantage
in holding information of the edge.
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Speckle noise is always present in SAR images. This
noise is produced due to the coherent sum of many elemen-
tary scatterers in each resolution cell and gives a grainy
appearance to images that make detection and classifica-
tion tasks more difficult.

The methods of SAR image speckle noise removal ba-
sically can be divided into three categories: multi-visual
processing, space adaptive filtering and wavelet domain
processing. Multi-visual processing can effectively remove
speckle noise, but also reduces the image resolution at the
same time. Space adaptive filtering techniques including
techniques proposed by Lee[1], Kuan et al.[2], and Frost[3],
can effectively smooth noise in homogeneous area, but of-
ten lead to edge blur, texture loss of faults in the hetero-
geneous area. And due to the wavelet have two character-
istics of the multi-resolution, time-frequency local, which
are widely used in SAR image speckle noise removal. But
two-dimensional wavelet is constructed by product of the
two dimensional orthogonal wavelets. Wavelet transform
only have three directions: horizontal, vertical and diago-
nal. Two dimensional wavelet approximate singularity line
by singularity point, cannot sparse representation the con-
tour and edge information of the SAR image. In order to
overcome the drawbacks of the wavelet transform, Easley et
al. put forward to an effective method of two-dimensional
image representation: shearlets transform[4]. Theoretical
analysis and experimental results showed shearlets trans-
form denoising effect was better than wavelet denoising.

Sparse representation has been successfully used in the
past decade for denoising problem. The work reported here
is also built on the same sparsity, but based on a different
model such as hidden Markov model[5], Gaussian scale mix-
ture model[6], and so on. These methods can obtain a good
denoising result. Image denoising is an inverse problem of
image processing. Recent compressed sensing theory[7] pro-
vides a powerful tool for dealing with problems including
SAR image multiplicative noise removal. Several recon-
structed methods have been proposed. Among the exist-
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ing methods, iterative/thresholding algorithms[8] (IST) is
widely applied to compression reconstruction, because the
existing transforms (including curvelet[9], contourlet[10],

shearlets[4]) can be easily incorporated into IST method,
thus can obtain a better signal sparse representation.

In this paper, we propose a denoising method by sparse
reconstruction based on shearlets filter. First, we construct
denoising model by CS theory and obtain observation value.
Secondly, we compute the shearlets transform of the origi-
nal noise image and obtain shearlets coefficient, each scale
coefficient of which is represented as a unit. Instead of
dealing with shearlets coefficient, for each unit we itera-
tively estimate the coefficient by Bayesian estimation based
on shearlets until termination condition is satisfied. Fi-
nally, the represented units are collaboratively aggregated
to construct the denoised image. We show how this denois-
ing model leads to a simple and effective denoising algo-
rithm, with competing performance, equivalent and some-
times surpassing recently published leading alternative de-
noising methods.

The traditional SAR image despeckling approaches can-
not preserve the edge and point target well. Due to these
defects, we propose a SAR image denoising algorithm by
sparse reconstruction based on CS theory. The algorithm
transforms the image denoising to solving an l1 norm op-
timization problem. The proposed algorithm reconstructs
the image by the iterative threshold method and calculates
the threshold function by Bayesian estimation based on
shearlet transform. The shearlet transform has the charac-
teristics of shift-invariance and multi-directionality, which
can obtain better performance than the wavelet transform
in image denoising. The algorithm solves the optimization
problem by using the iterative threshold method. It is easy
to demonstrate that the algorithm could rapidly converge
to the global optimal solution.

The contents of the paper are organized as follows. Sec-
tion 1 contains the background of compressed sensing and
shearlets transform. In Section 2, the SAR image despeck-
ing model is built by the compressed sensing. We show how
such denoising model leads to a simple and effective denois-
ing algorithm in Section 3. In Section 4, the process of the
algorithm is presented. Section 5 contains the experiments
result and analysis. Conclusions are presented in Section
6.
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1 Background

1.1 Compressed sensing[7]

In the compressed sensing, ∀x, we obtain its projection
in Ψ domain, that is,

x = Ψα (1)

where x is input signal, α = ΨTx is coefficient of the pro-
jection, Ψ is orthogonal basis matrix. Clearly, x and α
are equivalent representations of the same signal. When
||α||0 = K(K ¿ N) , x the signal is K-sparse.

If x is K-sparse in Ψ domain, we may use matrix Φ ∈
RM×N for the signal x to linear measurement according to
CS theory. Obtain the observation value y:

y =Φx (2)

and substitute (1),

y =ΦΨα = Aα (3)

The measure matrix Φ is incoherent with the sparsifying
basis Ψ. A is called senor matrix under the compressed
sensing in the absence of noise model.

Since the dimension of the observation vector is much
smaller than the dimension of the signal, there exist in-
finitely many solutions in (3), that is, the question is ill-
posed. It is difficult to reconstruct the original signal from
the observation vector. To solve this problem, Candes
pointed out that we might reconstruct image by solving
the following non-convex optimization problem,

min
∥∥∥ΨTx

∥∥∥
0
s.t. Φx = y (4)

where ||x||0 denotes zero norm, i.e., the number of non-zero
elements. But formula (4) is a typical NP-hard problem,
which is not easy to solve. Therefore, Candes proposed
one-norm instead of zero-norm to solve the problem.

min
∥∥∥ΨTx

∥∥∥
1
s.t. Aα = y (5)

Formulas (4) and (5) are equivalent under the premise of
sparse image representation. By applying Lagrange multi-
plier to formula (4), it converts to (6):

min
1

2
‖Φx− y‖22 + λ

∥∥∥ΨTx
∥∥∥

1
(6)

We consider an approach for solving compressed sensing
in the form of (7)

f = min
x∈RN×N

1

2
‖y − Φx‖22 + τc (7)

where x ∈ RN×N is input signal, Φ ∈ RM×N (M ¿ N
), f is objective function, c is the regularization function,
y = Φx is observation value.

The recovery of signal x from observation value y is an in-
verse and ill-posed problem, becauseM ¿ N . However, we
assume that signal x has a sparse representation expressed
by a certain basis function Ψ, then applying a transform Ψ
to signal x, the form of the CS-problem with x in transform
domain is

f = min
x∈RN×N

1

2

∥∥y − ΦΨ−1α
∥∥2

2
+ τc (8)

where x = Ψ−1α, Φ̃ = ΦΨ−1 stands for sensing matrix,
Ψ−1 is a sparse inverse transform (e.g., curvelet inverse

transform[9], contourlet inverse transform[10], shearlets in-
verse transform[4] and so on).

Regularization function c has many choices, especially if
c = ‖x‖1. Problem (9) generalizes the mathematical model
of compressed sensing.

f = min
x∈RN×N

1

2

∥∥y − ΦΨ−1α
∥∥2

2
+ τ‖α‖1 (9)

Here, ‖·‖1 stands for l1 norm.
It has been verified that problem (9) can be used for

compressing construction by CS theory[7]. To solve equa-
tion (9), we should choose a suitable sparse basis Ψ that
signal x can be sparse representation in the Ψ domain. In
this paper, we choose shearlets transform as Ψ.

1.2 Shearlets transform

The theory of composite wavelets has been introduced in
[4] provides a very effective method for combining geometry
and multi-scale analysis by using classical theory of affine
system. When dimension n = 2, the form of affine system
with composite dilations is

χAB(ψ) =

{ψj,l,k(x) = | det A| j
2 ψ(BlAjx− k) : j, l ∈ Z, k ∈ Z2}

(10)

where ψ ∈ L2(R2), A ∈ R2×2, B ∈ R2×2 and | det B| = 1.
If χAB(ψ) satisfies the Parseval framework (also called tight
framework), and there exists f ∈ L2(R2)

∑

j,l,k

|〈f, ψj,l,k〉|2 = ||f ||2 (11)

then χAB(ψ) is called composite wavelets.
Shearlets transform is an example of composite wavelets,

where A = A0 =

[
4 0
0 2

]
and B = B0 =

[
1 1
0 1

]
stand for

anisotropic dilations matrix, and shear matrix, respectively.

For any ξ = (ξ1, ξ2) ∈ R̂2, ξ1 6= 0, ψ(0) satisfies

ψ̂(0)(ξ) = ψ̂(0)(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2

(
ξ2

ξ1

)
(12)

where ψ̂(0) stands for Fourier transform of ψ(0), ψ1 stands

for continuous wavelet function, and ψ̂
(0)
1 ∈ C∞(R),

supp ψ̂1 ⊂ [−1/2,−1/16]∪ [1/16, 1/2] , ψ̂2 stands for bump

function and ψ̂2 ∈ C∞(R) , supp ψ̂2 ⊂ [−1, 1]. Therefore,

ψ̂(0) is a continuous and tight support, ψ̂(0) ∈ C∞(R),

supp ψ̂(0) ⊂ [−1/2, 1/2]2.
We suppose

∑
j≥0

| ψ̂1(2
−2jω)|2 = 1, |ω| ≥ 1

8
(13)

By observing formulas (13) and (14), for any (ξ1, ξ2) ∈
D0 = {(ξ1, ξ2) ∈ R2 : |ξ1| ≥ 1

8
, | ξ2

ξ1
| ≤ 1}, there exists

∑
j≥0

2j−1∑
l=−2j

| ψ̂(0)(ξA−j
0 B−l

0 )|2 =

∑
j≥0

2j−1∑
l=−2j

| ψ̂1(2
−2jξ1)|2| ψ̂2(2

j ξ2

ξ1
− l)|2 = 1

(14)
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The fact that ψ̂1 and ψ̂2 are supported inside 22j × 2j ,
(Fig. 1 (b)) oriented along the straight line with slope l2−j ,
implies that the collection of functions defined by

supp ψ̂
(0)
j,l,k ⊂ {(ξ1, ξ2)} (15)

where ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], | ξ2
ξ1

+ l2−j | ≤
2−j

Fig. 1 Spatial-frequency plane and frequency support of
shearlets

2 Building SAR image despeckling
model by compressed sensing

The approach of sparse reconstruction by separable ap-
proximation (SpaRSA) has been introduced in [11]. We
solve despeckling problem in (9) by computing a series of
iteration value {xt, t = 0, 1, · · · }. The xt of each iteration
can be solved by the equation in (16):

xt+1 ∈ arg min
z

1

2

∥∥zt − ut
∥∥2

2
+

τ

αt
c(z) (16)

where ut = xt − 1
αt∇f(xt).

When c(z) = ‖z‖0 =
∑
i

1xi 6=0 (
∑
i

1xi 6=0 stands for the

sum of xi 6= 0), we compute the first derivative of (16), that
is

xt+1 ∈ arg min
z

1

2

∥∥zt − ut
∥∥2

2
+

n∑
i=1

τ

αt
1xt

i 6=0 =

hard(ut,

√
2τ

αt
) (17)

where hard(·) stands for hard-threshold function. Gener-
ally, we compute a sequence of {xt, t = 0, 1, · · · } by

xt+1 = Γ

(
xt − 1

αt
∇f(xt), δ

)
(18)

where Γ(·) is threshold function, δ stands for threshold,
∇f(xt) stands for the gradient of ∇f(xt). In this paper,
we choose the form of (19) as ∇f(xt)

∇f(xt) = ∇f(Ψ−1αt) = ΦT (
ΦΨ−1αt − y

)
(19)

where Ψ stands for shearlets transform. In order to using
shearlets threshold function, we choose δ = σ (σ stands for
standard deviation of the noise), that is

xt+1 = Γ

(
xt − 1

αt
ΦT (

ΦΨ−1αt − y
)
, σ

)
(20)

The next part will introduce how to compute σ, αt and
how to designing Γ(·).

3 SAR image despeckling based on
compressed sensing

3.1 Algorithm framework

By the above analysis, our approach to solve SAR image
speckle noise removing problems by iteratively computing
x using (20), until the stopping criterion is satisfied.

The following pseudo-algorithm shows the framework of
the algorithm.
Algorithm 1. SpaRSA
1) Choose factor η > 1 and constants αmin, αmax (with
0 < αmin < αmax);
2) Choose original SAR image x0, initialize iteration
counter t ← 0, maximum number of iterations mt ← 100;
3) Repeat;
4) Choose αt ∈ [αmin, αmax];
5) Repeat;
6) xt+1 ← solution of sub-problem (20);
7) αt ← ηαt;
8) Until xt+1 satisfies an acceptance criterion;
9) t ← t + 1;
10) Until stop criterion is satisfied;

The denoising algorithm involves two key steps: setting
threshold function Γ(·) and estimating standard deviation
of the noise σ. In addition, the setting of αt and acceptance
criterion will refer to SpaRSA algorithm[11].

3.2 Bayesian estimation

Consider an image whose pixels are contaminated with
independent and identically distributed samples of additive
Gaussian noise. Thus, the noisy image can be written as
s = x + n, where x is the denoising image, s is the input
image, n is Gaussian noise. But SAR image exists multi-
plicative speckle noise, the noise image is written as s = nx,
we convert multiplicative noise into additive noise through
s = x + x(n − 1), assuming that the corrupting noise n
is independent identically distributed and sampled from a
zero mean density of unknown variance σ2. s = x+x(n−1)
and s = x + n have similar forms.

Applying shearlets transform Ψ to x, each coefficient in
the shearlets expansion of the noisy image is written as

sj = ω + Ns (21)

where ω = Ψ−1αj , Ns = Ψ−1αj(n − 1), and j stands for
shearlets scale .

A standard estimator for c given the corrupted obser-
vation s is the maximum a posteriori (MAP) estimator[12]

is:

ω̂(s) = arg max pω|s(ω|s) =
arg max

ω
[pNs(y − ω)pω(ω)] =

arg max
ω

[lg(pNs(y − ω)) + lg(pω(ω))]
(22)

According to the assumption pNs ∼ N(0, σ2
n), there ex-

ists

ω̂(s)= arg max
ω

[− (y − ω)2

2σ2
n

+ f(ω)] (23)

where f(ω) = lg(pω(ω)). Computing the first derivative of
(23), that is

y − ω

σ2
n

+ f ′(ω) = 0 (24)
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According to the conclusion of the analysis above, shear-
lets coefficient follows the generalized Gaussian distribu-
tion, that is,

pω(ω) = K(m, l) exp

(
−

∣∣∣ ω

m

∣∣∣
l
)

(25)

If l = 1 , then pω(ω) follows Laplace distribution, that
is,

ω̂(s) = sgn(s)

(
|y| −

√
2σ2

n

σ

)
(26)

Therefore, for each shearlets scale, we can use (27) to
estimate the shearlets coefficient.

T =

√
2σ2

j

σ
(27)

where σ2
j stands for noise variance of scale j, σ stands for

the standard deviation of the shearlets coefficient αj with
scale j.

We will employ hard-threshold method. Next, we will
demonstrate the characteristics of shearlets coefficient in
histogram by the transforming SAR image (Fig. 3 (a)). We
use shearlets transform to obtain shearlets coefficients (two
scales, direction = [3 3 3 4 5]), by retaining one layer co-
efficients and combining all the sub-direction coefficients
to a matrix, so we obtain the histogram of the second
shearlets coefficient in Fig. 2. As Fig. 2 shows, most of the
high-frequence shearlets coefficients of the SAR image dis-
tributes near zero. The shape of the histogram similar to
the generalized Gaussian distribution with zero mean.

Fig. 2 Histogram of the second shearlets coefficients

3.3 Parameter estimation

3.3.1 The setting of αtαtαt

αt is chosen through Barzilai-Borwein (BB) such that let-
ting st = xt − xt−1, rt = ∇f(xt)−∇f(xt−1), αt = (βt)−1.
By solving st = βtrt in the least-squares sense, we can
compute αt by the following equation.

αt =
(rt)

T
rt

(rt)Tst
=

∥∥ΦTΦst
∥∥2

‖Φst‖2 (28)

3.3.2 The setting of σjσjσj

Here the noise standard deviation is estimated with a
heuristic priori

σj =
median

(|αj |)

0.6745
(29)

where αj stands for shearlets coefficient with scale j.

3.3.3 Acceptance criterion

The new estimation will be accepted only when its ob-
jective function value is smaller than the median value of
the objective function value over last t iterations. That is,
xt+1 will be accepted if

f(xt+1) ≤ median
i=1,2,··· ,t

f(xi) (30)

3.3.4 Stopping criterion

The stopping criterion is defined by the relative differ-
ence between the objective function values of two subse-
quent iterations. We terminate at iteration t if:

∣∣f(xt+1)− f(xt)
∣∣

f(xt)
≤ tolA (31)

where tolA is a constant. Generally, tolA = 10−4.

4 The process of algorithm

Base on the above analysis, the procedures of the algo-
rithm are as follows:
Algorithm 2. Shearlets CS
Task: Denoise a given SAR image x0;
Algorithm parameters: τ -Lagrange multiplier , c-regularize
function, t-iteration counter, mt-maximum iteration num-
ber

min
x∈RN×N

1
2
‖y − Φx‖22 + τc=

min
x∈RN×N

1
2

∥∥y − ΦΨ−1α
∥∥2

2
+ τc

1) Initialization: Set x = x0, t = 0, mt = 100, Ψ =shearlets
transform;
2) Repeat;
3) Compute objective function value f(xt);
4) Repeat;
5) Calculate the denoising factor Γ(·) and compute αt and
σj through Shearlets transform and Bayesian estimation;
6) xt+1 = Γ

(
xt − 1

αt ΦT
(
ΦΨ−1αt − y

)
, σ

)
7) Until xt+1 satisfies the acceptance criterion;
8) t ← t + 1
9) Until stop criterion is satisfied;

5 Experiments and analysis

In the experiment, we choose two field SAR im-
age of 256 × 256 for testing (Fig. 3 (a) and Fig. 4 (a)).
And we select six other denoising methods for com-
parison, which are Lee filtering[1], Gamma MAP filter-
ing (Gamma map)[13], wavelet , hard-threshold based on

curvelet domain (Curvelet)[9], hard-threshold based on con-

tourlet domain (Contourlet)[10] and hard-threshold based

on shearlets domain (shearlets)[4]. The despeckling results
of the SAR image obtained by different methods are shown
in Fig. 3 (b)∼ (h) and Fig. 4 (b)∼ (h).

In order to demonstrate the superiority of the method
proposed in this paper (Shearlets CS), we evaluate the de-
speckling effect of each algorithm by the following three
aspects:

1) Evaluate the ability of keeping the mean of image by
computing the mean of the SAR image. The mean value
reflects the average brightness of a SAR image.
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2) Evaluate the deviation degree of the despeckling im-
age by computing standard deviation of the SAR image.
As for the standard deviation (Std), a lower Std gives a
cleaner image.

3) The speckle noise removal ability by equivalent num-
ber of looks (ENL).

ENL is a parameter of SAR image, which is used to eval-
uate the preservation of radiation characteristics and the
performance of speckle reduction. ENL is widely used to
measure smoothing effects of the despeckling methods.

The definition of ENL is:

ENL =
E(X)2

V (X)
(32)

where X stands for original SAR image, E(X) and V (Y )
are the mean and standard deviation of the despeckling
image, respectively

Table 1 and Table 2 show quantity comparison of seven
methods. Fig. 3 and Fig. 4 show original SAR image and
despeckled results of seven methods.

Table 1 Quantity comparison of several despeckling methods
(labeled area in Fig. 3)

Approach Mean Std Runtime ENL

Reg1 Reg2 Reg3

Original 107.09 53.88 10.67 11.42 6.08

Lee 106.85 46.17 5.40 23.19 35.03 8.63

Gamma map 105.85 40.19 5.20 39.10 49.46 10.04

Wavelet 107.05 48.72 0.08 41.03 45.92 7.26

Curvelet 102.44 42.10 0.73 50.57 79.58 8.16

Contourlet 101.60 39.35 0.58 58.51 91.87 7.94

Shearlets 102.06 40.66 1.84 65.89 111.48 9.59

Shearlets CS 107.09 36.08 0.87 110.59 100.78 16.35

As shown in Table 1, Lee, Gamma map, wavelet and
Shearlets CS have a good capability in keeping the mean
value of images. But Shearlets CS is the best in mean pre-
serving. As for the standard deviation of image, all meth-
ods show an apparent decrease, and Shearlets CS method

performs best. The runtime of wavelet is the shortest, but
its performance is poor. Shearlet CS has the best efficiency
through a comprehensive consideration.

In Table 1, we compare the performance of the seven
methods. Reg. 1 ∼ 3 correspond to the areas indicated
by the three rectangles in Fig. 3 (a). The ENL value of
the Shearlet CS method is larger than any other method.
The results show the effectiveness of the proposed method.
Similarly, Table 2 shows the results of another example.

Table 2 Quantity comparison of several despeckling methods
(labeled area in the Fig. 4)

Approach Mean Std Runtime ENL

Reg1 Reg2

Original 144.65 52.86 18.05 16.62

Lee 144.48 43.56 5.30 51.68 43.41

Gamma map 143.80 39.54 5.16 71.28 48.80

Wavelet 144.65 46.12 0.07 35.79 35.66

Curvelet 140.55 40.40 0.75 108.58 55.78

Contourlet 139.94 38.28 0.58 143.18 56.31

Shearlets 140.33 39.45 1.81 130.08 63.88

Shearlets CS 144.65 34.85 0.83 151.77 143.99

Fig. 3 (b) and Fig. 3 (c) demonstrate that the Lee and
the Gamma MAP filter smooth speckle noise to some ex-
tent, but edges are blurred and plenty of details are lost.
Fig. 3 (d) has a short runtime, but edges and contour do not
preserve well. Fig. 3 (e) is the despeckled result of curvelet
hard threshold, where the scratch obviously exist in uni-
form regions, but keep the image′s edges and detailed infor-
mation well. Fig. 3 (f) is the despeckled image of contourlet
hard-threshold, where we still observe scratches in homoge-
nous areas and edge distortion to some degree. Shearlets
hard-threshold method performs well in homogenous ar-
eas, but it oversmoothes the SAR image and causes fuzzy
distortion, which is illustrated in Fig. 3 (g). As illustrated
in Fig. 4 (h), the proposed method effectively smoothes the
homogenous area, while retaining the detail of edges. Both
the image quality and visual effect are superior to the com-
parative methods.

Fig. 3 Despeckling results of seven methods
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Fig. 4 Despeckling results of seven methods

6 Conclusion

This paper introduces a new synthetic aperture radar
(SAR) image denoising method using CS model based on
Shearlets domain. Seven methods for speckle reduction
and enhancement of SAR images have been applied. All
the methods significantly reduce the speckle, while the
Shearlets CS methods show the best result in preserving
the resolution and the structure of original SAR images.
In the end, the visual effect image and detailed measure-
ments show that the Shearlets CS method based on CS
model, is a more effective method, which is not only better
in reducing speckle, but also has an advantage in preserving
information of target edge
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