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The Design of Reduced-order Observer for Systems with

Monotone Nonlinearities
ZHU Fang-Lai1, 2 DING Xuan-Hao1

Abstract Based on the discussion about the existence and design method of full-order observer for systems with monotone
nonlinearities, a reduced-order observer design method is developed under the assumption that a linear matrix inequality (LMI)
has positive definite matrix solution and the reduced-order observer gain matrix is computed by the solution of LMI. By a linear
transformation, a reduced-order observer which does not contain the information of the derivative of the system output is provided.
A model is simulated and some conclusions are drawn based on the comparison of the results of reduced-order observer to that of
full-order observer. The simulation shows that the design method developed by this paper has good performance.
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1 Introduction
The design of observer for nonlinear systems has been

a very active field and has received more and more at-
tention in the literature during the last four decades. In
practice, the state variables of control systems can rarely
be measured online directly, so there is a substantial need
for a reliable state estimation. For this particular task, a
state observer is usually used. Generally speaking, there
are several major design methods of state observer for
nonlinear systems: extended Kalman filter and extended
Luenberger observer[1∼3] as nonlinear observers; nonlin-
ear state transformation method[4∼6] and Lyapunov-like
method[7∼12]. Based on state transformation method, the
original systems are changed into linear systems or nonlin-
ear canonical forms and then the linear methods are used
to complete the observer design procedure. For instance,
[13∼14] attempt to find a state transformation to bring
the original systems into a canonical form. The Lyapunov-
like method introduces the Lyapunov′s stability theory into
the observer design and the basic ideal of this approach is
to find a Lyapunov function which can guarantee that the
error dynamic system has a stable equilibrium of zero. Re-
cently, some intelligent control technics are introduced into
nonlinear observers and this leads to some new nonlinear
observer design methods[15].

Based on the assumption that a linear matrix inequality
(LMI) has positive definite solution, this paper discusses
the reduced-order observer design method for a class of
nonlinear systems. The present paper is organized as fol-
lows. Section 2 summarizes the main result about full-order
observer provided by [12]. Under the same assumption, a
reduced-order observer design method is developed in Sec-
tion 3. In Section 4, we apply the reduced-order observer
to a system to illustrate its usefulness. Some conclusions
are drawn in Section 5.

2 The design of full-order observer

Consider nonlinear system described by
{

ẋxx = Axxx + Gγγγ(Hxxx) + ρρρ(yyy, uuu)
yyy = Cxxx

(1)
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where xxx ∈ Rn, uuu ∈ Rm, and yyy ∈ Rp are state, con-
trol input, and output, respectively. γγγ(·) : Rr → Rr is
a nonlinear term. A ∈ Rn×n, G ∈ Rn×r, H ∈ Rr×n, and
C ∈ Rp×n are all known constant matrices.

Assumption 1. γγγ(·) : Rr → Rr satisfies

∂γγγ

∂vvv
+

(
∂γγγ

∂vvv

)T

≥ 0 ∀vvv ∈ Rp (2)

that is
∂γγγ

∂vvv
+

(
∂γγγ

∂vvv

)T

∀vvv ∈ Rp is a semi-positive definite

matrix.
Just as single variable functions, the multivariable func-

tion γγγ is said to be monotone if it satisfies condition (2).
Thus, system (1) is a system with monotone nonlinearities.

Assumption 2. There exists a constant ζ > 0 and
matrices K ∈ Rr×p and L ∈ Rn×p such that the LMI
(

(A + LC)TP + P (A + LC) + ζI PG + (H + KC)T

GTP + (H + KC) 0

)

≤ 0 (3)

has positive definite matrix solution P .
Reference [12] has discussed a kind of full-order observer

design method and the full-order observer takes the form
of

˙̂xxx = Ax̂xx+L(Cx̂xx−yyy)+Gγγγ(Hx̂xx+K(Cx̂xx−yyy))+ ρ(yyy, uuu) (4)

The main purpose of the full-order observer design method
is to find matrices K ∈ Rr×p and L ∈ Rn×p such that the
observer error x̃xx = xxx− x̂xx approaches to zero as time tends
to infinite. By (1) and (4), we know that the error dynamic
system of the full-order observer is

˙̃xxx = (A + LC)x̃xx + G[γγγ(vvv)− γγγ(www)]

where vvv = Hxxx and www = Hx̂xx + K(Cx̂xx−yyy). If γγγ(vvv)−γγγ(www) is
regarded as a function of vvv and ξξξ = vvv −www = (H + KC)x̃xx,
and if we denote φφφ(vvv, ξξξ) = γγγ(vvv)−γγγ(www), φ(vvv, ξξξ) will satisfy
multivariable sector property

ξξξTφφφ(vvv, ξξξ) ≥ 0 ∀ξξξ ∈ Rr (5)

In fact, since

φφφ(vvv, ξξξ) = γγγ(vvv)− γγγ(www) =

∫ vvv

www

∂γγγ

∂sss
ds =

∫ 1

0

[
∂γγγ

∂sss

]

sss=vvv+λ(www−vvv)

(vvv −www)dλ =

∫ 1

0

[
∂γγγ

∂sss

]

sss=vvv−λξξξ

ξξξdλ
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based on condition (2) in Assumption 1, we have

ξξξTφφφ(vvv, ξξξ) =
1

2
ξξξT

∫ 1

0

([
∂γγγ

∂sss

]
+

[
∂γγγ

∂sss

]T
)

s=vvv−λξξξ

dλ ξξξ ≥ 0

Now by summarizing the result in [12], we present a theo-
rem about full-order observer as follows:

Theorem 1[12]. Under the Assumptions 1 and 2, the
system (4) is a full-order observer of system (1).

3 The design of reduced-order observer

Just like linear systems, the observers for nonlinear sys-
tem can be distinguished as full-order and reduced-order
observers. Reduced-order observers only estimate parts of
the states which are independent of the outputs of the orig-
inal system. Hence, they usually have lower dimensions
than the full-order ones. This implies that the reduced-
order observers can be constructed with fewer integrators,
and this will make the whole control system simpler. In
this section, we consider the problems of reduced-order ob-
servers. Without the loss of generality, we assume that
C = (Ip 0). Decomposing A, G, H, and P , the solution
of LMI, into block matrices is as follows

A =

(
A11 A12

A21 A22

)
, G =

(
G1

G2

)

H =
(

H1 H2

)
, P =

(
P1 P2

PT
2 P3

)

where A11 ∈ Rp×p, G1 ∈ Rp×r, H1 ∈ Rr×p, and P1 ∈
Rp×p, denote

N = P−1
3 PT

2 ∈ R(n−p)×p (6)

Theorem 2. Under Assumptions 1 and 2, there exists
also a reduced-order observer for system (1) with dimen-
sions of n− p

˙̂xxx2 = (A22 + NA12)x̂xx2 + (NG1 + G2)γγγ(H1yyy + H2x̂xx2)+

(NA11 + A21)yyy + (N In−p)ρ(yyy, uuu)−Nẏyy (7)

where x̂xx2 ∈ Rn−p, and N is given by (6) and it serves as
the reduced-order observer gain matrix.

Proof. Denote xxx =
(

xxxT
1 xxxT

2

)T
, where xxx1 ∈ Rp and

xxx2 ∈ Rn−p. The original system can be written as two
parts:





ẋxx1 = (Ip 0)[A

(
yyy
xxx2

)
+ Gγγγ(H1yyy + H2xxx2) + ρρρ(yyy, uuu)]

ẋxx2 = (0 In−p)[A

(
yyy
xxx2

)
+ Gγγγ(H1yyy + H2xxx2) + ρρρ(yyy, uuu)]

The second equation of above equations is equivalent to

ẋxx2 = (N In−p)[A

(
yyy
xxx2

)
+ Gγγγ(H1yyy + H2xxx2) + ρρρ(yyy,uuu)]−

Nẋxx1 = (A22 + NA12)xxx2 + (NG1 + G2)γγγ(H1yyy + H2xxx2)+

(NA11 + A21)yyy + (N In−p)ρρρ(yyy,uuu)−Nẏyy (8)

The reduced-order observer error dynamic system can be
obtained by (7)∼(8)

˙̃xxx2 = (A22 + NA12)x̃xx2 + (NG1 + G2)[γγγ(vvv)− γγγ(www)] (9)

where x̃xx2 = xxx2−x̂xx2, vvv = H1yyy+H2xxx2, and www = H1yyy+H2x̂xx2.
If we regard γγγ(vvv)−γγγ(www) as a function of vvv and ξ̄ξξ = vvv−www =
H2x̃xx2, i.e., φφφ(vvv, ξ̄ξξ) = γγγ(vvv)−γγγ(www), the error dynamic system
(9) can be rewritten as

˙̃xxx2 = (A22 + NA12)x̃xx2 + (NG1 + G2)φφφ(vvv, ξ̄ξξ) (10)

Consider Lyapunov function candidate V̄ = x̃xxT
2 P3x̃xx2 and

the derivative of it along with the trajectories of (10) is

˙̄V = x̃xxT
2 [(A22 + NA12)

TP3 + P3(A22 + NA12)]x̃xx2+

2x̃xxT
2 P3(NG1 + G2)φφφ(vvv, ξ̄ξξ) (11)

From LMI (3), we know that

(0T x̃xxT
2 φφφT(vvv, ξ̄ξξ))

(
(A+LC)TP +P (A+LC)+ζI PG+(H+KC)T

GTP +(H+KC) 0

)
.




0
x̃xx2

φφφ(vvv, ξ̄ξξ)


 ≤ 0

Here, 0 ∈ Rp is used to denote a zero vector. Extending
above inequality, we have

(
0T x̃xxT

2

)
((A + LC)TP + P (A + LC))

(
0
x̃xx2

)
+

2
(

0T x̃xxT
2

)
PGφφφ(vvv, ξ̄ξξ) ≤ −ζx̃xxT

2 x̃xx2−
2

(
0T xxxT

2

)
(H + KC)Tφφφ(vvv, ξ̄ξξ) (12)

From (5)

2
(

0T xxxT
2

)
(H + KC)Tφφφ(vvv, ξ̄ξξ) = 2 (H2x̃xx2)

Tφφφ(vvv, ξ̄ξξ) =

2ξ̄ξξ
T
φφφ(vvv, ξ̄ξξ) ≥ 0

Thus by (12), we obtain

(
0T x̃xxT

2

)
((A + LC)TP + P (A + LC))

(
0
x̃xx2

)
+

2
(

0T x̃xxT
2

)
PGφφφ(vvv, ξ̄ξξ) ≤ −ζx̃xxT

2 x̃xx2 < 0 (13)

Note that C = (Ip 0),

(A + LC)TP + P (A + LC) =
( ∗ ∗
∗ (A22 + NA12)

TP3 + P3(A22 + NA12)

)

Inserting above equation into (13) and then extending by
block matrices leads to

x̃xxT
2 [(A22 + NA12)

TP3 + P3(A22 + NA12)]x̃xx2+

2x̃xxT
2 P3(NG1 + G2)φφφ(vvv, ξ̄ξξ) ≤ −ζx̃xxT

2 x̃xx2 < 0 (14)
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(11) together with inequality (14) means

˙̄V ≤ −ζx̃xxT
2 x̃xx2 < 0

and this means that system (7) is a reduced-order observer
of system (1). ¤

It should be noted that the derivative of output ẏyy ap-
pearing in the reduced-order observer is not the case we
expect because it will enhance the noise of high frequency
of output yyy. In order to cancel ẏyy, we make a transformation
of ẑzz2 = x̂xx2 + Nyyy, then (7) is transformed into





˙̂zzz2 = (A22 + NA12)ẑzz2 + (NG1 + G2)γγγ(H2ẑzz2+

(H1 −H2N)yyy) + (NA11 + A21 − (A22+

NA12)N)yyy + (N In−p)ρρρ (yyy, uuu)

x̂xx2 = ẑzz2 −Nyyy
(15)

By this way, the ẏyy is eliminated from the reduced-order
observer. We should also point out that the assumption of
C being a special form of (Ip 0) is not crucial for getting
the result of Theorem 2. That is, we can obtain the similar
conclusion to that of Theorem 2 for the general form of C.

4 Numerical simulation

Consider the system




ẋ1 = x2

ẋ2 = x2 − 1

3
x3

2 − x2x
2
3

ẋ3 = x2 − x3 − 1

3
x3

3 − x3x
2
2

y = x1

The system can be written as in the form (1) with

A =




0 1 0
0 1 0
0 1 −1


 , CCC =

(
1 0 0

)

G =




0 0
−1 0
0 −1


 , H =

(
0 1 0
0 0 1

)

γγγ(vvv) =




1

3
x3

2 + x2x
2
3

x2
2x3 +

1

3
x3

3




where vvv = (x2 x3)
T. It is easy for us to vary that

γγγ(vvv) satisfies monotone property. If we choose LLL =( −3 −8 −4
)T

, KKK =
( −2 −1

)T
, and ζ = 0.7, the

LMI has positive definite matrix solution, i.e.,

P =




10 −2 −1
−2 1 0
−1 0 1




For this example, the full-order observer given by the
paper [12] (i.e., Theorem 1 of present paper) is





˙̂x1 = x̂2 − 3(x̂1 − y)

˙̂x2 = x̂2 − 8(x̂1 − y)− 1

3
(x̂2 − 2(x̂1 − y))3−

(x̂2 − 2(x̂1 − y))(x̂3 − (x̂1 − y))2

˙̂x3 = x̂2 − x̂3 − 4(x̂1 − y)− 1

3
(x̂3 − (x̂1 − y))3−

(x̂3 − (x̂1 − y))(x̂2 − 2(x̂1 − y))2

The reduced-order observer gain matrix is computed by (6)

and it is NNN = (−2 −1)T. Based on (15), the reduced-order
observer is





˙̂z2 = −ẑ2 − 1

3
(ẑ2 + 2y)3 − (ẑ2 + 2y)(ẑ3 + y)2 − 2y

˙̂z3 = −ẑ3 − (ẑ2 + 2y)2(ẑ3 + y)− 1

3
(ẑ3 + y)3 − y

x̂2 = ẑ2 + 2y
x̂3 = ẑ3 + y

The simulation effectiveness are shown in Figs. 1∼2, where
the initial states of original system and observers are set as
xxx(0) = (1 2 3)T and x̂xx(0) = (4 5 6)T, respectively. From the
figures we know that the state estimation effect of reduced-
order observer is better than that of full-order observer.

Fig. 1 The estimations of x2

Fig. 2 The estimations of x3

5 Conclusion

In this paper, the observer design methods for system
with monotone nonlinearities are discussed. First, a full-
order observer is offered by summarizing other people′s
work. Second, under the same assumptions, a reduced-
order observer design method is developed and the main
result is given by Theorem 2. The reduced-order observer is
based on the solution of a LMI and the gain matrix is com-
puted by it. Finally, we make numerical simulation based
not only on full-order but also reduced-order observers for a
system. We show the superiority of reduced-order observer
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by comparing the simulation results.
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