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The Design of Reduced-order Observer for Systems with

Monotone Nonlinearities

ZHU Fang-Lai?
Abstract

DING Xuan-Hao!

Based on the discussion about the existence and design method of full-order observer for systems with monotone

nonlinearities, a reduced-order observer design method is developed under the assumption that a linear matrix inequality (LMI)
has positive definite matrix solution and the reduced-order observer gain matrix is computed by the solution of LMI. By a linear
transformation, a reduced-order observer which does not contain the information of the derivative of the system output is provided.
A model is simulated and some conclusions are drawn based on the comparison of the results of reduced-order observer to that of
full-order observer. The simulation shows that the design method developed by this paper has good performance.
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1 Introduction

The design of observer for nonlinear systems has been
a very active field and has received more and more at-
tention in the literature during the last four decades. In
practice, the state variables of control systems can rarely
be measured online directly, so there is a substantial need
for a reliable state estimation. For this particular task, a
state observer is usually used. Generally speaking, there
are several major design methods of state observer for
nonlinear systems: extended Kalman filter and extended
Luenberger observer!'™®! as nonlinear observers; nonlin-
ear state transformation method*~% and Lyapunov-like
method"™~'?l. Based on state transformation method, the
original systems are changed into linear systems or nonlin-
ear canonical forms and then the linear methods are used
to complete the observer design procedure. For instance,
[13~14] attempt to find a state transformation to bring
the original systems into a canonical form. The Lyapunov-
like method introduces the Lyapunov’s stability theory into
the observer design and the basic ideal of this approach is
to find a Lyapunov function which can guarantee that the
error dynamic system has a stable equilibrium of zero. Re-
cently, some intelligent control technics are introduced into
nonlinear observers and this leads to some new nonlinear
observer design methods!'®.

Based on the assumption that a linear matrix inequality
(LMI) has positive definite solution, this paper discusses
the reduced-order observer design method for a class of
nonlinear systems. The present paper is organized as fol-
lows. Section 2 summarizes the main result about full-order
observer provided by [12]. Under the same assumption, a
reduced-order observer design method is developed in Sec-
tion 3. In Section 4, we apply the reduced-order observer
to a system to illustrate its usefulness. Some conclusions
are drawn in Section 5.

2 The design of full-order observer
Consider nonlinear system described by

{ & = Az + Gy(Hz) + p(y, u)

y=Cx (1)
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where € R", u € R™, and y € RP? are state, con-
trol input, and output, respectively. () : R — R" is
a nonlinear term. A € R™*", G € R"*", H € R™*", and
C € RP*™ are all known constant matrices.

Assumption 1. y(:) : R" — R satisfies

oy [oy\"
— - > R’ 2
p + ) = 0 Wwe (2)
T
that is Al + Al Vv € RP is a semi-positive definite
ov ov
matrix.

Just as single variable functions, the multivariable func-
tion <y is said to be monotone if it satisfies condition (2).
Thus, system (1) is a system with monotone nonlinearities.

Assumption 2. There exists a constant { > 0 and
matrices K € R™*? and L € R™*? such that the LMI

(A+LC)'P+ P(A+ LC)+¢I PG+ (H+KO)"
( G'P+ (H+KC) 0 )
<0 (3)

has positive definite matrix solution P.

Reference [12] has discussed a kind of full-order observer

design method and the full-order observer takes the form
of

z = Az + L(Cz —y) + Gy(Hz + K(CZ —y)) + p(y, u) (4)

The main purpose of the full-order observer design method
is to find matrices K € R™*? and L € R"*? such that the
observer error £ = x — & approaches to zero as time tends
to infinite. By (1) and (4), we know that the error dynamic
system of the full-order observer is

z = (A+ LO)Z + Gly(v) — y(w)]

where v = Hz and w = Hz + K(Cz —y). If y(v) —y(w) is
regarded as a function of v and £ = v —w = (H + KC)z,
and if we denote ¢(v, §) = v(v) —y(w), ¢(v, §) will satisfy
multivariable sector property

£, 6) >0 YEeR" (5)

In fact, since

$(v, &) =(v) — Y(w) = / ’ %st _

w

1 1
/ {8—7} (v —w)dX = / {877} &dA
0 s s=v+A(w—v) 0 Os s=v—)\¢
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based on condition (2) in Assumption 1, we have

o0 = 3¢ [ ([gg} + [‘Z;D

Now by summarizing the result in [12], we present a theo-
rem about full-order observer as follows:

Theorem 1['2, Under the Assumptions 1 and 2, the
system (4) is a full-order observer of system (1).

dx €>0

s=v—A€

3 The design of reduced-order observer

Just like linear systems, the observers for nonlinear sys-
tem can be distinguished as full-order and reduced-order
observers. Reduced-order observers only estimate parts of
the states which are independent of the outputs of the orig-
inal system. Hence, they usually have lower dimensions
than the full-order ones. This implies that the reduced-
order observers can be constructed with fewer integrators,
and this will make the whole control system simpler. In
this section, we consider the problems of reduced-order ob-
servers. Without the loss of generality, we assume that
C = (I, 0). Decomposing A, G, H, and P, the solution
of LMI, into block matrices is as follows

A Ar G1
A == G =
( A1 Aao )7 ( G2 )
P P )

H=( H Hg),P:(P; iy

where A;; € RP*P, G; € RP*", H; € R™*?, and P, €
RP*? denote

N = Py Py e RPXP (6)

Theorem 2. Under Assumptions 1 and 2, there exists
also a reduced-order observer for system (1) with dimen-
sions of n — p

Ty = (A22 + NA12)Z2 + (NG1 + Go)y(Hiy + HaoZo)+

(NAun + A21)y + (N Ln—p)p(y, u) — Ny (7)

where > € R"7?, and N is given by (6) and it serves as
the reduced-order observer gain matrix.

Proof. Denote z = ( ] z3 )T, where 1 € R? and
z, € R"7P.
parts:

The original system can be written as two

1= (1, A (L) )+ Gy(Hiy + Haza) + ply, w)

b2 = O L)l (Y ) + Ga(Hhy+ Hozo) + ol w)
The second equation of above equations is equivalent to
82 = (N 1)l () 4 Gy + Hazo) + ol )]

Nty = (A2z + NAw)xe + (NG1 + Go)y(Hiy + Haza)+

(NA11 + A21)y + (N Ln—p)p(y,u) — Ny (8)

The reduced-order observer error dynamic system can be
obtained by (7)~(8)

Zy = (A22 + NA12)Z2 + (NG1 4 G2)[y(v) —v(w)]  (9)

where o = Lo —Z2,v = Hiy+ Hoxo, and w = {‘Ily—‘ng.’iz.
If we regard y(v) —y(w) as a function of v and § =v—w =

Hs&s, ie., ¢(v,€) = v(v) —y(w), the error dynamic system
(9) can be rewritten as

Ey = (Aga + NA12)Zs + (NG1 + Go)o(v,£) (10)

Consider Lyapunov function candidate V = #3 Ps&» and
the derivative of it along with the trajectories of (10) is

V = &3 [(A2s + NA12) T Py + P3(Ags + NAy)|Ea+
283 P3(NG1 + G2)¢(v,€) (11)
From LMI (3), we know that
(0" 2, ¢"(v,8))
< (A+LC)TP+P(A+LC)+¢I PG+(H+KC)T )

G"P+(H+KCQO) 0
0
& | <0
#(v,£)

Here, 0 € RP is used to denote a zero vector. Extending
above inequality, we have

(0T &7 )((A+LC)TP+P(A+LC))( . >+
2( 07 %] ) PGop(v,€) < —(&s 32—

2( 0" z3 )(H+KC) ¢(v,€) (12)

From (5)

2( 07 3 ) (H+KC) ¢(v,€) =2(H2)" ¢(v,6) =
2" $(v,€) > 0
Thus by (12), we obtain
(07 & )((A+ LC)"P+ P(A+ LC)) ( 22 ) +
2( 0" %5 ) PGé(v,6) < —(E;%2 <0 (13)
Note that C' = (I, 0),

(A+ LC)'P+ P(A+LC) =

* *
( % (Aga+ NA12)T Py + Py(Age + NAio) )

Inserting above equation into (13) and then extending by
block matrices leads to

&3 [(Azz + NA12)" P + Ps(Azo + NA2)|Z2+

2&; Ps(NG1 + Go)p(v,€) < —(CEa%s < 0 (14)
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(11) together with inequality (14) means
V < (&1, <0
and this means that system (7) is a reduced-order observer
of system (1). O
It should be noted that the derivative of output y ap-
pearing in the reduced-order observer is not the case we
expect because it will enhance the noise of high frequency

of output y. In order to cancel §, we make a transformation
of 22 = &2 + Ny, then (7) is transformed into

Zy = (A2 + NA12)22 + (NG + Ga)y(Haza+
(Hi — HaN)y) + (NA11 + Aa1 — (Asa+
NAw)N)y + (N In—p)p (Y, u)

IAJQ = 22 — Ny
(15)
By this way, the y is eliminated from the reduced-order
observer. We should also point out that the assumption of
C being a special form of (I, 0) is not crucial for getting
the result of Theorem 2. That is, we can obtain the similar
conclusion to that of Theorem 2 for the general form of C.

4 Numerical simulation

Consider the system

i1:1’2

. 1 3 2

T2 = T2 — ;T2 — T2T3
. 3 2
x3—$2*$37§$3*$3$2
y=m

The system can be written as in the form (1) with

0 1 0
A= 0 1 0 ,C=(1 0 0)
0 1 -1
0 0
o= (20 Joae (90 0)
0 —1
1
§x§+x2x§
) =| 2, X
T3x3 + 53
3
where v = (z2 z3)T. It is easy for us to vary that

~(v) satisfies monotone property. If we choose L =
(-3 -8 —4) ,K=(-2 —-1)", and ¢=0.7, the
LMI has positive definite matrix solution, i.e.,

100 -2 -1
P = -2 1 0
-1 0 1

For this example, the full-order observer given by the
paper [12] (i.e., Theorem 1 of present paper) is

&1 = do — 3(21 —y) )

Tz =2 = 8(d1 —y) — 5 (72— 2(81 —y))’~
(22— 2(21 — y)) (23 — (21 — y))*

i3 =@y — @3 — A(d1 —y) — 3(@s — (@1~ )’

(23 — (&1 — ) (&2 — 2(21 —y))*

The reduced-order observer gain matrix is computed by (6)

and it is N = (=2 —1)". Based on (15), the reduced-order
observer is

: R 1 . : R R
22 = —%2 — 5(22 +2y)° — (22 +2y) (25 +y)° — 2y

: N . N 1 .
23 =—%3 — (824 2y)° (3 +y) — 3(23 +y)’—y
To = 29 + 2y

T3=23+y

The simulation effectiveness are shown in Figs. 1~2, where
the initial states of original system and observers are set as
z(0) = (123)T and £(0) = (45 6)7, respectively. From the
figures we know that the state estimation effect of reduced-
order observer is better than that of full-order observer.

5

Actual x,
— — Estimate x, by FOO
44 — - — - Estimate x, by ROO|

4
t(s)

Fig.1 The estimations of x»

Actual x;
— — Estimate x; by FOO
— - — - Estimate x; by ROO

-1 L | . .

0 1 2 3 4
t(s)

Fig.2 The estimations of x5

5 Conclusion

In this paper, the observer design methods for system
with monotone nonlinearities are discussed. First, a full-
order observer is offered by summarizing other people’s
work. Second, under the same assumptions, a reduced-
order observer design method is developed and the main
result is given by Theorem 2. The reduced-order observer is
based on the solution of a LMI and the gain matrix is com-
puted by it. Finally, we make numerical simulation based
not only on full-order but also reduced-order observers for a
system. We show the superiority of reduced-order observer
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by comparing the simulation results.
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