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An Improved Mumford-Shah Model and Its Applications

to Image Processing with the Piecewise Constant Level

Set Method
SONG Jin-Ping1 LI Shuai-Jie1

Abstract For quick segmentation and denoising, the classical Mumford-Shah (MS) model needs to enhance the penalization term,
i.e. to increase the penalization parameter, which leads to gradual disappearance of objects. In this paper, we propose an improved
Mumford-Shah (IMS) model to avoid the phenomenon, and adopt the piecewise constant level set method (PCLSM) and the gradient
descent method to solve the minimization problem. Numerical experiments are given to show the efficiency and advantages of the
new model and the algorithms.
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1 Introduction

Level set methods, originally introduced by Osher and
Sethian[1], have been developed into one of the most suc-
cessful tools for the computation of evolving geometries and
have found many practical applications. They use the zero
level sets of some functions to trace interfaces that separate
a domain Ω into subdomains. For a recent survey on the
level set methods, see [2∼4].

In [5∼7] some variants of the level set methods of [1], the

so-called piecewise constant level set method (PCLSM)[5],
are proposed. The methods can be used for different pur-
poses. In [8, 9], their applications to inverse problems in-
volving elliptic and reservoir equations are shown. In [5∼7,
10], the ideas are also used for image segmentation.

Image segmentation and denoising are the foundational
tasks of computer vision. Its goal is to partition a given
image into regions that contain distinct objects. One of
the most common forms of segmentation is based on the
assumption that distinct objects in an image have different
approximately constant (or slowly varying) colors. When

using the Mumford-Shah (MS) model[11] for image segmen-
tation and denoising with PCLSM, the iterative number
has to be very large, and the convergence speed is also very
slow. In order to achieve the aim of quick segmentation
and denoising, we have to enhance the penalization term,
i.e., to enlarge the parameter β. Hence, the boundary of
object gets smoother, and the interface gets shorter. If
we continue to increase β, the object will disappear. In
this work, we will improve the penalization term of the
Mumford-Shah model to overcome this shortcoming. Ex-
periments show that the improved Mumford-Shah (IMS)
model makes the algorithms more stable and the result of
segmentation better at a fast convergence rate than that of
the MS model.

2 Mumford-Shah model with PCLSM

First, we shall recall PCLSM of [5]. The essential idea
of PCLSM of [5] is to use a piecewise constant level set
function to identify the subdomains. Partition the domain
Ω into subdomains Ωi, where i = 1, 2, · · · , n, and assume
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that the number n of the subdomains is known. In order to
identify the subdomains, we identify a piecewise constant
level set function ϕ

ϕ(x) = i, x ∈ Ωi, i = 1, 2, · · · , n (1)

Then, for any given partition {Ωi}n
i of the domain Ω, it

corresponds to a unique piecewise constant level set func-
tion ϕ which takes values 1, 2, · · · , n, associated with such
a level set function ϕ. The characteristic functions ψi(x)
of the subdomains are given below

ψi(x) =
1

αi

n∏

j=1,j 6=i

(ϕ(x)− j), αi =

n∏

k=1,k 6=i

(i− k) (2)

If function ϕ is given in (1), then we have ψi(x) = 1 for
x ∈ Ωi, and ψi(x) = 0 elsewhere. We can use the charac-
teristic functions to extract geometrical information for the
subdomains and the interfaces between the subdomains.
For example,

Length (∂Ωi) =

∫

Ωi

|∇ψi(x)|dx, Area (Ωi) =

∫

Ωi

ψi(x)dx

(3)
A constraint is introduced to make ϕ a piecewise con-

stant function and to ensure uniqueness at convergence

K(ϕ) = (ϕ− 1)(ϕ− 2) · · · (ϕ− n) =

n∏
i=1

(ϕ− i) (4)

At every point in Ω, the level set function ϕ satisfies

K(ϕ) = 0 (5)

There exists a unique i ∈ {1, 2, · · · , n} for every x ∈ Ω
such as ϕ(x) = i. This means that any point x belongs to
one and only one phase or region. Thus, the constraint is
introduced to guarantee that there is no vacuum and no
overlap between regions.

The level set idea has been used for Mumford-Shah image
segmentation in [5]. For a given digital image, u0 : Ω 7→ R
that may be corrupted by noise and blurred. Note that a
function u given by

u =

n∑
i=1

ciψi (6)

is a piecewise constant function and u = ci in Ωi, if ϕ is
as given in (1). In this way, the function u is a sum of
unknown constants ci multiplied by polynomials ψi.



1260 ACTA AUTOMATICA SINICA Vol. 33

Based on the definitions and observations above, the fol-
lowing constrained minimization problem has been intro-
duced to segment and denoise an image u0 in [5]

min
c,ϕ,K(ϕ)=0

{F (c, ϕ)=
1

2

∫

Ω

|u−u0|2dx+β

n∑
i=1

∫

Ωi

|∇ψi|dx}

(7)
The term 1

2

∫
Ω
|u−u0|2dx will penalize large approxima-

tion errors. We see that the other term, the penalization, is
the sum of the lengths of the boundaries of the subdomains,
and the parameter β is introduced to control the effect of
the term, and β is found by trial and error. Choosing a
large β will shorten the lengths of the boundaries and in-
crease the smooth speed. But decreasing β will give birth
to longer boundaries and slower speed.

3 Improvement of the Mumford-Shah
model

Experiments revealed that, to attain fast convergence
and a good smooth result and segmentation of a noised
image by the classic Mumford-Shah model, we have to en-
hance the penalization term, but so doing will lead to the
degeneration of images, and make the equation lose stabi-
lization.

To accomplish segmentation and denoising, we only need
to smoothen the interior of the objects, and preserve their
shapes and edges. It is essential to improve the penalization
term structure. In order to get a good understanding of
the influence of the penalization term, let us consider the
following constrained minimization problem[12]

min
c,ϕ,K(ϕ)=0

{F (c, ϕ) =
1

2

∫

Ω

|u− u0|2dx+

β

n∑
i=1

∫

Ωi

ω(|∇ψi|)dx} (8)

We need to find the properties of ω so that the solution
of the minimization problem is close to a piecewise constant
image, formed by homogeneous regions separated by sharp
edge.

Suppose that F (c, ϕ) has a minimum point u. Then it
formally satisfies the Euler-Lagrange equation

(u− u0)
∂u

∂ϕ
− β

n∑
i=1

∇ · (ω′(∇ψi)

|∇ψi| ∇ψi)
∂ψi

∂ϕ
= 0 (9)

(9) can be written in an expanded form by formally devel-
oping the divergence term.

We are going to show that it can be decomposed using
the local image structures, that is, the tangent and normal
directions to the isophote lines (Lines along which the in-
tensity is constant). More precisely, for each point x where

|∇ψi(x)| 6= 0, we can define the vectors NNN(x) = ∇ψi(x)
|∇ψi(x)|

and TTT (x), |TTT (x)| = 1, with TTT (x) orthogonal to NNN(x). With
the usual notation, ψix1 , ψix2 , ψix1x1 · · · , for the first and
second partial derivatives of ψi(x), we can rewrite (9) as

(u− u0)
∂u

∂ϕ
− β

n∑
i=1

(
ω′(|∇ψi|)
|∇ψi| ψiTT +

ω′′(|∇ψi|)ψiNN )
∂ψi

∂ϕ
= 0 (10)

where ψiTT and ψiNN denote the second derivatives of ψi

in the TTT direction and NNN direction, respectively

ψiTT =t TTT∇2ψiTTT =

1

|∇ψi|2 (ψ2
ix1ψix2x2 + ψ2

ix2ψix1x1 − 2ψix1ψix1x2) (11)

ψiNN =t NNN∇2ψiNNN =

1

|∇ψi|2 (ψ2
ix1ψix1x1 + ψ2

ix2ψix2x2 − 2ψix1ψix1x2) (12)

In fact, decomposing the divergence term as a weighted sum
of the two directional derivatives along TTT and NNN can be
done for most classical diffusion operators[13]. This enables
us to see clearly the action of the operators in the directions
TTT and NNN .

The function ω should satisfy the following conditions:
1) At location where the variations of the intensity are

weak (low gradients), we should make the image smooth
uniformly in all directions, assuming that the function ω is
regular, this isotropic smoothing condition can be achieved
by imposing

ω′(0) = 0, lim
s→0+

ω′(s)
s

= lim
s→0+

ω′′(s) = ω′′(0) > 0 (13)

2) In the neighborhood of edges, the image presents a
strong gradient. To preserve this edges, it is preferable to
diffuse along the edges (in the TTT direction) and not across
it. To do this, it suffices to annihilate the coefficient of
ψiNN for strong gradients in (9) and to assume that the
coefficient of ψiTT does not vanish

lim
s→+∞

ω′′(s) = 0, lim
s→+∞

ω′(s)
s

= β > 0 (14)

But these two conditions are incompatible. In order to
preserve this edges, we let the ω′′(s) and ω′(s)/s both con-
verge to zero as s → +∞, but at different rates

lim
s→+∞

ω′′(s) = lim
s→+∞

ω′(s)
s

= 0, lim
s→+∞

ω′′(s)
ω′(s)/s

= 0

(15)
To sum up, we use new energy function (8), where the

function must satisfy conditions (13) and (15).

4 Algorithms

In the following, we will use augmented Lagrangian
method to solve constrained minimization problem (8), and
use the classical gradient descent method to solve the min-
imization problem.

The augmented function for this minimization problem
is defined as

L(c, ϕ, λ) = F (c, ϕ)+

∫

Ω

λK(ϕ)dx+
r

2

∫

Ω

|K(ϕ)|2dx (16)

where λ ∈ L2(Ω) is the multiplier, and r > 0 is a penalty
parameter. We use the classical gradient descent method
to solve the minimization problem.

Algorithm: (Gradient descent method) Choose ini-
tial values for ϕ0 and λ0. For k = 1, 2, · · · , do:
1) Find ck from

L(ck, ϕk−1, λk−1) = min
c

L(c, ϕk−1, λk−1); (17)



No. 12 SONG Jin-Ping and LI Shuai-Jie: An Improved Mumford-Shah Model and Its Applications to · · · 1261

2) Use (6) and update u =
n∑

i=1

ck
i ψi(ϕ

k−1);

3) Find ϕk from

L(ck, ϕk, λk−1) = min
ϕ

L(ck, ϕ, λk−1) (18)

4) Update u =
n∑

i=1

ck
i ψi(ϕ

k);

5) Update the Lagrangian-multiplier by

λk = λk−1 + rK(ϕk) (19)

In order to get the optimal solution of (18), we can con-
struct an artificial time variable and solve the following
equation to reach a steady state

∂ϕ

∂t
+

∂L

∂ϕ
= 0 (20)

It is easy to see that

∂L

∂ϕ
= (u− u0)

∂u

∂ϕ
− β

n∑
i=1

∇ · (ω′(∇ψi)

|∇ψi| ∇ψi)
∂ψi

∂ϕ
+

λ
∂K

∂ϕ
+ rK

∂K

∂ϕ
(21)

We choose a fixed step size ∆t and do a fixed number of
the following iterations to solve (18) approximately

ϕnew = ϕold −∆t
∂L

∂ϕ
(ck, ϕold, λk−1) (22)

The update of the variance c and the Lagrangian-
multiplier λ are the same as in [5], and the algorithm pro-
cess in detail can be found in [5].

5 Numerical examples

In this section, we will demonstrate the efficiency of the
IMS model and compare it with the MS model. We will
concentrate on two-phase (n = 2) and four-phase segmen-
tation (n = 4).

When we choose ω(s) = s, model (8) is the same as
model (7). Then, clearly, the function ω does not satisfy
the conditions of (13) and (15), therefore making the images
smooth in all directions and leading to the disappearance
of the objects.

In this paper, we adopt the function

ω(s) =
√

α + s2 (23)

where α > 0 is a constant. The function ω(s) can satisfy
the conditions of (13) and (15), so we use the new energy
function

F (c, ϕ) =
1

2

∫

Ω

|u− u0|2dx + β

n∑
i=1

∫

Ωi

√
α + |∇ψi|2dx

(24)
As in [10], we can use the following scaling procedure to

get the initial values for ϕ. First, we need to fix the phase
number n. Then, we scale u0 to a function between 1 and
n, and take it as the initial value for ϕ, i.e.,

ϕ0(x) = 1 +
u0(x)−min

x∈Ω
u0

max
x∈Ω

u0 −min
x∈Ω

u0
× (n− 1) (25)

We consider only two-dimensional gray-scale images. To
complicate the segmentation process, we typically expose
the original image with Gaussian distributed noise and use
the polluted image as an observation data u0. In the fol-
lowing section, we will use noised images of an airplane and
a brain to prove the efficiency of the new model.

The first example is an airplane image. We challenge
the segmentation by adding a large amount of Gaussian
distributed noise to real image and take the polluted im-
age in Fig. 2(a) (see next page) as the observation data and

compare IMS model with the MS model[5]. The results are
displayed in Figs. 1∼3. The convergences of lg‖K(ϕk)‖L2

with gradient descent method for the IMS model and the
MS model are plotted in Fig.1. We substitute β = 0.6 into
the IMS model and β = 0.1 into the MS model. The plot
shows that the IMS model converges much faster and per-
forms better (Figs 2 and 3) than the MS model. In Fig.2,
we gradually increase the regularization parameter β, to
obviously reduce the boundary length of the airplane. If
we continue to increase β, when β = 0.6, the airplane will
disappear by the use of the MS model, but in Fig. 3, we
can clearly see that the IMS model prevents the airplane
from disappearing, and we can attain good segmentation
and denoising. This shows that when we enlarge the pe-
nalization term parameter β, the speed of convergence also
increases (Fig. 1). The MS model makes images gradually
disappear (Fig. 2), but the IMS model has no such short-
coming (Fig. 3). This not only increases the speed but also
preserves the shape of objects.

The next example is a numerical test on magnetic res-
onance imaging (MRI) by the use of the IMS model. We
will illustrate 4-phase segmentation (i.e., exactly four ob-
jects based on gray-scale from the original image) on the
real brain image by the PCLSM with the IMS model. This
image is difficult to segment due to the fact that the curves
are complicated and the intensity values are not nearly
constant inside each phase. The exacted four phases are
depicted in Figs 4 (b), (c), (e), and (f), and Fig. 4(d) is
the image after segmentation and denoising. We adopt
β = 0.5, r = 1 × 106, ∆t = 1 × 10−8, and α = 10 for the
algorithm. It is not difficult to segment this image by the
IMS model and algorithm, and the result is also perfect.

Fig. 1 A comparison of the convergence of lg‖K(ϕk)‖L2

between the IMS model (β = 0.6) with the MS model (β = 0.1)
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Fig. 2 Results obtained from different values of the

penalization parameter β by MS model (With increasing β, the

length boundary of the airplane clearly decrease. With

continuously increasing β, the airplane gradually disappears.)

Fig. 3 Results obtained from larger values of the

regularization parameter β by IMS model, α = 10 (Though β is

very large, the object shape is preserved, and the equation is

also very stable.)

Fig. 4 The 4-phase segmentation of brain image by IMS model

6 Concluding remarks

In this paper, an IMS model is proposed and used for im-
age segmentation and denoising. Detailed analysis and ex-
perimentation show that the IMS model can effectively pre-
vent images from disappearing and can stabilize the equa-
tion when we increase the penalty parameter β in order
to accelerate segmentation and smooth images. The IMS
model is more common and reasonable than the MS model.
In the future, we will try to find more proper function ω
to make the IMS model more reasonable, and to improve

segmentation and denoising.
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