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Repetitive Learning Control for

Time-varying Robotic Systems:

A Hybrid Learning Scheme

SUN Ming-Xuan1 HE Xiong-Xiong1 CHEN Bing-Yu1

Abstract Repetitive learning control is presented for finite-
time-trajectory tracking of uncertain time-varying robotic sys-
tems. A hybrid learning scheme is given to cope with the con-
stant and time-varying unknowns in system dynamics, where the
time functions are learned in an iterative learning way, without
the aid of Taylor expression, while the conventional differential
learning method is suggested for estimating the constant ones.
It is distinct that the presented repetitive learning control avoids
the requirement for initial repositioning at the beginning of each
cycle, and the time-varying unknowns are not necessary to be
periodic. It is shown that with the adoption of hybrid learning,
the boundedness of state variables of the closed-loop system is
guaranteed and the tracking error is ensured to converge to zero
as iteration increases. The effectiveness of the proposed scheme
is demonstrated through numerical simulation.

Key words Adaptive control, iterative learning control, repet-
itive control, robotic systems, time-varying systems

1 Introduction
Iterative learning control (ILC) and repetitive control

(RC) are two parallel research areas that have been de-
veloped for more than two decades. ILC copes with the
repeated-tracking-control problem, where the same tasks
are performed repetitively over a finite time interval. For
execution, the system is first set to an initial position.
Then, it starts, runs, stops, and resets to the same initial
position for each cycle. Complete tracking, together with
complete rejection of repetitive disturbances, is eventually
achieved through repetition. RC aims to achieve track-
ing/rejection of periodic references/disturbances. Accord-
ing to the internal model principle, the dynamic structure
of the reference/disturbance signals has to be incorporated
in the controller. Initial repositioning is not required as the
system undertaken starts where it has left. The interested
reader may refer to the published references [1, 2] for the
original ILC and RC formations, and the recent survey [3]
for more references.

The restrictive assumption on initial repositioning would
be destroyed as repositioning errors are inevitable in prac-
tical implementation. The presence of repositioning errors
may eventually result in instability owing to ILC′s iterative
nature, and the lack of robustness of the P-type learning
was well understood. It is therefore necessary to ensure
that learning algorithms are technically sound even in the
presence of repositioning errors. The introduction of a for-
getting factor was shown to be helpful to guarantee the
robustness[1]. Attempts have been made to solve the ini-
tial shift problem, where the system does not reset to the
desired initial reposition at each cycle. Instead, there exist
initial shifts. Techniques include the application of the ini-
tial impulsive action[4], the initial rectifying action[5], and

Received July 21, 2006; in revised form March 30, 2007
Supported by the Scientific Research Foundation for the Returned

Overseas Chinese Scholars, State Education Ministry, and National
Natural Science Foundation of China (60474005)
1. College of Information Engineering, Zhejiang University of Tech-

nology, Hangzhou 310032, P.R.China
DOI: 10.1360/aas-007-1189

the average operator[6].
Early studies on RC were presented in [7, 8]. The sta-

bility of the controlled systems was established in the
continuous-time and discrete-time domains, respectively.
In [7], a modified repetitive control system was presented,
which sacrifices tracking performance at high frequencies
for system stability. In [8], the discrete-time formulation
makes repetitive control theory more accessible. The zero
phase-error compensation was included in the designed con-
troller, which greatly simplified the stability analysis. A
finite-dimensional (approximate) repetitive controller was
presented in [9], which showed asymptotic tracking of the
periodic reference signal by the proposed repetitive con-
troller in closed-loop up to the Nth harmonic frequency.
However, a periodic signal may have an infinite number
of harmonics. An infinite-dimensional controller would be
needed to have steady-state tracking of all those signals.

Over the years, a number of research efforts have been
made for developing learning schemes without the require-
ment for initial repositioning, e.g. [10]. Cyclic learning con-
trol is introduced in [11], which cyclically steers the state
of the system along a finite sequence of equilibrium points.
Like RC, no initial repositioning at each cycle is required
when using cyclic learning control.

RC is regarded as a simple ILC because both exploit
the repetitive nature for control design. Looking into the
difference between repetivity and periodicity, RC is unlike
ILC. For example, in chemical industry, batch process spans
over a finite interval, during which the reference tempera-
ture profile is not of periodicity. Repetitive learning control
(RLC) blends RC and ILC, which was recently formulated

as follows[12].

F1. Every operation ends in a finite time of duration, i.e.,
t ∈ [0, T ];

F2. The desired trajectory is given a priori over [0, T ],
and is closed, i.e., xxxd(T ) = xxxd(0), where xxxd(t), t ∈
[0, T ], is the desired trajectory;

F3. The initial position of the system at the beginning of
each cycle is aligned with that of the preceding cycle
such that xxxk(0) = xxxk−1(T ), where k is the iteration
index and xxxk(t), t ∈ [0, T ], is the iterative trajectory
at the kth cycle;

F4. The time functions to be learned are iteration-inde-
pendent;

F5. The system dynamics are invariant throughout all
the cycles.

In RLC, it assumes that the system dynamics are in-
variant throughout all the cycles and the time functions to
be learnt are k-independent, which is similar to ILC. How-
ever, unlike ILC, the tracking tasks are repetitively carried
out in RLC without initial repositioning. This is similar to
RC because the system undertaken by RLC starts where
it has left at each cycle. In comparison with RC, RLC op-
erates under more relaxed condition of repetivity, whereas
the variables to be learned by RC should be of periodicity.
An idea of repetitive learning was presented in [13] and nu-
merical simulation was conducted to sustain and verify it.
In [12], a RLC learning scheme was presented, and it has
been shown to work well for robotic systems with constant
unknown parameters and repetitive disturbances.

In this paper, we shall address the problem of repeti-
tive learning control for trajectory tracking of time-varying
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robotic systems. A hybrid learning scheme is presented,
by which the iterative learning law is used to estimate
the time-varying unknown parameters, and the differen-
tial learning law is suggested for estimating constant un-
knowns. Different from the work in [14], our proposed con-
trol scheme allows us to conduct the control design with-
out expressing the unknown time-varying parameters to be
a finite-length polynomial in time and a residue based on
Taylor′s formula.

2 Robot model and problem statement
For an n-link rigid robot manipulator with time-varying

parameters, additional terms will be present in the dynamic
equation[14], which can be described by

D(qqq,φφφ)q̈qq + C(qqq, q̇qq,φφφ)q̇qq + F (qqq, φ̇φφ)q̇qq + G(qqq,φφφ) = τττ (1)

where φφφ ∈ Rφφφ is the vector of parameters, assumed to be
continuously differentiable, qqq ∈ Rn is the vector of gener-
alized coordinates, τττ ∈ Rn is the vector of input torques,
D(qqq,φφφ) ∈ Rn×n is the inertia matrix, C(qqq, q̇qq,φφφ) is the Cori-

olis matrix, F (qqq, φ̇φφ) is the additional term due to the pres-
ence of time-varying parameters, and G(qqq,φφφ) ∈ Rn is the
gravity vector.

To facilitate control development, two properties of the
dynamic model (1) are given:

P1. D(qqq,φφφ) is symmetric and positive definite for all φφφ ∈
Rφφφ;

P2. The dynamics described by (1) is linearly parameter-
izable, i.e.,

D(qqq,φφφ)q̈qq + C(qqq, q̇qq,φφφ)q̇qq + F (qqq, φ̇φφ)q̇qq + G(qqq,φφφ) =

Y0(qqq, q̇qq, q̈qq)θθθ + Y1(qqq, q̇qq, q̈qq)ppp(t) (2)

where we introduce new parameter vectors θθθ and ppp(t) as
follows

[θθθT, pppT(t)]T = [φφφT, φ̇φφ
T
]T (3)

θθθ is the vector of unknown constant parameters, and ppp(t) is
the vector of unknown time-varying parameters. Y0(qqq, q̇qq, q̈qq)
and Y1(qqq, q̇qq, q̈qq) are the corresponding regression matrices.

Let [0, T ] be a bounded interval (i.e., T is finite). The
label B[0, T ] denotes the set consisting of all bounded func-
tions on [0, T ]. The robotic system under study is as-
sumed to perform the same tasks over the interval [0, T ]
repeatedly. Let k(= 0, 1, · · · ) denote the iteration index.
Given a desired trajectory qqqd(t), t ∈ [0, T ], satisfying that
qqqd, q̇qqd, q̈qqd ∈ B[0, T ], the control objective of this paper is to
find a torque profile τττk(t), t ∈ [0, T ] that eventually realizes
qqqk(t) → qqqd(t) and q̇qqk(t) → q̇qqd(t) on [0, T ] as k →∞.

The following two assumptions are made to achieve this
objective.

Assumption 1. The given trajectory qqqd(t) is twice dif-
ferentiable and satisfies

qqqd(0) = qqqd(T ), q̇qqd(0) = q̇qqd(T ) (4)

Assumption 2. For k = 0, 1, · · · , the initial values of
qqqk(0) and q̇qqk(0) are set to satisfy

qqqk(0) = qqqk−1(T ), q̇qqk(0) = q̇qqk−1(T ) (5)

Define the tracking error at the kth cycle as eeek = qqqk −
qqqd. By Assumptions 1 and 2, eeek(0) = eeek−1(T ), ėeek(0) =
ėeek−1(T ).

3 RLC with hybrid learning

Throughout this paper, we use the notations (̂·)k to in-
dicate the estimate for parameter (·) at the kth cycle, and

(̃·)k = (̂·)k − (·) to indicate the error between the estimate
and the actual parameters.

In the following, we shall consider the form of torque
input similar to those adopted for the control of rigid
manipulators[15, 16]. Applying the torque input,

τττk = D(qqqk, φ̂φφk)ak + C(qqqk, q̇qqk, φ̂φφk)q̇qqk + F (qqqk,
˙̂
φφφk)q̇qqk +

G(qqqk, φ̂φφk) + uuuk (6)

aaak = q̈qqd −Kvėeek −Kpeeek (7)

Equation (1) can be written as

D(qqqk, φ̂φφk)[q̈qqk − aaak] =

[D(qqqk, φ̂φφk)−D(qqqk,φφφ)]q̈qqk +

[C(qqqk, q̇qqk, φ̂φφk)− C(qqqk, q̇qqk,φφφ)]q̇qqk +

[F (qqqk,
˙̂
φφφk)− F (qqqk, φ̇φφ)]q̇qqk +

[G(qqqk, φ̂φφk)−G(qqqk,φφφ)] + uk =

Y0(qqqk, q̇qqk, q̈qqk)θ̃θθk + Y1(qqqk, q̇qqk, q̈qqk)p̃ppk(t) + uuuk

Define Φ0,k = D−1(qqqk, φ̂φφk)Y0(qqqk, q̇qqk, q̈qqk) and Φ1,k =

D−1(qqqk, φ̂φφk)Y1(qqqk, q̇qqk, q̈qqk). It follows that

ëeek + Kvėeek + Kpeeek =

Φ0,kθ̃θθk + Φ1,kp̃ppk(t) + D−1(qqqk, φ̂φφk)uuuk (8)

Equation (8) can then be written in the state space form

ẋxxk = Axxxk + B[Φ0,kθ̃θθk + Φ1,kp̃ppk(t) + D−1(qqqk, φ̂φφk)uuuk] (9)

where xxxk = [eeeT
k , ėeeT

k ]T, and

A =

[
0 I

−Kp −Kv

]
, B =

[
0
I

]

By Assumptions 1 and 2, it is seen that xxxk(0) = xxxk−1(T ).
The feedback control law is given as

uuuk = −1

2
βY1,kΓ−1

1 ΦT
1,kBTPxxxk (10)

with β ≥ 1, and the update laws for p̂ppk and θ̂θθk are given as

p̂ppk(t) = sat(p̄ppk(t)) (11)

p̄ppk+1(t) = sat(p̄ppk(t))− Γ−1
1 ΦT

1,k(t)BTPxxxk(t),

t ∈ [0, T ]

˙̂
θθθk = −Γ−1

2 ΦT
0,kBTPPPxxxk, θ̂θθk(0) = θ̂θθk−1(T ) (12)

where both Γ1 and Γ2 are diagonal positive definite matri-
ces, P is the unique symmetric positive definite solution to
the Lyapunov equation

ATP + PA = −Q (13)

for a given Q(= QT > 0). Initial conditions p̄pp0(t), t ∈ [0, T ]

and θ̂θθ0(0) can be simply set to zero if a priori information

for both p̄pp0(t), t ∈ [0, T ], and θ̂θθ0(0) are unavailable. To
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assure the boundedness of p̂ppk, the saturation function sat :
R → R is adopted, defined as that for a scalar a,

sat(a) =





ā1, a < ā1

a, ā1 ≤ a ≤ ā2

ā2, a > ā2
(14)

where ā = {ā1, ā2} represent the lower and upper bounds,
satisfying that ā1 < ā2. For a vector aaa ∈ Rm, the vector-
valued saturation function is defined as

sat(aaa) = [sat(a1), sat(a2), · · · , sat(am)]T

with ā = {ā1, ā2, · · · , ām} and āi = {ā1
i , ā

2
i }, i =

1, 2, · · · , m.
The learning control mechanism is a mixture of two dif-

ferent kinds of learning laws, 1) iterative learning and 2)
differential learning laws. The iterative learning law (11)
is used to estimate the time-varying parameter ppp(t). The
differential learning law (12) is suggested for estimating θθθ
because it is constant.

We need Lemma 1 to aid the performance analysis of the
proposed RLC scheme.

Lemma 1. For aaa,bbb ∈ Rm, if a satisfies that b̄1
i ≤ ai ≤

b̄2
i , i = 1, 2, · · · , m, then

[(γ + 1)aaa− (γbbb + satb̄bb(bbb))]
TΛ[bbb− satb̄(bbb)] ≤ 0

where γ ≥ 0 is a scalar and Λ > 0 is a diagonal matrix with
appropriate dimension.

Proof. See the proof for Lemma 1 in [17]. ¤

4 Performance analysis

In this section, we shall conduct performance analysis
for the presented RLC design. Define the Lyapunov-like
function as

Lk+1(t) =

∫ T

0

p̃ppT
k+1Γ1p̃ppk+1ds + Vk(t)

Vk = θ̃θθ
T

k Γ2θ̃θθk + xxxT
k Pxxxk

Lemma 2. Given the desired trajectory qqqd(t) for the
robotic system (1), satisfying Assumptions 1 and 2, the
torque input (6) together with feedback control law (10)
and parameter update laws (11) and (12) results in

Lk+1(t) ≤ −
∫ T

0

xxxT
k Qxxxkds +

∫ T

0

p̃ppT
k Γ1p̃ppkds + Vk(0)

(15)

and, as t = T

Lk+1(T )− Lk(T ) ≤ −
∫ T

0

xxxT
k Qxxxkds (16)

Proof. The difference between Lk+1 and Lk can be
written as

Lk+1(t)− Lk(t) =

∫ T

0

[p̃ppT
k+1Γ1p̃ppk+1 − p̃ppT

k Γ1p̃ppk]ds +

Vk(t)− Vk−1(t) (17)

Through algebra manipulations, we have

p̃ppT
k+1Γ1p̃ppk+1 − p̃ppT

k Γ1p̃ppk =

[p̂ppk+1 − ppp]TΓ1[p̂ppk+1 − ppp]−
[p̄ppk+1 − ppp]TΓ1[p̄ppk+1 − ppp] + [p̄ppk+1 − ppp]TΓ1[p̄ppk+1 − ppp]−
[p̂ppk − ppp]TΓ1[p̂ppk − ppp] =

[p̄ppk+1 − p̂ppk+1]
TΓ1[2ppp− p̂ppk+1 − p̄ppk+1] +

[p̄ppk+1 − ppp]TΓ1[p̄ppk+1 − ppp]−
[p̂ppk − ppp]TΓ1[p̂ppk − ppp]

By Lemma 1, we have

[p̄ppk+1 − p̂ppk+1]
TΓ1[2ppp− p̂ppk+1 − p̄ppk+1] ≤ 0

which implies

p̃ppT
k+1Γ1p̃ppk+1 − p̃ppT

k Γ1p̃ppk =

[p̄ppk+1 − ppp]TΓ1[p̄ppk+1 − ppp]− [p̂ppk − ppp]TΓ1[p̂ppk − ppp]

and in turn results in

p̃ppT
k+1Γ1p̃ppk+1 − p̃ppT

k Γ1p̃ppk ≤
−2p̃ppT

k Γ1[p̂ppk − p̄ppk+1] + [p̂ppk − p̄ppk+1]
TΓ1[p̂ppk − p̄ppk+1]

Accordingly, it follows from (17) that

Lk(t)− Lk−1(t) ≤
∫ T

0

{−2p̃ppT
k Γ1[p̂ppk − p̄ppk+1] +

[p̂ppk − p̄ppk+1]
TΓ1[p̂ppk − p̄ppk+1]}ds +

Vk(t)− Vk−1(t) (18)

To get a useful expression for Vk, let us calculate the time
derivative of Vk along (9), which can be given as

V̇k = 2θ̃θθ
T

k Γ2
˙̂
θθθk − xxxTQxxxk + 2θ̃θθ

T

k ΦT
0,kBTPxk +

2p̃ppT
k ΦT

1,kBTPxxxk + 2xxxT
k PBD−1(qqqk, φ̂φφk)uuuk

Using update law (12) leads to

V̇k = −xxxT
k Qxxxk + 2p̃ppT

k ΦT
1,kBTPxxxk +

2xxxT
k PBD−1(qqqk, φ̂φφk)uuuk

Integrating from t = 0 to T gives

Vk(t) = Vk(0) +

∫ T

0

[−xxxT
k Qxxxk + 2p̃ppT

k ΦT
1,kBTPxxxk +

2xxxT
k PBD−1(qqqk, φ̂φφk)uuuk]ds (19)

Substituting (19) into (18) produces

Lk+1(t)− Lk(t) ≤

−
∫ T

0

xxxT
k Qxxxkds +

2

∫ T

0

[−p̃ppT
k Γ1(p̂ppk − p̄ppk+1) + p̃ppT

k ΦT
1,kBTPxxxk]ds +

∫ T

0

{[p̂ppk − p̄ppk+1]
TΓ1[p̂ppk − p̄ppk+1] +

2xxxT
k PBD−1(qqqk, φ̂φφk)uuuk]}ds +

Vk(0)− Vk−1(t) (20)
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Applying (10) and (11), we have

Lk+1(t)− Lk(t) ≤

−
∫ T

0

[xxxT
k Qxxxk + (β − 1)xxxT

k PTBΦ1,k

Γ−1
1 ΦT

1,k(t)BTPxxxk]ds + Vk(0)− Vk−1(t)

As β ≥ 1,

Lk+1(t)− Lk(t) ≤ −
∫ T

0

xxxT
k Qxxxkds + Vk(0)− Vk−1(t) (21)

which implies

Lk+1(t) ≤ −
∫ T

0

xxxT
k Qxxxkds + Lk(t)− Vk−1(t) + Vk(0) (22)

By the definition of Lk(t),

Lk(t)− Vk−1(t) =

∫ T

0

p̃ppT
k Γ1p̃ppkds (23)

Substituting (23) into (22) gives rise to inequality (15).
Setting t = T in (21) yields

Lk+1(T )− Lk(T ) ≤ −
∫ T

0

xxxT
k Qxxxkds + Vk(0)− Vk−1(T ) (24)

From the initial condition θ̂θθk(0) = θ̂θθk−1(T ) and by Assump-
tions 1 and 2, we have

Vk(0) = Vk−1(T )

Thus, inequality (16) holds. ¤
Lemma 3. L1(T ) is bounded.
Proof. The time derivative of L1 can be written as

L̇1 = p̃ppT
1 Γ1p̃pp1 + V̇0 = −2p̃ppT

0 ΦT
1,0B

TPxxx0 +

xxxT
0 PBΦ1,0Γ

−1
1 ΦT

1,0B
TPxxx0 +

p̃ppT
0 Γ1p̃pp0 + V̇0 (25)

Note that

V̇0 = −xxxT
0 Qxxx0 + 2p̃ppT

0 ΦT
1,0B

TPxxx0 +

2xxxT
0 PBD−1(qqq0, φ̂φφ0)uuu0 (26)

Substituting (26) into (25) and using (26) yield

L̇1 = −xxxT
0 Qxxx0 + (1− β)xxxT

0 PBΦT
1,0Γ

−1
1 ΦT

1,0B
TPxxx0 +

p̃ppT
0 Γ1p̃pp0

As β ≥ 1,

L̇1 ≤ p̃ppT
0 Γ1p̃pp0

Integrating both sides from 0 to T results in

L1(T ) ≤ L1(0) +

∫ T

0

p̃ppT
0 Γ1p̃pp0ds (27)

Since L1(0) = V0(0) = θ̃θθ
T

0 (0)Γ2θ̃θθ0(0) + xxxT
0 (0)Pxxx0(0), and

ppp, p̂pp0, θθθ, θ̂θθ0(0), qqq0(0), and q̇qq0(0) are all bounded, L1(T ) is
thus bounded. ¤

We are now at a position to present the major result of
our paper.

Theorem 1. Given the desired trajectory qqqd(t) for the
robotic system (1), satisfying Assumptions 1 and 2, the
repetitive learning controller composed of (6), (10), (11),
and (12) achieves the complete tracking in the sense that

1) eeek, ėeek, θ̂θθk, p̂ppk ∈ B[0, T ];
2) Both eeek and ėeek converge to zero in the sense of

L2[0, T ], i.e.,

lim
k→∞

∫ T

0

eeeT
k eeekds = 0

lim
k→∞

∫ T

0

ėeeT
k ėeekds = 0

Proof. 1) It follows from Lemma 2 that

Lk+1(T ) ≤ Lk(T ) · · · ≤ L1(T ) (28)

By Lemma 3, L1(T ) is bounded. We can conclude that
Lk(T ) is bounded for all k. The boundedness of Lk(T ) im-

plies the boundedness of Vk(T ) and
∫ T

0
p̃ppT

k Γ−1
1 p̃ppkds. From

(16), we have, for all t ∈ [0, T ],

∫ T

0

xxxT
k Qxxxkds ≤

∫ T

0

xxxT
k Qxxxkds ≤

Lk(T )− Lk+1(T ) ≤ Lk(T )

which implies
∫ T

0
xxxT

k Qxxxkdτττ ∈ B[0, T ]. Also by Lemma 2,
we have

Lk+1(t) ≤ −
∫ T

0

xxxT
k Qxxxkds +

∫ T

0

p̃ppT
k Γ−1

1 p̃ppkds + Vk−1(T )

Therefore, Lk(t) ∈ B[0, T ]. From the definition of Lk(t),

Vk(t) ∈ B[0, T ], which implies that θ̂θθk(t) ∈ B[0, T ] and
xxxk(t) ∈ B[0, T ]. It follows from (11) that p̂ppk(t) ∈ B[0, T ].
From the definition of xxxk and the boundedness of qqqd and
q̇qqd, we can conclude that both qqqk(t) ∈ B[0, T ] and q̇qqk(t) ∈
B[0, T ].

2) From (28), Lk(T ) is monotone decreasing. The limit
of Lk(T ) exists due to its positive definiteness. Therefore,

lim
k→∞

{Lk(T )− Lk+1(T )} = 0

By Lemma 2,

∫ T

0

xxxT
k Qxxxkds ≤ Lk(T )− Lk+1(T )

which implies

lim
k→∞

∫ T

0

xxxT
k Qxxxkds = 0

Thus, xxxk converges to zero in the sense of L2[0, T ]. It fol-
lows from the definition of xxxk that both eeek and ėeek converge
to zero in the sense of L2[0, T ]. ¤

The scheme presented in this paper is motivated by
the adaptive control law for rigid manipulators derived by
Craig[15]. Similarly, the scheme assumes that the joint ac-
celeration is measurable, and the presence of ideal acceler-
ation sensors is assumed in the practical implementation.
The scheme should be applied with care because the joint
acceleration may lead to an overlarge input torque. One
condition is that an upper bound on the desired joint ac-
celeration q̈qqd is set in the implementation. The numerical
result from the simulation given in the next section ver-
ifies that this condition is feasible. The introduction of
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a filter in the designed controller is one method to over-
come the need for acceleration measurements. This de-
serves further investigation and will be part of our future
research. For simplicity of presentation, in this paper, we
focus on the controller design and performance analysis of
the acceleration-required scheme.

The parameter update laws (11) and (12) do not en-
sure that the estimates remain within pre-specified regions,
which may lead to that the inverse of the estimated inertia
matrix is not bounded. To guarantee that the estimated
parameters remain within known regions, Craig suggested
to reset the estimates[15]. If parameter estimates move out-
side their bounds of the known regions, they are reset to
their bounds. There are effective ways to overcome this
restriction. One can make a projection-modification for
update law (12), and apply a fully saturated learning law

for modifying (11)[17]. It is interesting to note that Spong
and Ortega modified the control law to remove the need to
modify the parameter update law[16].

5 Case study
To verify the effectiveness of the designed learning con-

troller for robotic systems with time-varying parameters,
the model of the two-link robot manipulator given in [14]
is used, in which the length of the links is assumed to be
fixed and the payload is time-varying. The model of the
manipulator, in the form of (1), is given by

D(qqq,φφφ)q̈qq + C(qqq, q̇qq,φφφ)q̇qq + F (qqq, φ̇φφ)q̇qq = τττ (29)

where D(qqq,φφφ) = [dij ], with

d11 = p1 + 2p2 cos q2 + (v1(q2) + R2/2)mp(t)

d12 = p3 + p2 cos q2 + (v2(q2) + R2/2)mp(t)

d21 = d1,2

d22 = p3 + (v3 + R2/2)mp(t)

C(qqq, q̇qq,φφφ) =

[ −v4(q2)q̇2 −v4(q2)(q̇1 + q̇2)
v4(q2)q̇1 0

]

F (qqq, φ̇φφ) =

[
v1(q2) + R2/2 v2(q2) + R2/2
v2(q2) + R2/2 v3 + R2/2

]
ṁp

R is the radius of the cylindrical vessel, which is mounted
on the end of the second link, mp(t) = k1t is the payload
mass and k1 is the constant water flow rate, p1, p2, and p3

are the constant parameters that contain the masses and
the inertia parameters of the links and the motors, v4(q2) =
(p2+l1l2mp(t)) sin q2, v1(q2) = l21+l22+2l1l2 cos q2, v2(q2) =
l22+l1l2 cos q2 and v3(q2) = l22. For the manipulator dynam-
ics, ppp = [p1, p2, p3]

T and θθθ(t) = [mp(t), ṁp(t)]T, and the
regression matrices Yp and Yθθθ are given by

Yp,11 = q̈1

Yp,12 = 2q̈1 cos q2 + q̈2 cos q2 − q̇2q̇1 sin q2 −
(q̇1 + q̇2)q̇2 sin q2

Yp,13 = q̈2

Yp,21 = 0

Yp,22 = q̈1 cos q2 + q̇2
1 sin q2

Yp,23 = q̈1 + q̈2

Yθθθ,11 = (v1(q2) + R2/2)q̈1 + (v2(q2) + R2/2)q̈2 −
l1l2q̇2q̇1 sin q2 − l1l2(q̇1 + q̇2)q̇2 sin q2

Yθθθ,12 = (v1(q2) + R2/2)q̇1 + (v2(q2) + R2/2)q̇2

Yθθθ,21 = (v2(q2) + R2/2)q̈1 + (v3 + R2/2)q̈2 +

l1l2q̇
2
1 sin q2

Yθθθ,22 = (v2(q2) + R2/2)q̇1 + (v3 + R2/2)q̇2

The general expression for the desired position trajecto-
ries, with continuous bounded position, velocity, and accel-
eration, is given by

qqqd(t) =





cd(t, 0, t1, qqq
0
d, qqq1

d), 0 ≤ t < t1
qqq1

d, t1 ≤ t ≤ t2
cd(t, t2, T, qqq1

d, qqq0
d), t2 < t ≤ T

(30)

with

cd(t, t0, tf , qqq0, qqqf ) = qqq0 +

(
10

(t− t0)
3

(tf − t0)3
− 15

(t− t0)
4

(tf − t0)4
+

6
(t− t0)

5

(tf − t0)5

)
(qqqf − qqq0) (31)

In (30), qqq0
d and qqq1

d represent the desired initial and inter-
mediate positions, respectively, and the desired final posi-
tion coincides with the desired initial position. It is easy
to check that the desired position trajectory (30) and its
derivative satisfy Assumption 1. Over the operation cy-
cle [0, T ], the manipulator moves from the desired initial
position to the desired intermediate position over the time
interval [0, t1). Upon reaching the desired intermediate po-
sition at t1, the manipulator will stay at this position for
the time interval [t1, t2]. Immediately after t2, the ma-
nipulator starts to move towards the desired final position,
which is coincidentally the desired initial position, reaching
it at T .

The data that we use in the simulation are

T = 5 s, t1 = 1 s, t2 = 4 s

qqq0
d = [0, 0]T rad, qqq1

d = [1, 1]T rad

ppp = [4.8, 0.9, 0.7]T, l1 = 1m, l2 = 0.6m, R = 0.1m

k1 = 0.3 kg/s

The initial value of parameter vector ppp differs from the true
values by 200%. The performance indices are defined as
Jp, k = supt∈[0, 5] max{|qd, 1(t)− qk, 1(t)|, |qd, 2(t)− qk, 2(t)|}
and Jv, k = supt∈[0, 5] max{|q̇d, 1(t) − q̇k, 1(t)|, |q̇d, 2(t) −
q̇k, 2(t)|}. The torque input (6), together with parameter
update laws (11) and (12), are used with the parameters
settings:

β = 10, Q = diag[30, 60]

Γ1 = diag[1], Γ2 = diag[5]

Kp = diag[40], Kv = diag[10]

qqq0(0) = [0.2, 0.2]T rad, q̇qq0(0) = [0, 0]T rad

Simulation results are shown in Figs 1∼ 6. It is observed
that the joint position and velocity trajectories converge to
the desired ones over the entire finite interval [0, 5] through
25 cycles. Figure 5 shows the resulted torque input profiles
at the cycle k = 25.



1194 ACTA AUTOMATICA SINICA Vol. 33

Fig. 1 Desired and actual position trajectories at cycle k = 0
(Desired: solid line for joints 1 and 2; actual: dash-dot line for

joint 1 and dash line for joint 2 )

Fig. 2 Desired and actual velocity trajectories at cycle k = 0
(Desired: solid line for joints 1 and 2; actual: dash-dot line for

joint 1 and dash line for joint 2 )

Fig. 3 Desired and actual position trajectories at cycle k = 25
(Desired: solid line for joints 1 and 2; actual: dash-dot line for

joint 1 and dash line for joint2 )

Fig. 4 Desired and actual velocity trajectories at cycle k = 25
(Desired: solid line for joints 1 and 2; actual: dash-dot line for

joint 1 and dash line for joint2 )

Fig. 5 Torque input profiles for joints 1 and 2 at cycle k = 25
(Dash-dot line for joint 1 and dash line for joint2)

Fig. 6 Learning convergence: position error Jp,k (Solid line)
and velocity error Jv,k(Dash line)
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6 Conclusion
In this paper, repetitive learning control has been pre-

sented for finite-time trajectory tracking of time-varying
robotic systems. It has been shown that state variables in
the closed-loop system are bounded and zero-error track-
ing is achieved over the finite time interval as the num-
ber of iterations increases, without the strict requirement
of identical initial repositioning and without assuming the
time-varying unknowns to be periodic. The hybrid learn-
ing has been shown applicable to robots with both constant
and time-varying parameters, where the iterative learning
law is used to estimate the time-varying unknowns whereas
the differential learning law is suggested for estimating the
constant ones.
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