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Generalized Predictive Control with Online Least
Squares Support Vector Machines

LI Li-Juan1, 2 SU Hong-Ye1 CHU Jian1

Abstract This paper proposes a practical generalized predictive control (GPC) algorithm based on online least squares support
vector machines (LS-SVM) which can deal with nonlinear systems effectively. At each sampling period the algorithm recursively
modifies the model by adding a new data pair and deleting the least important one out of the consideration on realtime property. The
data pair deleted is determined by the absolute value of lagrange multiplier from last sampling period. The paper gives the recursive
algorithm of model parameters when adding a new data pair and deleting an existent one, respectively, and thus the inversion of
a large matrix is avoided and the memory can be controlled by the algorithm entirely. The nonlinear LS-SVM model is applied in
GPC algorithm at each sampling period. The experiments of generalized predictive control on pH neutralizing process show the
effectiveness and practicality of the proposed algorithm.
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1 Introduction

Generalized predictive control(GPC)[1], integrating self-
adaptive control into predictive control, has been shown
to be particularly effective. Linear predictive control ap-
proaches are well-established in control practice, and non-
linear model predictive control (NMPC) has also found its

way in control practice[2, 3]. NMPC algorithms are based
on various nonlinear models and the quality depends on
the models. The popular nonlinear models are neural net-
work ones which undoubtedly have solved many problems
with complicated models. However, the theoretically per-
fect neural network sometimes performs poorly in practice
due to local minimum and over-fitting problems.

Support vector machines (SVM) theory[4] has drawn
much attention for the high generalization ability and
global optimization property recently[5]. Analytical solu-
tions can be obtained by solving linear equations instead
of a quadratic programming (QP) problem in least squares

support vector machines (LS-SVM)[6]. Fuzzy support vec-
tor machines (FSVM) is a modified SVM algorithm which
treats the training data points differently according to their
different degrees of importance[7]. The idea of FSVM is in-
troduced into LS-SVM (Fuzzy least squares support vectors
machines, FLS-SVM) in [8]. LS-SVM modeling is applied

to GPC by Liu[9], but it is an offline method and could not
express the dynamic behavior of plant realtime.

The contribution of this paper is to describe a GPC al-
gorithm with practical online LS-SVM modeling which can
avoid the process of inversion of large matrices, solve the
computation, and memory problem of LS-SVM. In LS-SVM
and its modified versions, inversion of a large matrix is in-
cluded such that the computation is huge and it is generally
applied in offline modeling. Reference [10] presented an
iterative training algorithm for LS-SVM based on a con-
jugate gradient method. However, when the training set
increases, the whole process of computation should be car-
ried out once again, which limits its online applications in
a sense. In [11], pruning algorithm is used for sparseness
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in which data are selectively omitted so that the training
set is deduced and corresponding dimension of the matrix
is decreased. It is a pity that the pruning algorithm is also
an offline algorithm.

2 Least squares support vector ma-
chines

2.1 Basic least squares support vector machines

Consider a given regression data set {(xxxi, yi)}N
i=1, where

N is the total number of training data pairs, xxxi ∈ Rn is
the regression vector and yi ∈ R is the output. According
to SVM theory[4], the input space Rn is mapped into a
feature space Z with the nonlinear function ϕ(xxxi) being
the corresponding mapping function. In the feature space,

y(xxx) = wwwTϕ(xxx) + b with www ∈ Z, b ∈ R (1)

is taken to estimate the unknown function, where vector
www and scalar b are the parameters to be identified. The
optimization problem is defined as follows.

min
www,eee

J(www,eee) =
1

2
wwwTwww +

γ

2

N∑
i=1

e2
i , γ > 0 (2)

subject to yi = wwwTϕ(xxxi) + b + ei, i = 1, 2, · · · , N
(3)

where ei is the error between actual output and predictive
output of the ith data.

The LS-SVM model of the data set can be given by

y(xxx) =

N∑
i=1

αiK(xxx,xxxi) + b (4)

where αi ∈ R (i = 1, 2, · · · , N) are Lagrange multipli-
ers and K(xxx,xxxi) (i = 1, 2, · · · , N) are any kernel functions

satisfying the Mercer condition[5]. Analytical solutions of
αi ∈ R (i = 1, 2, · · · , N) and b can be obtained from

[
b
ααα

]
= Φ−1

[
0
YYY

]
(5)

with YYY = [y1 y2 · · · yN ]T, ααα = [α1 α2 · · · αN ]T, and the
supposed nonsingular matrix

Φ =

[
0 1T

1 Ω + γ−1I

]
(6)
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where 1 = [1 1 · · · 1]T, I is a N × N identity matrix and
Ω is a N ×N symmetric matrix with the elements

Ωij = ϕ(xxxi)
Tϕ(xxxj) = K(xxxi,xxxj), i, j = 1, 2, · · · , N

(7)

2.2 Fuzzy least squares support vector machines

Given a data set {(xxxi, yi, si)}N
i=1, where N is the total

number of training data pairs, xxxi ∈ Rn is input vector,
yi ∈ R is output signal, and si is a membership function
which denotes the weightiness of the corresponding data
point. The value of si can be obtained by

si = f(αi) = (1− δ)

( |αi| − |αmin|
|αmax| − |αmin|

)
+ δ (8)

where sufficient small parameter δ > 0 is the minimum
of membership function si, αmin is the Lagrange multi-
plier with minimum absolute value, and αmax is that of
maximum[8].

Then, si is introduced into the second term of (2) and
optimization problem is defined as

min
www,eee

J(www,eee) =
1

2
wwwTwww +

γ

2

N∑
i=1

sie
2
i , γ > 0 (9)

subject to yi = wwwTϕ(xxxi) + b + ei, i = 1, 2, · · · , N
(10)

where parameters have the same meanings as those in Sec-
tion 2.1.

The expression of regression model is the same as (4).
And the final formulation of analytical solution is just as
(5), but the matrix Φ is

Φ =

[
0 1T

1 Ω + (γS)−1

]
(11)

with S = diag{s1, s2, · · · , sN}.
It is easy to see that basic LS-SVM is obtained in case

of each si is set to 1. In this sense, the basic LS-SVM is a
peculiar case of FLS-SVM.

3 Online LS-SVM modeling algorithm

3.1 Adding a new data pair

The following theorem gives the recursive algorithm of
LS-SVM model parameters when a new point is added.

Theorem 1. Considering the function regression prob-
lem in Section 2, let us suppose that ΘN = [b ααα]T is the
parameter matrix obtained from the training set consisting
of N pairs of data by (5). Let PN = Φ−1

N , when another

data pair {xxxN+1, yN+1} is added into the training set by
which the recursive algorithm of Θ can be obtained by (18)
and (19) where

ΨN+1 = [1 ϕ1ϕN+1 ϕ2ϕN+1 · · · ϕNϕN+1] (12a)

ζN+1 = (ϕN+1ϕN+1 + 1/γ)−1 (12b)

ηN+1 = (ΨN+1PNΨT
N+1 − ζ−1

N+1)
−1 (12c)

Proof. For the sake of convenience, we introduce the
following lemmas firstly.

Lemma 1[12]. Assume that A, C, and (A + BCD) are
nonsingular matrices, then

(A + BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1

(13)
holds.

Lemma 2. Assume that partitioned matrix

A =

[
A11 A12

A21 A22

]
(14)

and that A11 and A22 are nonsingular matrices, then (20)
holds.

Remark. Lemma 2 can be easily deduced by the matrix
theory.

Consider the function regression problem in Section 2.1.
According to (5), when {xxxN+1, yN+1} is added to the train-
ing set, the parameter matrix ΘN+1 = [b αααN+1]

Tcan be
expressed as

ΘN+1 = Φ−1
N+1

[
0

YYY N+1

]
(15)

with YYY N+1 = [y1 y2 · · · yN yN+1 ]
T, αααN+1 = [α1 α2 · · ·

αN+1], and

ΦN+1 =

[
0 1T

1 ΩN+1 + γ−1I

]
(16)

Assume

ΨN+1 = [1 ϕ1ϕN+1 ϕ2ϕN+1 · · · ϕNϕN+1]

Applying (6), we can write (16) as

ΦN+1 =

[
ΦN ΨT

N+1

ΨN+1 ϕN+1ϕN+1 + 1/γ

]
(17)

Taking A11 = ΦN , A12 = ΨT
N+1, A21 = ΨN+1, A22 =

ϕN+1ϕN+1+1/γ in (14) and applying (20) yields (21) where
ζN+1 = (ϕN+1ϕN+1 + 1/γ)−1 is a scalar.

ΘN+1 =

[
ΘN + ηN+1PNΨT

N+1[yN+1 −ΨN+1ΘN ]
ζN+1ΨN+1[ηN+1PNΨT

N+1ΨN+1 − I]ΘN − yN+1ηN+1

]
(18)

PN+1 =

[
PN − ηN+1PNΨT

N+1ΨN+1PN ηN+1PNΨT
N+1

ζN+1ΨN+1[ηN+1PNΨT
N+1ΨN+1PN − PN ] −ηN+1

]
(19)

A−1 =

[
(A11 −A12A

−1
22 A21)

−1 −A−1
11 A12(A22 −A21A

−1
11 A12)

−1

−A−1
22 A21(A11 −A12A

−1
22 A21)

−1 (A22 −A21A
−1
11 A12)

−1

]
(20)

PN+1 =

[
[ΦN −ΨT

N+1ζN+1ΨN+1]
−1 −Φ−1

N ΨT
N+1[ζ

−1
N+1 −ΨN+1Φ

−1
N ΨT

N+1]
−1

−ζN+1ΨN+1[ΦN −ΨT
N+1ζN+1ΨN+1]

−1 [ζ−1
N+1 −ΨN+1Φ

−1
N ΨT

N+1]
−1

]
(21)
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Applying Lemma 1 to [ΦN −ΨT
N+1ζN+1ΨN+1]

−1 in (21)
gives (19).

In addition, let Ȳ N = [0 YYY N ]T, then Ȳ N+1 =
[0 YYY N+1 ]

T = [Ȳ N yN+1]
T. Now (15) can be written

as follows,

ΘN+1 = PN+1

[
Ȳ N

yN+1

]
(22)

Substituting (19) into (22) and noticing that ΘN =
PNȲYY N , we get (18). ¤
3.2 Deleting an existent data pair

It can be found that the number of elements of ααα scales
with that of data pairs in (5) and Φ−1 need to be saved each
time for the next computation in Theorem 1. Upon that,
with a new data added into the training set the number of
data to be saved increase by (2N−1) and the computation
time also increases. For online case the new data are added
continually, and the memory and computation would con-
tinually increase at each sampling period. Therefore, if the
size of training set is enough for a relatively precise model
after some recursive steps, we consider to remove a former
data pair once a new data pair is added. Then the size
of training set would be controlled, the computation time
would not be longer, and the required memory would not
increase endlessly.

For deleting a data pair, we consider the training set
{xxxi, yi}N+1

i=1 . Let PN+1 = Φ−1
N+1. For the sake of conve-

nience, PN+1 in (19) is written as the form of block matrix

PN+1 =




p11 · · · p1(N+1) p1(N+2)

...
...

...
...

p(N+1)1 · · · p(N+1)(N+1) p(N+1)(N+2)

p(N+2)1 · · · p(N+2)(N+1) p(N+2)(N+2)




=

[
P11 P12

P21 P22

]

(23)

When the last data pair {xxxN+1, yN+1} is removed from
the training set the recursive algorithm of inversion PN =
Φ−1

N can be obtained by

PN = P11 − P12P21

P22
(24)

which can be testified by substituting it back to (19)[13].
Equation (24) permits us to eliminate the last data

pair. In LS-SVM, the order of training data pairs is ap-
proximately arbitrary, and any change of the order would
not effect the modeling result. So, with any data pair
(xxxi, yi) removed, equation (24) holds except that P11 is a
(N + 1)× (N + 1) square matrix from PN+1 removing the
(i +1)th row and (i +1)th column, P12 is the (i +1)th col-
umn of PN+1 without p(i+1)(i+1), P21 is the (i + 1)th row
of PN+1 without p(i+1)(i+1), and P22 = p(i+1)(i+1).

Contributions of different data pairs to the training of
LS-SVM are not the same. Considering online algorithm,
we try to delete the least important data pair at each sam-
pling period. The value of |αi| just denotes the importance

of corresponding data point[11]. Thus, we have a method
to eliminate the least important data pair and the one cor-
responding to minimum |αi| is removed at each sampling
period in our algorithm.

3.3 Procedure of online LS-SVM modeling

Consider the system based on input/output model

y(k) = f(xxx(k))

where y(k) is the output of the system at kth time , f(·) is
the nonlinear function to be identified expressing the prop-
erties of the system, xxx(k) is the regression data vector

xxx(k) = [xk(1) · · · xk(nu + ny)] =

[u(k − 1) · · · u(k − nu) y(k − 1) · · · y(k − ny)]
(25)

with nu and ny being the input and output orders, respec-
tively. A general procedure of online LS-SVM modeling
algorithm can be described as follows.

Step 1. Select an appropriate kernel function and the
corresponding parameters. Determine the sampling period
T0, input order nu, output order ny, weight γ in (2), and
size of training set NN .

Step 2. Sample input/output data {yk+1, uk+1}, con-
struct the regression vectors xxxk+1 by (25), and form the

updated training set {yi,xxxi}k+1
i=1 .

Step 3. If the sampling number is not larger than NN ,
compute Ψk+1, ζk+1 and ηk+1 by (12) and apply (18), (19)
to calculate the updated Θk+1 and Pk+1, respectively. Thus
the updated regression model is obtained by (24). Go to
Step 2.

Step 4. Or else, if the sampling number is larger than
NN , find the index I of minimum |αi| from the result of
last sampling period, delete αI from ααα, delete (xxxI , yI) from
the training set, set P11, P12, P21, P22, and calculate update
P by (24).

Step 5. Compute Ψk+1, ζk+1, and ηk+1 by (12) and ap-
ply (18), (19) to calculate the updated Θk+1 and Pk+1, re-
spectively. Thus the updated regression model is obtained
by (4). Go to Step 2.

3.4 Consideration of FLS-SVM

The case of online fuzzy least squares support vector
machines is much similar to that of LS-SVM except that
a parameter si is introduced. The recursive algorithm is
similar to (18) and (19), and we give the following theorem
without proof.

Theorem 2. Consider the function regression problem
in Section 2.2, and suppose that ΘN = [b ααα]T is the pa-
rameter matrix obtained from the training set consisting of
N pairs of data by (5). Each membership function value si

is determined by (8). Let PN = Φ−1
N , when another data

pair {xxxN+1, yN+1} is added into the training set the recur-
sive algorithm of Θ is the same to LS-SVM (i.e. Theorem
1) except that (12b) is replaced by

ζN+1 = (ϕN+1ϕN+1 + 1/(γsN+1))
−1 (26)

To apply Theorem 2, we should firstly compute the value
of sN+1. However, it can be seen from (8) that the param-
eter sN+1 is determined by αN+1 whereas it is unknown
when the new data point is added. But, we have known
that basic LS-SVM is obtained when all the si in FLS-SVR
are set to 1. Thus on each recursive step, we could firstly
work out αi|N+1

i=1 by recursive LS-SVM (Theorem 1), and
then calculate sN+1 by (8), and finally run the recursive
FLS-SVM (Theorem 2).

For online modeling problem of FLS-SVM, the proce-
dure is similar to online LS-SVM in Section 3.3, and the
differences lie on:
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1) An additional parameter δ in (8) should be determined
beforehand in online FLS-SVM;

2) At each sampling period the recursive step would be
run twice in FLS-SVM: the first time computes the initial
αi|N+1

i=1 for the computation of si|N+1
i=1 , the second time runs

according to Theorem 2 and gets the final result of Θ at
this recursive step.

4 GPC algorithm with online LS-SVM

4.1 Linearization of the nonlinear LS-SVM model

As techniques in [9] dealing with nonlinear GPC, the
nonlinear LS-SVM model (4) is linearized at each sampling
period in our algorithm.

Consider the kth sampling period and xxxk is the corre-
sponding regression vector. The LS-SVM model is lin-
earized as (36) where C is a constant. Substituting (25)
into (36), we get

y(xxx) = C + b1u(k − 1) + · · ·+ bnuu(k − nu)−
a1y(k − 1)− · · · − any y(k − ny)

(27)

Let

A(q−1) = 1 + a1q
−1 + · · ·+ any q−ny

B(q−1) = b1 + b2q
−1 + · · ·+ bnuq−(nu−1)

(28)

where q−1 is the shift operator denoting the movement of
the amount corresponding to a sampling period back. Then
the linearized model (27) can be written as follows:

A(q−1)y(k) = B(q−1)u(k − 1) + C (29)

Under the random disturbance to the plant, a controlled
auto-regressive integrated moving average (i.e. CARIMA)
model is formulated as follows:

A(q−1)y(k) = B(q−1)u(k − 1) +
ξ(k)

∆
(30)

where ξ(k) including the constant item C in (29) is an un-
correlated random sequence denoting some kind of random
noise and ∆ = 1− q−1 is difference operator.

4.2 GPC control

The optimal performance criterion at kth period is de-
fined as

min J(k) = E

{ N2∑
j=N1

[y(k + j)− yr(k + j)]2+

Nu∑
j=1

λ(j)[∆u(k + j − 1)]2
} (31)

where E represents mathematical expectation, yr is the
expectation of output, N1 and N2 are the initial and fi-
nal value of optimal horizon, respectively, Nu is the control
horizon, and λ is the weight of control item.

According to the algorithm of Clarke[1], the incremental
optimal control law can be solved as follows:

∆u = (GTG + λI)−1GT[yr − Fy(k)−H∆u(k − 1)] (32)

where the matrices G, F , and H are obtained by recursively
solving the Diophantine equations. The instant optimal
control law can be computed by

u(k) = u(k − 1) + gT[yr − Fy(k)−H∆u(k − 1)] (33)

where gT is the first row of matrix (GTG + λIII)−1GT.
The multistep predictive output can be obtained by

ŷ = G∆u + Fy(k) + H∆u(k − 1). (34)

5 Experiments

The presented GPC strategy is applied in the simulation
of pH neutralizing process, which is a weak acid-strong base
system and with strong nonlinearity, especially in the vicin-
ity of pH= 9.

The physical model of a pH process in a continuously
stirred tank reactor (CSTR) consists of two parts, a linear

dynamical part followed by a nonlinear static part[14]. The
dynamical model is given by





V
dwa

dt
= FaCa − (Fa + Fb)wa

V
dwb

dt
= FbCb − (Fa + Fb)wb

(35)

where Fa and Fb denote the inlet flow-rate of acid and base
(cm3/min), respectively, Ca and Cb are the inlet concentra-
tions of acid and base (mol/L), the volume of the content
in the reactor is denoted by the constant V (cm3), and wa

and wb are the concentrations of acid and base after the
process of dynamical model (mol/L). Simultaneously, wa

and wb are the inputs of the static model (37).

y(xxx) =y(xxx)|xxx=xxxk +
∂y

∂xxx(1)

∣∣∣∣∣
xxx=xxxk

[xxx(1)− xxxk(1)] + · · ·+ ∂y

∂xxx(nu + ny)

∣∣∣∣∣
xxx=xxxk

[xxx(nu + ny)− xxxk(nu + ny)] =

y(xxx)|xxx=xxxk +
∂y

∂xxx(1)

∣∣∣∣∣
xxx=xxxk

xxx(1) + · · ·+ ∂y

∂xxx(nu + ny)

∣∣∣∣∣
xxx=xxxk

xxx(nu + ny)−

∂y

∂xxx(1)

∣∣∣∣∣
xxx=xxxk

xxxk(1)− · · · − ∂y

∂xxx(nu + ny)

∣∣∣∣∣
xxx=xxxk

xxxk(nu + ny) =

C + b1xxx(1) + · · ·+ bnuxxx(nu)− a1xxx(nu + 1)− · · · − anyxxx(nu + ny)

(36)
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wb + 10−y − 10y−14 − wa

1 + 10pKa−y
= 0 (37)

where y is the pH value of the effluent, Ka is the disso-
ciation constant of the acetic acid with Ka = 1.76 × 10−5

and pKa = − lg Ka.
By fixing the flow-rate Fa at a specific value, the process

is regarded as a single variable system with base flow-rate
Fb and pH value y of the effluent being the input and the
output, respectively. The simulating system uses the phys-
ical model with the parameter values given in Table 1. The
sampling period is set to 0.5min.

Table 1 Parameter values used in pH neutralizing model

Parameter Nominal value

Fa 81cm3/min

Ca 0.32mol/L

Cb 0.05mol/L

V 1000cm3

wa(0) 0.0435mol/L

wb(0) 0.0432mol/L

5.1 GPC with online LS-SVM and FLS-SVM
modeling

Radial Basis Function (RBF),

K(xxx,xxxi) = exp{−‖xxx− xxxi‖22/σ2} (38)

with σ = 1.77, is chosen as the kernel function in the ex-
periment. Predictive horizon and control horizon are set to
10 and 5, respectively. Other parameters are regulated to
γ = 5, nu = 3, ny = 3, and size of training set NN = 150
for the simulation. The expectation of output is the sum of
some step signals. Fig. 1 shows the tracking results of LS-
SVM of 500 sampling period where y is the actual output,
yr is the setting output, and u is the control imposed on
the system.

(a) Tracking curves

(b) Control output u

Fig. 1 The result of GPC based on online LS-SVM

GPC control with online FLS-SVM on the pH neutral-
izing process with the parameter δ = 0.1 in (8) is also sim-
ulated in our experiments. The results are shown in Fig. 2
and the parameters in them have the same meaning as in
Fig. 1.

(a) Tracking curves

(b) Control output u

Fig. 2 The result of GPC based on online FLS-SVM
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The following expression is defined as the approximate
performance in our experiments,

RMS =
‖Y − Y r‖2√

N
(39)

where Y is the vector of actual output, Y r is the expecta-
tion output vector, and N is the length of Y . The smaller
value of RMS denotes the higher precision.

In our experiments, λ(j) in (31) is regarded as a con-
stant, and a group of values are tested both in the LS-SVM
and FLS-SVM GPC methods. The comparison of RMS is
shown in Table 2 and the mean computing time is shown
in Table 3.

Table 2 Comparison of RMS

λ = 0.1 λ = 0.3 λ = 0.5 λ = 2.5 λ = 10

LS-SVM 0.2036 0.1197 0.1327 0.1770 0.2025

FLS-SVM 0.1889 0.1220 0.1353 0.1773 0.1969

Table 3 Comparison of mean computing time

λ = 0.1 λ = 0.3 λ = 0.5 λ = 2.5 λ = 10

LS-SVM(s) 0.025 9 0.028 4 0.027 7 0.031 0 0.031 6

FLS-SVM(s) 0.028 6 0.033 2 0.030 8 0.032 4 0.033 3

It can be seen from Figs. 1 and 2 that the online LS-SVM
and FLS-SVM GPC control strategies both can track the
set values quickly, stably, and accurately.

Tables 2 and 3 indicate that by selecting appropriate size
of training set, the online modeling time is short enough for
most industrial system and the tracking precision is satis-
factory for such a strongly nonlinear process. Seen from
Table 3, the computing time is longer in FLS-SVM than
in LS-SVM for one more run of the recursive step in FLS-
SVM. However, seeing from Table 2, we could find that,
not as the effect in [8] which shows the advantage of offline
FLS-SVM in modeling precision, the control precision of
FLS-SVM is not so higher, but it is even lower at some ex-
periments than that of LS-SVM. For online LS-SVM GPC
algorithm, new information is continually added and the
least important data is eliminated recursively, which works
as the effect of weights in FLS-SVM, and consequently the
advantage of FLS-SVM is not so distinct. In this sense,
the FLS-SVM method is not so valuable in online GPC
algorithm at the cost of computing time.

5.2 Comparison of GPC with online least squares
modeling

We also do the experiment of generalized predictive con-
trol on pH neutralizing process with online least squares
modeling. The control curves are shown in Fig. 3 where
the parameters have the same meaning as in Fig. 1.

It can be seen from Fig. 3 that in the first 50 minutes the
pH neutralizing process runs steadily while in the rest time
the output oscillates severely. As having been explained,
pH neutralizing process exhibits strong nonlinearity at the
vicinity of pH = 9, which results in the severe oscillation
of the output in the rest time after 50 min. Namely, GPC
with online least squares can control the linear systems per-
fectly whereas it is incompetent once the output is in the
neighborhood of pH = 9 (exhibiting nonlinearity).

(a) Tracking curves

(b) Control output u

Fig. 3 The result of GPC with online least squares

Let us fall back on the linearizing formula (36) of LS-
SVM modeling. With RBF kennel function (38) and
nu + ny = n (for the sake of writing), (36) can be writ-
ten as

y(xxx) = C +
∂y

∂xxx(1)

∣∣∣∣∣
xxx=xxxk

xxx(1) + · · ·+ ∂y

∂xxx(n)

∣∣∣∣∣
xxx=xxxk

xxx(n) =

C − 2

N∑
i=1

αiK(xxxk,xxxi)[xxxk(1)− xxxi(1)]

σ2
xxx(1)− · · ·−

2

N∑
i=1

αiK(xxxk,xxxi)[xxxk(n)− xxxi(n)]

σ2
xxx(n) =

C + b1xxx(1) +· · ·+ bnuxxx(nu)− a1xxx(nu + 1)−· · ·− anyxxx(n)

(40)

It is easy to find from (40) that parameters {b1, · · · , bnu ,
a1, · · · , anu} are obtained by mapping the inputs into the
feature space with much higher dimension and thus they
are provided with more freedom and generalization than
least squares algorithm to depict the training data. There-
fore, GPC with online LS-SVM is more capable of dealing
with nonlinearity than online least squares algorithm.
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6 Conclusion

This paper proposes a practical online GPC algorithm
based on LS-SVM and FLS-SVM which can online model
and control the nonlinear system effectively. By recursively
adding new information and deleting useless data of the
system, the presented algorithm can construct nonlinear
model with high precision and satisfy the demand of re-
altime property. The paper gives the recursive algorithm
of model parameters and corresponding deducing process.
The nonlinear model is linearized at each sampling period
and the whole online LS-SVM GPC method is formed.

The proposed algorithm is applied to the experiments of
generalized predictive control of pH neutralizing process. In
this paper, the tracking and control curves of the result is
shown, the contrast between LS-SVM and FLS-SVM in pre-
cision and computing time is discussed, and also the com-
parison of GPC with LS-SVM to GPC with least squares is
given. The experimental results show the effectiveness and
practicality of the presented algorithm.
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