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A Systematic Analysis Approach to Discrete-time

Indirect Model Reference Adaptive Control
XIE Xue-Jun1,2 LI Jun-Ling1

Abstract This paper presents the design and analysis of indirect model reference adaptive control (MRAC) with normalized
adaptive law for a class of discrete-time systems. The main work includes three parts. Firstly, the constructed plant parameter
estimation algorithm not only possesses the same properties as those of traditional estimation algorithms but also avoids the possibility
of division by zero. Secondly, by finding the relationship between the plant parameter estimate and controller parameter estimate
and using the properties of plant parameter estimate, the similar properties of controller parameter estimate are also established.
Thirdly, based on the relationship properties between the normalizing signal and all the signals in the closed-loop system and on
some important mathematical tools on discrete-time systems, as in the continuous-time case, a systematic stability and convergence
analysis approach to the discrete indirect MRAC scheme is developed rigorously.
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1 Introduction

During the last two decades, for linear continuous-time
systems, the “certainty equivalence” adaptive controllers
with normalized adaptive laws have dominated the liter-
ature of adaptive control due to the simplicity of the de-
sign as well as the robustness properties in the presence of
modeling errors, see the widely cited in-depth monographes
of [1∼5], and references therein. These controllers are ob-
tained by independently designing a control law that meets
the control objective assuming knowledge of all parameters,
along with an adaptive law that generates on-line parame-
ter estimates that are used to replace the unknowns in the
control law. The normalized adaptive law could be a gra-
dient or least squares algorithm. The control law is usually
based on polynomial equalities resulting from a model ref-
erence or pole assignment objective based on linear systems
theory. An important feature of this class of adaptive con-
trollers is the use of error normalization, which allows com-
plete separation of the adaptive and control law designs.
Using the properties of L2δ-norm, the swapping lemmas
and the Bellman-Gronwall Lemma, a more elaborate yet
more systematic method is given in the analysis of adap-
tive control schemes.

To the best of our knowledge, the first analogous theo-
retical result for the discrete-time systems appears to have
been given by [6], where the internal model control (IMC)
implementation is used for the extended horizon adaptive
control scheme. This work is somewhat successful in the
sense that the ideal-case stability is established by exploit-
ing the parameter convergence property (not to the true
values) of the ‘pure’ least-squares algorithm. In [7], the
adaptive IMC in the presence of modeling errors was fur-
ther considered. Very recently, [8] studied the design and
analysis of discrete direct model reference adaptive control
(MRAC) with normalized adaptive laws in a systematic
manner as in the continuous-time case.

It is well known that according to the difference of the es-
timated parameters, MRAC schemes can be characterized
as direct or indirect and with normalized or unnormalized
adaptive laws. As discussed in [3, 9], the indirect MRAC
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scheme has certain advantages over the corresponding di-
rect scheme. Therefore, the purpose of this paper is to
study the discrete indirect MRAC with normalized adap-
tive law in a systematic manner. Our main work consists
of the following aspects: Firstly, the constructed plant pa-
rameter estimation algorithm not only possesses the same
properties as those of traditional estimation algorithms but
also avoids the possibility of division by zero. Secondly, by
finding the relationship between the plant parameter esti-
mate and controller parameter estimate and using the prop-
erties of plant parameter estimate, the similar properties of
controller parameter estimate are also established. Thirdly,
based on the relationship properties between the normaliz-
ing signal and all the signals in the closed-loop system, and
some important mathematical tools on discrete-time sys-
tems, as in the continuous-time counterpart, a systematic
stability and convergence analysis approach to the discrete
indirect MRAC scheme is developed rigorously.

2 Problem statement

Consider the discrete-time linear time-invariant plant
studied in [1]

y(t) = Gp(z) =
Z̄p(z)

Rp(z)
[u](t) =

kpZp(z)

Rp(z)
[u](t) (1)

where u(t), y(t) ∈ RRR are the plant input and output, re-

spectively, t ∈ {0, 1, 2, · · · }, Rp(z) = zn +
∑n−1

i=0 a∗i zi,

Z̄p(z) =
∑m

j=0 b∗j zj with b∗m = kp, a∗i and b∗j being un-
known constant parameters. The symbol z is used to de-
note the z-transform variable or time advance operator with
the definition of z[x](t) = x(t+1), i.e., z−1 is the time delay
operator z−1[x](t) = x(t− 1).

The control objective is to develop an indirect adaptive
control scheme such that all the signals in the closed-loop
plant are uniformly bounded and the tracking error e(t) =
y(t)−ym(t) → 0 as t →∞ for the following given reference
output ym,

ym(t) = Wm(z)[r](t) =
kmZm(z)

Rm(z)
[r](t) (2)

where r is the reference input, which is assumed to be uni-
formly bounded.

We need the following assumptions.
Plant assumptions:
Assumption 1. Zp(z) is stable, i.e., all zeros of Zp(z)

are inside the unit circle of complex z-plant.
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Assumption 2. n, m, and the relative degree n∗ =
n−m ≥ 1 are known.

Assumption 3. The sign of kp is known, and there
exists a known constant kp > 0 such that |kp| ≥ kp.

Reference model assumption:
M 1. Zm(z) and Rm(z) are monic stable polynomials

of degrees qm and pm, respectively, where pm ≤ n, and
Wm(z) has the same relative degree as that of (1).

Remark 1. By Assumption 1 and M 1, there exists a
constant δ ∈ (0, 1] such that G−1

p (z) and Wm(z) are ana-

lytic in |z| ≥
√

δ (i.e., G−1
p (

√
δz) and Wm(

√
δz) are analytic

in |z| ≥ 1 using Lemma 3 in [6]). It is worth emphasizing
that such a δ is only used in the stability analysis of closed-
loop system but not in the practical applications due to the
adaptive controller form (4), (5), (13)∼(16).

Notation 1. For any t ∈ {0, 1, 2, · · · }, define the time
increment of x(t) as ∆x(t) = x(t + 1) − x(t), and the
discrete-time L2, L2e, and L2δ norms of x(t) as ‖x‖2 =

(
∑∞

i=0 xT(i)x(i))1/2, and ‖xt‖2e = (
∑t

i=0x
T(i)x(i))1/2,

‖xt‖2δ = (
∑t

i=0 δt−ixT(i)x(i))1/2, where δ is the same
as that of Remark 1. The time advance operator vector
αk(z) = [zk, zk−1, · · · , z, 1]T for any k = 0, 1, · · · . For sim-
plicity, we sometimes denote any time function x(t) by x,
and z-transform operator polynomial X(z)[x](t) whose sig-

nification can be referred to Tao[1] by X(z)[x] or X(z)x. c
denotes any positive constant. Let X(z, t) =

∑n
i=0 xi(t)z

i,

Y (z, t) =
∑m

j=0 yj(t)z
j be any two left polynomial time ad-

vance operators polynomials with time-varying coefficients
xi(t) and yj(t), define the algebraic product between them
as X(z, t) · Y (z, t) =

∑n
i=0

∑m
j=0 xi(t)yj(t)z

i+j . Obviously

X(z, t) · Y (z, t) = Y (z, t) ·X(z, t).

3 Discrete indirect MRAC with nor-
malized adaptive law

In this section, the design of discrete indirect MRAC
with normalized adaptive law is presented. It is easy to
denote (1) as the following linear parametric model

ξ(t) = θ∗Tp φφφ(t) (3)

where ξ = (zn/Λp(z))y, θ∗p = [b∗m, · · · , b∗0, a
∗
n−1, · · · , a∗0]

T,

φφφ = [(αT
m(z)/Λp(z))u, −(αT

n−1(z)/Λp(z))y]T, Λp(z) is an
arbitrary monic stable polynomial of degree n and 1/Λp(z)

is analytic in |z| ≥
√

δ for the same δ as in Remark
1. Since θ∗p is unknown, we first give an adaptive esti-
mation algorithm for θ∗p. Let θp(t) = [bm(t), · · · , b0(t),

an−1(t), · · · , a0(t)]
T be the estimate of θ∗p at time t, t ∈

{0, 1, 2, · · · }, define the normalized estimation error ε as

ε(t) =
ξ(t)− θT

p (t)φφφ(t)

m2(t)
=

−θ̃p(t)Tφφφ(t)

m2(t)

m2(t) = 1 + φφφT(t)φφφ(t) (4)

where θ̃p(t) = θp(t) − θ∗p. The estimation algorithm for
θp(t) is given by

θp(t + 1) = θ̄p(t + 1) + ∆(t + 1)

θ̄p(t + 1) = θp(t) + Γφφφ(t)ε(t)

∆(t + 1) =





0, θ̄p1(t + 1)sgn(kp) ≥ kp

τ 1

τ2

(
kpsgn(kp)− θ̄p1(t + 1)

)
, otherwise

(5)

where Γ = diag{λ1, · · · , λn+m+1} is an adaptive gain ma-
trix with 0 < λi < 2, i = 1, 2, · · · , n + m + 1, θ̄p1(t + 1) is
the first element of θ̄p(t + 1), τ 1 is the first column of Γ,
τ2 is the first element of τ 1. The estimation algorithm (5)
has the following properties.

Lemma 1. The estimation algorithm (5) guarantees
that for all t ∈ {0, 1, · · · },

1) If |θp1(0)| ≥ kp and the sign of θp1(0) is the same as

that of kp, then |θp1(t)| = |k̂p(t)| ≥ kp

2) θp(t), ε(t), ε(t)m(t) ∈ L∞
3) ∆θp(t), ε(t), ε(t)m(t) ∈ L2

where θp1(0) is the initial estimate of {θp1(t)}, θp1(t) is

the first element of θp(t), and k̂p(t) is the estimate of kp.

Obviously, θp1(t) = bm(t) = k̂p(t).
Proof. See the appendix. ¤
Remark 2. By carefully constructing (5), the plant

parameter estimation not only possesses the same proper-
ties 2)∼ 3) as those of traditional adaptive estimation algo-

rithms, but also guarantees |k̂p(t)| ≥ kp, which is essential

to avoid the possibility of division by zero in (14)∼ (16).
By (5), one can obtain the estimation polynomials

ˆ̄Zp(z, t) and R̂p(z, t) for Z̄p(s) and Rp(s), respectively,

ˆ̄Zp(z, t) = bm(t)zm + · · ·+ b0(t)

R̂p(z, t) = zn + an−1(t)z
n−1 + · · ·+ a0(t) (6)

As one does in the continuous-time case, assuming that
θ∗p is known, the controller is chosen as

u = θ∗Tc w (7)

where θ∗c = [θ∗Tc1 , θ∗Tc2 , θ∗c3, θ
∗
c4]

T, ω = [ωT
1 , ωT

2 , y, r]T,
θ∗1, θ

∗
2 ∈ Rn−1, θ3, θ4 ∈ R, ω1 = (αT

n−2(z)/Λ(z))u, ω2 =

(αT
n−2(z)/Λ(z))y, Λ(z) is an arbitrary monic stable polyno-

mial of degree n− 1 with Λ(z) = Λ0(z)Zm(z), and 1/Λ(z)

is analytic in |z| ≥
√

δ for the same δ as that of Remark
1. Without loss of generality, choose Λp(z) = Λ(z)(z + λ0)

with |λ0| <
√

δ. Using the matching equations

θ∗c4 =
km

kp

θ∗Tc1 αn−2(z)Rp(z) + (θ∗Tc2 αn−2(z) + θ∗c3Λ(z))kpZp(z) =

Λ(z)Rp(z)−Rm(z)Λ0(z)Zp(z) (8)

y = ym can be easily achieved. The existence of θ∗c can be
guaranteed by [3]. Similar to equation (6.6.24) in [3], the
controller parameters are calculated by

θ∗c4 =
km

kp
(9)

θ∗Tc1 αn−2(z) = Λ(z)− 1

kp
Z̄p(z)Q(z) (10)

θ∗Tc2 αn−2(z) + θ∗c3Λ(z) =
1

kp

(
Q(z)Rp(z)− Λ0(z)Rm(z)

)

(11)

where Q(z) is the quotient of Λ0(z)Rm(z)/R(z). Applying
(8) to the signal u/Λ(z)Rp(z), it is easy to obtain that
u − θ∗Tc1 ω1 − θ∗Tc2 ω2 − θ∗c3y = θ∗c4W

−1
m (z)y. Subtracting

both sides of this equation by θ∗c4r with r = W−1
m (z)ym

and e = y − ym, one obtains the parametric model on θθθ∗c

e = Wm(z)
1

θ∗c4

(
u− θ∗Tc ω

)
(12)
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Since θ∗p is unknown, obviously from (9)∼ (11), the con-
troller parameter θ∗c is also unknown. Hence, by (12), the
certainly equivalence adaptive control law is chosen as

u(t) = θT
c (t)ω(t) (13)

and the estimate θθθc = [θT
c1, θ

T
c2, θc3, θc4]

T is calculated by

θc4(t) =
km

k̂p(t)
(14)

θT
c1(t)αn−2(z) = Λ(z)− 1

k̂p(t)
ˆ̄Zp(z, t) · Q̂(z, t) (15)

θT
c2(t)αn−2(z) + θc3(t)Λ(z) =

1

k̂p(t)

(
Q̂(z, t) · R̂p(z, t)−

Λ0(z)Rm(z)
)

(16)

where |k̂p(t)| > 0 is guaranteed by Lemma 1 1), Q̂(z, t)

is the quotient of Λ0(z)Rm(z)/R̂(z, t). Noting Λ(z) =
Λ0(z)Zm(z), obviously,

Q̂(z, t) = qT(t)αn∗−1(z) (17)

where q(t) = [qn∗−1(t), · · · , q1(t), q0(t)]
T and qn∗−1 = 1.

By Lemma 1, one gets the following properties on θθθc(t).
Lemma 2. θθθc(t) and q(t) have the following properties

for all t ∈ {0, 1, 2, · · · },
1) q(t) ∈ L∞, ∆q(t) ∈ L2;
2) θθθc(t) ∈ L∞, ∆θθθc(t) ∈ L2.
Proof. See the appendix. ¤

4 Main results

Define a fictitious normalizing signal mf as

m2
f (t) = 1 + ‖ut−1‖22δ + ‖yt−1‖22δ (18)

where ‖(·)t‖2δ is the same as defined in Notation 1. The re-
lationship properties between mf and all the signals in the
closed-loop plant are established by the following lemma.

Lemma 3. For the discrete indirect MRAC scheme
consisting of plant (1), the reference model (2), the adap-
tive law (5), and the control law (13) with θc satisfying
(14)∼ (16), if Assumptions 1∼ 3 and M1 hold, then

1) ω1(t)/mf (t), ω2(t)/mf (t), ‖(ω1)t−1‖2δ/mf (t),
‖(ω2)t−1‖2δ/mf (t), ‖ωt−1‖2δ/mf (t) ∈ L∞;

2) u(t)/mf (t), y(t)/mf (t), ω(t)/mf (t), ωp(t)/mf (t),
‖(ωp)t−1‖2δ/mf (t), W (z)ω(t)/mf (t), W (z)ωp(t)/mf (t),

W (z)θ̃
T

c (t)ωp(t)/mf (t), φφφ(t)/mf (t), W (z)φφφ(t)/mf (t),
m(t)/mf (t) ∈ L∞, where W (z) is any proper function

that is analytic in |z| ≥
√

δ for the same δ as above,

ωp = [ω1, ω2, y, W−1
m (z)y]T, θ̃c = θc − θ∗c .

Proof. By Lemma 2, this lemma can be proved in a
similar way of Lemma 6 in [8]. ¤

We state the main results in this paper.
Theorem 1. Consider the indirect MRAC scheme with

the normalized adaptive law consisting of the discrete-time
plant (1), the reference model (2), the adaptive law (5),
and the control law (13) with θc satisfying (14)∼ (16). If
Assumptions 1∼ 3 and M 1 hold, then

1) all the signals of the closed-loop plant are uniformly
bounded;

2) limt→∞ e(t) = 0.
Proof. This theorem is proved by four steps.
Step 1. Express the input and output of the closed-loop

plant in terms of θ̃
T

c ω.

From (2), (12), and (13), it follows that

y = ym + e = Wm(z)
(
r +

1

θ∗c4
θ̃

T

c ω
)

(19)

where θ̃c = θc−θ∗c . Using (1), (19), and Assumptions 1, 2,
and M1, and Remark 1, the input of the closed-loop plant
is given by

u = G−1
p (z)Wm(z)

(
r +

1

θ∗c4
θ̃

T

c ω
)

(20)

and G−1
p (z)Wm(z) is proper and analytic in |z| ≥

√
δ.

Therefore, applying Lemma 3 in [8] to (19) and (20), it

follows that ‖yt−1‖2δ ≤ c + c‖(θ̃T

c ω)t−1‖2δ and ‖ut−1‖2δ ≤
c + c‖(θ̃T

c ω)t−1‖2δ, which one substitutes in (18) to obtain

m2
f (t) ≤ c + c‖(θ̃T

c ω)t−1‖22δ (21)

Step 2. Use Lemmas 1∼ 3, Lemmas 3∼ 5 in [8] to

bound ‖θ̃T

c ω‖ from above.
One applies (15) to the signal

(
Wm(z)/Λ(z)

)
u, and (16)

to
(
Wm(z)/Λ(z)

)
y to obtain

θT
c1Wm(z)ω1 =

Wm(z)u− 1

k̂p

( ˆ̄Zp(z, t) · Q̂(z, t)
)Wm(z)

Λ(z)
u (22)

θT
c2Wm(z)ω2 + θc3Wm(z)y =

1

k̂p

(
Q̂(z, t) · R̂p(z, t)− Λ0(z)Rm(z)

)Wm(z)

Λ(z)
y (23)

where ω1 and ω2 are defined in (7) below. Defining θc0 =
[θT

c1, θ
T
c2, θc3]

T and ω0 = [ωT
1 , ωT

2 , y]T, combining (22) and
(23) leads to

θT
c0Wm(z)ω0 =Wm(z)u− 1

k̂p

( ˆ̄Zp(z, t) · Q̂(z, t)
)Wm(z)

Λ(z)
u+

1

k̂p

(
Q̂(z, t) · R̂p(z, t)− Λ0(z)Rm(z)

)Wm(z)

Λ(z)
y (24)

Repeating the same manipulation to (10) and (11), one has

θ∗Tc0 Wm(z)ω0 = Wm(z)u− 1

kp

(
Z̄p(z)Q(z)

)Wm(z)

Λ(z)
u +

1

kp
· (Q(z)Rp(z)− Λ0(z)Rm(z)

)Wm(z)

Λ(z)
y

(25)

where θ∗c0 = [θ∗Tc1 , θ∗Tc2 , θ∗c3]
T. Setting θ̃c0 = θc0 − θ∗c0 and

subtracting (25) from (24), it follows that

θ̃
T

c0Wm(z)ω0 = e1 + e2 + e3 (26)

obviously,

e1 = − 1

k̂p

( ˆ̄Zp(z, t) · Q̂(z, t)
)Wm(z)

Λ(z)
u +

1

k̂p

(
Q̂(z, t) · R̂p(z, t)

)Wm(z)

Λ(z)
y (27)

e2 = − 1

k̂p

Λ0(z)Rm(z)

Λ(z)
Wm(z)y +

1

kp

Λ0(z)Rm(z)

Λ(z)
Wm(z)y

= −θ̃c4y (28)

e3 =
Z̄p(z)Q(z)

kpΛ(z)
Wm(z)u− Q(z)Rp(z)

kpΛ(z)
Wm(z)y = 0 (29)
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by (1), (2), (9), (14), and Λ(z) = Λ0(z)Zm(z), θ̃c4 = θc4 −
θ∗c4. Substituting (27)∼(29) into (26) leads to

e1 = θ̃
T

c Wm(z)ωp (30)

where ωp = [ωT
0 , W−1

m (z)y]. Obviously, θ̃
T

c ω = θ̃
T

c0ω0 +

θ̃c4r, θ̃c0 = θc0 − θ∗c0, and from (19), r = W−1
m (z)y −

(1/θ∗c4)θ̃
T

c ω is obtained, therefore

θ̃
T

c ω =
θ∗c4
θc4

θ̃
T

c ωp (31)

From (31), Lemma 5 in [8] and assumption M 1, by choosing

a0 to satisfy |a0| ≤
√

δ/2, one concludes that

[θ̃
T

c ω](t− 1) =
θ∗c4

θc4(t− 1)
[θ̃

T

c ωp](t− 1) =
θ∗c4

θc4(t− 1)
·

(
F1(z, a0)

1

z
[θ̃

T

c ωp](t− 1) + F (z, a0)[θ̃
T

c ωp](t− 1)
)

(32)

and ‖F1(z, a0)‖∞δ ≤ ca0, ‖F (z)W−1
m (z)‖∞δ ≤ can∗

0 , where

c is a constant independent of a0, F (z, a0) = an∗
0 /(z+a0)

n∗ ,
F1(z, a0) = (1 − F (z, a0))z. Applying Lemma 4 in [8] and
(30), it leads to

[θ̃
T

c ωp](t− 1) = W−1
m (z)(θ̃

T

c (t− 1)Wm(z)[ωp](t− 1) +

Wc(z)[Wb(z)z[ωT
p ](z − 1)[θ̃c]](t− 1)) = W−1

m (z) ·
(e1(t− 1) + Wc(z)[Wb(z)z[ωT

p ](z − 1)[θ̃c]](t− 1)) (33)

for any t ≥ 1, where Wc(z) and Wb(z) are strictly proper
and have the same poles as those of Wm(z). Substituting
(33) in (32), one gets

[θ̃
T

c ω](t− 1) =
θ∗c4

θc4(t− 1)

(
F1(z, a0)

1

z
[θ̃

T

c ωp](t− 1) +

F (z, a0)W
−1
m (z)

(
e1(t− 1) + Wc(z) ·

[
Wb(z)z[ωT

p ](z − 1)[θ̃
T

c ]
]
(t− 1)

))
(34)

It can be noted that (9), (14), and k̂p(t − 1) is the first

element of θp(t − 1); therefore, |θ∗c4/θc4(t− 1)| = |k̂p(t −
1)/kp| < c by Lemma 1 2). It follows from Lemmas 3 and

5 in [8], ‖F1(z, a0)‖∞δ ≤ ca0 and ‖FW−1
m ‖∞δ ≤ can∗

0 that

‖(θ̃T

c ω)t−1

∥∥
2δ
≤ ca0‖(θ̃T

c ωp)t−1‖2δ + can∗
0

(‖(e1)t−1‖2δ +

‖(Wb(z)z[ωT
p ](z − 1)[θ̃c])t−1‖2δ

)
, where c is a constant

independent of a0. By the definition of Wb(z) and
Lemma 3 2), Wb(z)z[ωT

p ](t − 1)/mf (t − 1) ∈ L∞,

therefore, ‖(Wb(z)z[ωT
p ](z − 1)[θ̃c])t−1‖2δ ≤ c‖(((z −

1)[θ̃c])mf )t−1‖2δ. Because θ̃c ∈ L∞ by Lemma 2 and

Lemma 3, it follows that ‖(θ̃T

c ωp)t−1‖2δ ≤ c‖(ωp)t−1‖2δ ≤
cmf (t). Hence,

‖(θ̃T

c ω)t−1‖2δ ≤ ca0mf (t) + can∗
0

(‖(e1)t−1‖2δ +

‖(((z − 1)[θ̃c])mf )t−1‖2δ

)
(35)

Now, let us consider ‖(e1)t−1‖2δ in (35). Using the def-
inition of algebraic product, (6), Λp(z) = Λ(z)(z + λ0) in

(8) above and (17), one can get

( ˆ̄Zp(z, t) · Q̂(z, t))
Wm(z)

Λ(z)
u =

n∗−1∑
j=0

qj(t)
ˆ̄Zp(z, t)

Wm(z)zj(z + λ0)

Λp(z)
u (36)

(Q̂(z, t) · R̂p(z, t))
Wm(z)

Λ(z)
y =

n∗−1∑
j=0

qj(t)R̂p(z, t)
Wm(z)zj(z + λ0)

Λp(z)
y (37)

Noting that

R̂p(z, t)
Wm(z)zj(z+λ0)

Λp(z)
y− ˆ̄Zp(z, t)

Wm(z)zj(z+λ0)

Λp(z)
u=

θ̃
T

p Wm(z)zj(z + λ0)φφφ (38)

by (1) and φφφ in (3) below. With (4), −εm2 = θ̃
T

p φφφ.

Noting that Wm(z)zj(z + λ0) is at least proper for any
j = 0, 1, · · · , n∗ − 1, by Lemma 4 in [8], one gets

θ̃
T

p (t)Wm(z)zj(z + λ0)φφφ = −Wm(z)zj(z + λ0)εm
2 −

Wmcj(z)[(Wmbj(z)zφφφT)(z − 1)θ̃p] (39)

where Wmcj(z) and Wmbj(z) are strictly proper and have
the same poles as those of Wm(z)zj(z + λ0). Substituting
(36)∼ (39) into (27), one obtains

e1 =
1

k̂p

(
n∗−1∑
j=0

qj

(
−Wm(z)zj(z + λ0)εm

2 −

Wmcj(z)[(Wmbj(z)zφφφT)(z − 1)θ̃p]
))

(40)

Using Lemma 3 in [8] and Lemmas 1∼ 3, and taking the
L2δ norm on both sides of (40), it follows that

‖(e1)t−1‖2δ ≤ c(‖(εmmf )t−1‖2δ + ‖(mf (z − 1)θ̃p)t−1‖2δ)
(41)

Combining (35) and (41) leads to

‖(θ̃T

c ω)t−1‖2δ ≤ ca0mf (t) + c‖(g̃mf )t−1‖2δ (42)

and g̃ ∈ L2 by Lemma 1 and Lemma 2, where g̃2 =

a2n∗
0 (ε2m2 + |(z − 1)θ̃p|2 + |(z − 1)θ̃c|2).
Step 3. Use discrete-time Bellman-Gronwall Lemma in

[1] to prove conclusion 1).
Using (42) in (41), one has m2

f (t) ≤ c+ c‖(g̃mf )t−1‖22δ +

ca2
0m

2
f (t). Following the above proof, one can see that

the coefficient c of the third term on the right-hand side
of the inequality is independent of a0. Thus, by choos-
ing appropriately small a0 such that ca2

0 < 1/2, m2
f (t) ≤

c + c
∑t−1

i=0 δt−i−1g̃2(i)m2
f (i) can be obtained. Using the

discrete-time Bellman-Gronwall Lemma in [1] and g̃ ∈ L2,
following the similar discussion from (34) to mf ∈ L∞ in
[10], mf (t) ∈ L∞ holds, then conclusion 1) holds by Lemma
3.

Step 4. Establish the convergence of the tracking error.
By (19), (31), e = y − ym and Lemma 4 in [8], one has

e = Wm(z)

[
1

θ∗c4
θ̃

T

c ω

]
= Wm(z)

[
1

θc4
θ̃

T

c ωp

]
=

1

θc4
Wm(z) ·

[θ̃
T

c ωp] + Wc(z)
[
Wb(z)z[θ̃

T

c ωp](z − 1)
[ 1

θc4

]]
(43)
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Substituting (33) at time t in (43) leads to

e =
1

θc4

(
e1 + Wc(z)[(Wb(z)z[ωT

p ])(z − 1)[θ̃c]]
)

+

Wc(z)
[
(Wb(z)z[θ̃

T

c ωp])(z − 1)
[ 1

θc4

]]
(44)

Since εm, (z − 1)θ̃p ∈ L2, 1/k̂p, qj , m, Wmbjzφφφ
T ∈ L∞ for

j = 0, 1, · · · , n∗ − 1, Wm(z)zj(z + λ0) and Wmcj are sta-
ble and at least proper for j = 0, 1, · · · , n∗ − 1, by (40),
e1 ∈ L2 by equation (2.249) in [1]. Because 1/θc4(t) =

k̂p(t)/km ∈ L∞ and ∆θc4(t) ∈ L2 for any t ≥ 0, one has

(z − 1)[
1

θc4
](t) =

1

θc4(t + 1)
− 1

θc4(t)
=

−(z − 1)θc4(t)

θc4(t + 1)θc4(t)
∈

L2, which, together with e1, (z − 1)θ̃c ∈ L2, Wb(z)z[ωT
p ],

Wb(z)z[θ̃
T

c ωp] ∈ L∞ by Lemma 3 2), and Wc(z) being sta-
ble, means that e ∈ L2. Hence, limt→∞ e(t) = 0. ¤

5 Conclusions

In this paper, as its continuous counterpart in [3], we
consider a systematic stability and convergence analysis ap-
proach to the discrete indirect MRAC scheme with normal-
ized adaptive law for a class of discrete-time systems. Fu-
ture work will be directed at the application of this method-
ology to discrete-time systems with unmodeled dynamics
and multivariable discrete-time systems.
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Appendix

Proof of Lemma 1.
1) We prove the conclusion by considering two cases of

sgn(kp).
Case 1.1 If kp > 0, we consider two cases.
a) When θ̄p1(t)sgn(kp) ≥ kp, by (5), then ∆(t) = 0, and

then θp1(t) = θ̄p1(t) ≥ kp.

b) When θ̄p1(t)sgn(kp) < kp, from the definition of τ 1

and τ2, (5) and kp > 0, θp1(t) = θ̄p1(t) + (kpsgn(kp) −
θ̄p1(t)) = kpsgn(kp) = kp follows.

a) and b) prove that θp1(t) ≥ kp for all t ∈ {1, 2, · · · }
Case 1.2 If kp < 0, we consider the same cases.
a) When θ̄p1(t)sgn(kp) ≥ kp, then ∆(t) = 0, and then

θp1(t) = θ̄p1(t) ≤ −kp.

b) When θ̄p1(t)sgn(kp) < kp, similarly, θp1(t) =

kpsgn(kp) = −kp.

a) and b) imply that θp1(t) ≤ −kp for all t ∈ {1, 2, · · · }.
Combining Case 1.1 and Case 1.2, conclusion 1) can be

proved.
2) From the definition of ∆(t + 1) in (5), we prove that

I = 2∆T(t + 1)φφφ(t)ε(t) + 2θ̃
T

p (t)Γ−1∆(t + 1) +

2∆T(t + 1)Γ−1∆(t + 1) ≤ 0 (A1)

holds for all t ∈ {1, 2, · · · } from two cases.
Case 2.1 If θ̄p1(t + 1)sgn(kp) ≥ kp, then ∆(t + 1) = 0,

and then I = 0.
Case 2.2 If θ̄p1(t+1)sgn(kp) < kp, defining f1(t+1) =

kpsgn(kp)− θ̄p1(t + 1), from the definition of τ 1, τ2 and Γ,

and (5), one has

I = 2∆T(t + 1)Γ−1 [
θ̄p(t + 1)− θp(t)

]
+ 2∆T(t + 1) ·

Γ−1θ̃p(t) + 2∆T(t + 1)Γ−1∆(t + 1) =

2

λ1
f1(t + 1)

[
θ̄p1(t + 1)− θp1(t)

]
+

2

λ1
f1(t + 1)θ̃p1(t) +

2

λ1
f2
1 (t + 1) =

2

λ1
f1(t + 1)

[
θ̄p1(t + 1)− θ∗p1 + f1(t + 1)

]
(A2)

where θ∗p1 is the first element of θ∗p, θ̃p1(t) = θp1(t) − θ∗p1.
Let us consider the sign of kp.

a) If kp > 0, from |kp| ≥ kp, the definition of f1 and

θ∗p1 = bm = kp, it follows that f1(t + 1) > 0, θ̄p1(t + 1) −
θ∗p1 +f1(t+1) = kp−θ∗p1 = kp−kp ≤ 0, which implies that

I ≤ 0 from (A2).
b) If kp < 0, one can obtain that f1(t+1) = −kp−θ̄p1(t+

1) < 0, θ̄p1(t+1)−θ∗p1+f1(t+1) = −kp−θ∗p1 = −kp−kp ≥ 0

from |kp| ≥ kp and the definition of f1(t + 1), therefore,
I ≤ 0.

a) and b) prove that I ≤ 0 for Case 2.2.
After proving (A1), by (4), the time increment of

V (θ̃p(t)) = θ̃
T

p (t)Γ−1θ̃p(t) along (5) satisfies

V (θ̃p(t + 1))− V (θ̃p(t)) =

(θ̃p(t + 1) + θ̃p(t))TΓ−1(θ̃p(t + 1)− θ̃p(t)) ≤

−
(

2− φφφT(t)Γφφφ(t)

m2(t)

)
ε2(t)m2(t) + I ≤

−α1ε
2(t)m2(t) (A3)

where α1 = 2 − maxi=1,2,··· ,n+m+1(λi) > 0 by 0 < λi <

2, which implies that θ̃p(t), θp(t) ∈ L∞. From (4) and
θp(t) ∈ L∞, one has ε(t), ε(t)m(t) ∈ L∞.

3) By (A3), one has ε(t)m(t) ∈ L2. Since |m(t)| ≥ 1,
then ε(t) ∈ L2. Next, we prove that ∆θp(t) ∈ L2 holds.
From the definition of ∆(t + 1) in (5), we first prove that

J = 2∆T(t + 1)
[(

θ̄p(t + 1)− θp(t)
)

+ ∆(t + 1)
] ≤ 0

(A4)
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for any t ∈ {1, 2, · · · } from two cases.
Case 3.1 If θ̄p1(t + 1)sgn(kp) ≥ kp, then ∆(t + 1) = 0,

and then J = 0.
Case 3.2 If θ̄p1(t +1)sgn(kp) < kp, similar to the proof

of (A2), one has

J = 2f1(t + 1)[(θ̄p1(t + 1)− θp1(t)) + f1(t + 1)] =

2f1(t + 1)(kpsgn(kp)− θp1(t)). (A5)

Let us consider the sign of kp. When kp > 0, by conclusion
of Case 1.1, one has θp1(t) ≥ kp, thus, kpsgn(kp)− θp1(t) =

kp − θp1(t) ≤ 0, while f1(t + 1) = kp − θ̄p(t + 1) > 0 from

θ̄p1(t+1)sgn(kp) < kp and kp > 0, hence J ≤ 0. When kp <

0, by conclusion of Case 1.2, one has kpsgn(kp)− θp1(t) =
−kp − θp1(t) ≥ 0, while f1(t + 1) = −kp − θ̄p1(t + 1) < 0,
thus J ≤ 0.

Case 3.1 and Case 3.2 prove (A4), which together with
(4), (5), and εm ∈ L2, leads to

∞∑
t=0

∆θT
p (t)∆θp(t) =

∞∑
t=0

(Γφφφ(t)ε(t) + ∆(t + 1))T (Γφφφ(t)ε(t) + ∆(t + 1)) ≤
∞∑

t=0

(
φφφT(t)Γ2φφφ(t)

m2(t)
ε2(t)m2(t) + 2∆T(t + 1) ·

( (
θ̄p(t + 1)− θp(t)

)
+ ∆(t + 1)

)) ≤

max
i=1,2,··· ,n+m+1

{λ2
i }

∞∑
t=0

ε2(t)m2(t), (A6)

which implies that ∆θp ∈ L2. ¤
Proof of Lemma 2.
To further simplify (15) and (16), express

Λ(z) = zn−1 + λTαn−2(z) (A7)

Λ0(z)Rm(z) = zn+n∗−1 + ¯̄rT
1 ᾱ(z) + ¯̄r2z

n−1 +

¯̄rT
3 αn−2(z) (A8)

ˆ̄Zp(z, t) · Q̂(z, t) = k̂p(t)zn−1 + αT(t)αn−2(z) (A9)

Q̂(z, t) · R̂p(z, t) = zn+n∗−1 + ¯̄β
T

1 (t)ᾱ(z) + ¯̄β2(t)z
n−1 +

¯̄β
T

3 (t)αn−2(z) (A10)

where ᾱ(z) = [zn+n∗−2, · · · , zn]T, ¯̄r1 = [rn+n∗−2, · · · ,
rn]T, ¯̄r2 ∈ R1, ¯̄r3 = [rn−2, · · · , r0]

T, α(t) = [αn−2(t),

· · · , α0(t)]
T, ¯̄β1(t) = [βn+n∗−2(t), · · · , βn(t)]T, ¯̄β2(t) ∈ R1,

¯̄β3(t) = [βn−2(t), · · · , β0(t)]
T. Since Q̂(z, t) is the quo-

tient of Λ0(z)Rm(z)/R̂p(z, t), by (6), (17), (A9) and the

polynomial′s division, for each fixed t, qn∗−1(t) = 1,

qi(t) = rn+i −
∑n∗−1

j=i+1 αn+i−j(t)qj(t), i = 0, 1, · · · , n∗ −
1. When i = n∗ − 2, for any t ∈ {0, 1, 2, · · · },
qn∗−2(t) = rn+n∗−2−an−1(t)qn∗−1(t) = rn+n∗−2−an−1(t),
∆qn∗−2(t) = −∆an−1(t), which implies that qn∗−2(t) ∈
L∞ and ∆qn∗−2(t) ∈ L2 using Lemma 1. Repeating the
similar arguments as above, it follows that for any t ∈
{0, 1, 2 · · · }, qi(t) ∈ L∞, ∆qi(t) ∈ L2, i = 0, 1, · · · , n∗ − 1.
By (6), (17), and (53), one has αi(t) =

∑
l+j=i ql(t)bj(t),

i = 0, 1, · · · , n − 2, which together with ql(t), bj(t) ∈ L∞
and ∆ql(t), ∆bj(t) ∈ L2 implies that αi(t) ∈ L∞, ∆αi(t) =
αi(t+1)−αi(t) =

∑
l+j=i(ql(t+1)∆bj(t)+∆ql(t) ·bj(t)) ∈

L2, and thus α(t) ∈ L∞, ∆α(t) ∈ L2. Similarly, from (6),

(17) and (A10) it follows that ¯̄βi(t) ∈ L∞, ∆ ¯̄βi(t) ∈ L2,

i = 1, 3, ¯̄β2(t) ∈ L∞, ∆ ¯̄β2(t) ∈ L2.
Substituting (A7)∼ (A10) into (15) and (16) and equat-

ing the coefficients of the powers of z on both sides of
these two equations, respectively, it is easy to obtain that

for any t ∈ {0, 1, 2 · · · }, θc1(t) = λ − α(t)

k̂p(t)
, θc2(t) =

¯̄β3(t)− ¯̄r3 + λ(¯̄r2 − ¯̄β2(t))

k̂p(t)
, θc3(t) =

¯̄β2(t)− ¯̄r2

k̂p(t)
, θc4(t) =

km

k̂p(t)
. From 1) of Lemma 1, one knows that |k̂p(t)| > kp

for any t ≥ 0, which together with α(t) ∈ L∞ implies that

θc1(t) ∈ L∞. Because ∆k̂p(t) = ∆θp1(t) and ∆α(t) ∈ L2,

∆θc1(t) =
α(t)∆k̂p(t)

k̂p(t + 1) · k̂p(t)
− ∆α(t)

k̂p(t + 1)
∈ L2. Using the

same arguments as above, one can show that θc2(t) ∈ L∞,
∆θc2(t) ∈ L2, θci(t) ∈ L∞, ∆θci(t) ∈ L2, i = 3, 4, that is,
θc(t) ∈ L∞, ∆θc(t) ∈ L2. ¤
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