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Stabilizability May Be Sufficient
for Robustly Stabilizing an

Interval Plant
WU Qing-He1

Abstract This paper deals with the robust stabilization prob-
lem for an interval plant family P(s, δ). It is shown that an
interval plant may be robustly stabilized by a single controller
C(s) if every member plant of P(s, δ) is stabilizable.

Key words Interval plant family, robust stabilization, stabi-
lizability radius, stability radius

1 Introduction
Consider the plant family

P(s, δ) :=

{
P (s) : P (s) =

N0(s) + ∆N (s)

D0(s) + ∆D(s)

}

where N0(s) =
∑n

j=0 bjs
j and D0(s) =

∑n
i=0 ais

i are poly-
nomials with constant coefficients, and

∆N (s) = wN,0δN,0 + wN,1δN,1s + · · ·+
wN,n−1δN,n−1s

n−1 + wN,nδN,nsn

∆D(s) = wD,0δD,0 + wD,1δD,1s + · · ·+
wD,n−1δD,n−1s

n−1 + wD,nδD,nsn

are polynomials with uncertain coefficients. It is assumed
that the uncertain parameter vector δ = [δT

N δT
D]T with

δα = [ δα,n δα,n−1 · · · δα,1 δα,0]
T (α = N, D) is ∞-norm

bounded, i.e. ‖δ‖∞ = maxi{|δα,i|} ≤ δ for some δ > 0.
We denote by Ω̄δ the set of all δ such that ‖δ‖∞ ≤ δ. It is
clear that P(s, δ) with δ ∈ Ω̄δ is the interval plant family

P(s, δ) =

n∑
j=0

[b−j , b+
j ]sj

n∑
i=0

[a−i , a+
i ]si

where for j, i = 1, 2, . . . , n, b−j = bj − wN,jδ , b+
j = bj +

wN,jδ, a−i = ai − wD,iδ , and a+
i = ai + wD,iδ. The

robust stabilization problem (RSP) associated with P(s, δ)
is to find a single proper controller C(s), whose structure
and parameters are invariant, so that the negative feedback
system composed of P(s, δ) and C(s) is internally stable for
all P (s) ∈ P(s, δ) such that δ ∈ Ω̄δ.

For a given norm bound δ, Chapellat and
Bhattacharyya[1] showed that a given controller sta-
bilizes the whole interval plant family if it stabilizes its
32 edge plants, which can be viewed as a special case of
the result of [2]. Barmish et al. further showed that when
the controller is of first order, to verify if the controller
stabilizes the interval plant family, one only needs to
check if it stabilizes at most 16 vertex plants of the plant
family[3]. However, all these approaches have not provided
any solution to the substantial question if a given RSP is
solvable, which requires that some necessary solvability
conditions should be debuced for the RSP.
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An apparent necessary solvability condition is that the
plant family P(s, δ) is stabilizable; that is, every member
plant in P(s, δ) is free of unstable pole-zero cancellation.
A more restrictive necessary condition for the RSP is that
every plant pair {P(s, δ1) , P(s, δ2)} formed by any two
uncertainties δ1, δ2 ∈ Ω̄δ must be simultaneously stabiliz-
able because of the requirement that the controller is single.
However, in a recent paper Wu et al. showed that the si-
multaneous stabilizability of every plant pair is equivalent
to the stabilizability of P(s, δ)[4]. Because necessary and
sufficient solvability condition for the simultaneous stabi-
lization of n plants cannot be obtained as long as n ≥ 3,
the stabilizability of P(s, δ) is the most unrestrictive nec-
essary solvability condition for RSP that can be obtained
up to now.

The purpose of this paper is to further investigate if the
available necessary solvability condition for RSP, i.e. the
stabilizability, is possibly also sufficient for an RSP to be
solvable. The investigation will be accomplished in three
steps. In the first step, the maximum norm bound of the
uncertainty for the corresponding P(s, δ) to be stabilizable,
called the stabilizability radius of P(s, δ), will be calcu-
lated. In the second step, a controller C(s) is designed
to stabilize the nominal plant P0(s), and the stability ra-
dius of the closed-loop system will be calculated, which is
a function of the controller parameters with the stabiliz-
ability radius being its upper bound. In the third step, the
controller parameters will be adjusted to see if the upper
bound can be achieved. For the sake of simplicity, all the
steps will be illustrated using a numerical example. The
investigation shows that the stability radius of the closed-
loop system and the stabilizability radius can be equal even
for the simplest P -controller.

2 Main results

Consider the plant family P(s, δ) =
N0(s) + ∆N (s)

D0(s)
with

N0(s) = s5 + 7s4 + 19s3 + 27s2 + 20s + 6

D0(s) = (s2 + 3.76902)(s3 − 3s2 + 3s− 2)

∆N (s) = wN,5δN,5s
5 + wN,4δN,4s

4 + wN,3δN,3s
3+

wN,2δN,2s
2 + wN,1δN,1s + wN,0δN,0

(1)

where wN,5 = 0.1, wN,4 = 5, wN,3 = 2, wN,2 = 4,
wN,1 = 1, and wN,0 = 1 are the uncertainty weight-
ings, δ = [δN,5 δN,4 δN,3 δN,2 δN,1 δN,0]

T with
‖δ‖∞ = maxj{|δN,j | , j = 0, 1, 2, 3, 4, 5} ≤ δ for some pos-
itive number δ is the uncertain parameter vector. We are
interested in the problem to find a controller C(s), as simple
as possible, to robustly stabilize the interval plant P(s, δ)
for some positive number δ such that P(s, δ) is stabilizable.

For P(s, δ) to be stabilizable, its nominal value P0(s) =

P(s,0) =
N0(s)

D0(s)
must be stabilizable, which is true for the

given P0(s). Because the roots of a polynomial are contin-
uous functions of its coefficients, P(s, δ) remains stabiliz-
able for all δ such that ‖δ‖∞ is sufficiently small. However,
as ‖δ‖∞ increases, the numerator and the denominator of
P(s, δ) may share some common root s∗ in the closed right-
half complex plane C̄+. The maximum norm bound δs for
δ such that P(s, δ) avoids pole-zero cancellation in C̄+ for
all δ s.t. ‖δ‖∞ < δs is called the stabilizability radius.
Hence, ‖δ‖∞ < δs forms a necessary solvability condition
for RSP. In the first step, we calculate the stabilizability
radius. We shall use the example plant family given in
(1) to illustrate the procedure for calculating δs and the
associated worst case uncertain parameter vector δw. Be-
cause the denominator is a fixed polynomial D0(s), and

s3 − 3s2 + 3s − 2 = (s − 2)(s2 − s + 1), unstable cancella-
tions can occur only at the isolated unstable poles: s1 = 2,

s2 = j3.7690
4
= jω0, s3 = 1/2 + j

√
3/2, s4 = s̄2, and

s5 = s̄3. Furthermore, because N0(s) + ∆N (s) is a real
polynomial, for complex s,

N0(s) + ∆N (s) = 0

⇐⇒ N0(s) + ∆N (s) = N0(s̄) + ∆N (s̄) = 0

Hence, we need only consider the cancellations at s1, s2,
and s3. Denote by ρN (si) the norm of the uncertain pa-
rameter vector δN,w,i which is the minimum norm solu-
tion to N0(si) + ∆N (si) = N0(si) + wT

N (si)δ = 0, where
wT

N (s) = [wN,5s
5 wN,4s

4 wN,3s
3 wN,2s

2 wN,1s wN,0],
that is

‖δN,w,i‖∞ = inf
{
‖δ‖∞ : N0(si) + wT

N (si)δ = 0
}

Then, the stabilizability radius of P(s, δ) is given by

δs = min { ρN (s1) , ρN (s2) , ρN (s3) }
For si is real, we have ρN (si) = |N0(si)|/‖wN (si)‖1,

δN,w,i = [−1 − 1 . . . − 1 ]T · sign [N0(si)] ρN (si)

For si is complex, using the same technique developed in
[5] for the calculation of the ∞-norm stability radius of
control system with interval plant, we can develop the pro-
cedure for calculating ρN (si) and the corresponding worst
case uncertain parameter δN,w,i. We first define

n0(si)
4
=

[
ImN0(si)
ReN0(si)

]
, WT

N (si)
4
=

[
ImwT

N (si)
RewT

N (si)

]

Then N0(si) + wT
N (si)δ = 0, if and only if n0(si) +

WT
N (si)δ = 0. Denote by f1, f2, . . ., f6 the column vectors

of WT
N (si), that is, WT

N (si) = [ f1 f2 f3 f4 f5 f6 ]. If

0 < ∠f i ≤ π, let f̃ i = f i, and if π < ∠f i ≤ 2π, let f̃ i =

−f i. It is clear that there exists a δ̃ = [δ̃1 δ̃2 δ̃3 δ̃4 δ̃5 δ̃6]
T

having elements δ̃i = 1 or δ̃i = −1 such that

WT
N (si)diag

{
δ̃1 , δ̃2 , δ̃3 , δ̃4 , δ̃5

}
=

[
f̃1 f̃2 f̃3 f̃4 f̃5 f̃6

] 4
= W̃T

N (si)

with all the column vectors of W̃T
N (si) being in the upper-

half plane. Furthermore, if the vectors f̃ i1
, f̃ i2

, . . ., f̃ ik

are collinear and all the other f̃ j with j /∈ {i1 , i2 , . . . , ik}
are not collinear with f̃ i1

, we define

f̌1 = f̃ i1
+ f̃ i2

+ . . . + f̃ ik

It is clear that
f̌1 = W̃T

N (si)δ̌1 (2)

where the elements of δ̌1, denoted by δ̌1,j , are as follows

δ̌1,j =

{
1 if j ∈ {i1 , i2 , . . . , ik}
0 if j /∈ {i1 , i2 , . . . , ik} (3)

Suppose that there are q non-collinear vectors in W̃T
N (si).

Then we can define q non-collinear vectors f̌1, f̌2, . . ., f̌q

using (2). Without loss of generality, we assume that

0 < ∠f̌1 < ∠f̌2 < . . . < ∠f̌q ≤ π
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and
[
f̌1 f̌2 . . . f̌q

]
= W̃T

N (si)
[
δ̌1 δ̌2 . . . δ̌q

]
. Fi-

nally, we define the 2q column vectors f̂1, f̂2, . . ., f̂q, f̂q+1,

f̂q+2, . . ., f̂2q with

f̂1 = − (
f̌1 + f̌2 + · · ·+ f̌q

)

=
[
f̌1 f̌2 . . . f̌q

]
[−1 − 1 . . . − 1]T︸ ︷︷ ︸

δ̆1

= WT
N (si)diag

{
δ̃1 , δ̃2 , δ̃3 , δ̃4 , δ̃5 , δ̃6

}
·

[
δ̌1 δ̌2 . . . δ̌q

]
δ̆1

4
= WT

N (si)δ̂1

(4)

f̂ j = f̂ j−1 + 2f̌ j−1 = WT
N (si)δ̂j , j = 2, 3, . . . , q

f̂q+j = −f̂ j = WT
N (si)δ̂j , j = q + 1, q + 2, . . . , 2q

Using the vectors f̂ j we define the sectors

Sj =
{

z : ∠f̂ j ≤ ∠z < ∠f̂ j+1

}
(5)

where j = 1, 2, . . . , q, q + 1, q + 2, . . . , 2q. Then we have

Theorem 1. f̂ j and Sj , j = 1, 2, . . . , q, q + 1, q +
2, . . . , 2q, are defined in (4) and (5).

1) ρN (si) is the unique solution to the linear equations

ρ−1
N (si)n0(si) = f̂ j + lj

[
f̂ j+1 − f̂ j

]
(6)

where f̂ j and f̂ j+1 are chosen so that n0(si) ∈ Sj .

2) With ρN (si) and lj given in (6), δ̂j and δ̂j+1 corre-

sponding to f̂ j and f̂ j+1 in (4), the worst case uncertain
parameter vector δN,w,i is given by

δN,w,i = −
(
lj δ̂j+1 + (1− lj)δ̂j

)
ρN (si)

From the above procedure, for the numerical example we
obtain

ρN (s1) =
N0(s1)

5∑
j=0

|wN,js
j
1|

= 3.8071

δN,w,1 = −[1 1 1 1 1 1]T · 3.8071

P(s, δN,w,1) =
(s− 2)N1(s)

(s− 2)(s2 + 3.76902)(s2 − s + 1)
, with

N1(s) = 0.6193s4 − 10.7970s3 − 10.2081s2 − 8.6447s−
1.0964 ;
ρN (s2) = 1/1.0307 = 0.9702

δN,w,2 = [1 − 1 − 1 1 1 − 1]T · 0.9702

P(s, δN,w,2) =
1.0970(s2 + 3.76902)N2(s)

(s2 + 3.76902)(s− 2)(s2 − s + 1)
, with

N2(s) = s3 + 1.9589s2 + 1.3457s + 0.3228 ;
ρN (s3) = 5.4930

δN,w,3 = [5.4930 2.7465 − 5.4930 − 5.4929 − 2.7465

5.4930]T

P(s, δN,w,3) =
(s2 − s + 1)N3(s)

(s2 − s + 1)(s− 2)(s2 + 3.76902)
, with

N3(s) = 1.5493s3 + 22.2817s2 + 28.7465s + 11.4930

The stabilizability radius is thus

δs = min { 0.9702 , 3.807 , 5.4930 } = 0.9702

P(s, δ) is stabilizable as long as ‖δ‖∞ < δs.
In the second step, we stabilize the nominal plant P0(s)

and determine the stability radius δmax of the closed-loop

system which is the maximum norm bound of the un-
certain parameter vector δ s.t. the closed-loop system is
stable for all δ s.t. ‖δ‖∞ < δmax. It can be readily
checked that P0(s) can be stabilized by a proportional
controller C(s) = K as long as K > Kcr = 4.7351.
For the proportional controller, the characteristic polyno-
mial of the closed-loop system composed of P(s, δ) and
C(s) = K is F(s, δ) = D0(s) + KN0(s) + K∆N (s). Be-
cause D0(jω0) = 0 and N0(jω0) + ∆N,w,2(jω0) = 0, where
∆N,w,2(s) = wT

N (s)δN,w,2 with ‖δN,w,2‖∞ = δs, F(s, δ)
has a root pair ±jω0 for all K as long as the norm bound of
δ reaches δs. Hence, the stabilizability radius δs is an upper
bound for the stability radius δmax. Because N0(s)+∆N (s)
is an interval polynomial, F(s, δ) is an interval polynomial
as well. In this case, the stability radius δmax is given by

min
{

ρ1 , ρ2 , ρ−1
R (H−1

0 Hδ,1) , ρ−1
R (H−1

0 Hδ,2)
}

(7)

where ρ1 = |α5|/(KwN,5) = 10 + 10/K, ρ2 =
|α0|/(KwN,0) = 6 − 28.4103/K, with αi = ai + Kbi be-
ing the coefficient of the term si in the nominal polynomial
D0(s) + KN0(s), ρR(·) is the real spectral radius of a ma-
trix, H0 is the Hurwitz matrix of the nominal polynomial

f0(s)
4
= D0(s) + KN0(s), Hδ,1 and Hδ,2 are the Hurwitz

matrix defined by the uncertainty weighting KwN,i (see
[6] for details). It is clear that δmax is a function of the
controller parameters.

In the third step, we adjust the parameters of the con-
troller (in our case there is only one adjustable parameter
K) to check if the stability radius δmax is equal to the sta-
bilizability radius δs. ρ2, ρ−1

R (H−1
0 Hδ,2) and ρ−1

R (H−1
0 Hδ,2)

are depicted in Fig. 1. ρ1 = 10 + 1/K > 10 >> δs is omit-
ted. From Fig. 1, it is clear that for K > Kcr but sufficiently
small, δmax = ρ2, Because limK→∞ ρ2 = 6 as K increases,
δmax will be replaced by ρ−1

R (H−1
0 Hδ,1); iteratively, it can

be seen that when K ≥ Kcr, w = 16.19684966469630, the
stability radius δmax(K) is exactly the stabilizability ra-
dius δs. Therefore, the interval plant given in (1) can be
robustly stabilized if and only if its each member plant is
stabilizable.

Fig. 1 δmax as a function of the controller parameter K

It should be noted here that the stability radius problem
can be recast into a real structured singular value (SSV)

problem proposed by Doyle[7]. This SSV problem is of
rank one and can be reduced to the analytical form (7).
In fact, calculating the stability radius is a minimum norm
solution problem to linear equations, which always enjoys
an analytical solution. Hence, recasting the stability radius
problem into SSV without paying attention to its rank—
one feature has no theoretical and numerical advantage for
providing a solution to the problem solving. In the 7.0
and more advanced versions of Matlab, there is an SSV re-
lated function “robuststab”, which can be used to get lower
and upper bounds for the real stability radius. Using this
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function to estimate the stability radius of our illustrating
example, we get the result UpperBound: Inf, LowerBound:
0.9796 when K = 16. The lower bound for the stability ra-
dius obtained by Matlab is clearly above the theoretically
established upper bound δs even for the simplest controller.

We further note that the parametric RSP can be related
to the H∞ control problem. Because P0(s) is stabiliz-
able, there exist DC(s) and NC(s) with deg DC(s) = n,
deg NC(s) ≤ n, such that DC(s)D0(s) + NC(s)N0(s) =
G1(s)G2(s), where G1(s) and G2(s) are nth order stable
polynomials. Using the Youla parametrization of the set
of all the stabilizing controllers of P0(s)

[8], the RSP can be
transformed into the problem of finding a stable transfer

function Q(s) such that 1+
∆N (s)

G1(s)

(
NC(s)

G2(s)
−Q(s)

D0(s)

G1(s)

)

︸ ︷︷ ︸
=Φ∆N

(s)

is stable and has a stable inverse for all δN such that
‖δN‖∞ ≤ δ. Because Φ∆N (s) is stable for all Q(s) ∈ RH∞,
the latter condition is implied by ‖Φ∆N (s)‖∞ < 1, which
is equivalent to
∥∥∥∥

δ∆N,max(s)

G1(s)

(
NC(s)

G2(s)
−Q(s)

D0(s)

G1(s)

)∥∥∥∥
∞

= ‖Φ(s)‖∞ < 1

where ∆N,max(s) can be any one of the four Kharitonov
polynomials K∆N ,i(s), i = 1, 2, 3, 4, of ∆N (s) when δ = 1.

Using the Nevanlinna-Pick interpolation theory[9], we can
show that for the numerical example there exist RH∞-
functions Q(s) such that ‖Φ(s)‖∞ < 1 as long as δ < δs.
Therefore, the RSP for the interval plant (1) can be non-
conservatively reduced to an H∞-control problem.

3 Concluding remarks
Using a numerical example, the stabilizability and the

robust stabilization problems of an interval plant family
have been investigated. For the sake of simplicity, the plant
P(s, δ) is assumed to have uncertainties only in the numer-
ator. Hence, the calculation of δs is reduced to the eval-
uation of ρN (si) at a few isolated points si ∈ C̄+. P(s, δ)
has a pure imaginary pole pair, a complex conjugate pole
pair with positive real part, and a positive pole, so that the
three cases in the calculation of the stabilizability radius
δs, that is, ρN (jω), ρN (σ + jω) with σ > 0 and ω > 0 and
ρN (σ) with σ ≥ 0 can be all covered. The key steps in
the calculation of δs have been illustrated using this exam-
ple. For the general case where uncertainties exist in the
numerator and the denominator, one- or two-dimensional
sweeping is needed for finding δs = infs∗∈C̄+ ρ(s∗), where

ρ(s∗) = maxα=N,D{ρα(s∗)}, which can be completed by
any one of the various one- or two-variable graphics rou-
tines (e.g. the function “mesh” of Matlab), as long as ρα(s∗)
can be exactly determined, as has been done in this pa-
per. Hence, the problem of calculating the stabilizability
radius for an interval plant has been completely solved in
this paper. It is clear that the results of the edge and the
extreme point for checking the robust stability of interval
systems can be applied only to a stabilizable interval plant,
and the stabilizability radius provides an exact measure for
checking the stabilizability of an interval plant. The algo-
rithm for calculating δs can be easily adapted for the gen-
eral case where the coefficient vectors of N0(s)+∆N (s) and
D0(s) + ∆D(s) are affine in the ∞-norm bounded (interval
type) uncertain vectors δN and δD, respectively, subject
to suitably defined vectors wT

N (s) and wT
D(s). Moreover,

the stabilizability radius in terms of any vector norm can
be defined and calculated in a similar manner. It is clear

that stability is the most fundamental requirement for any
control system, and for a control system to be stable the
plant must be stabilizable. The stabilizability radius pro-
vides a measure for the unavoidable parameter uncertain-
ties in every control system so that the most fundamental
requirement may be fulfilled. The choice of a stable N0(s)
has also some insights. The locations of the poles and
the zeros of the nominal plant play an important role in
the two-dimensional sweeping. Indeed, if N0(s) and D0(s)
share some common root s∗ ∈ C̄+, δs = 0. It can be ex-
pected that when N0(s) and D0(s) have no common root
in C̄+, but N0(s) has a root sN ∈ C̄+ near a root sD ∈ C of
D0(s) and vice versa, δs = infs∗∈C̄+ ρ(s∗) will be achieved

at some s∗ ∈ C̄+ “between” sN and sD. For the example
illustrated, it can be expected that δs = ρN (jω0), because
the pole jω0 is nearest to the zeros of P0(s), as also has
been confirmed by the calculation. This observation may
be helpful in an effective and exact sweeping for finding δs.
δs = ρN (jω0) means that the calculation of δs is performed
on the imaginary axis. However, recent research reveals
that the stabilizability of a plant family may be also a nec-
essary and sufficient solvability condition for the associated
RSP when δs is attained in the open right half plane, and
a robust stabilizer can be designed systematically.

We hope that research interests will be invoked by the
results presented in this paper and that the parametric ro-
bust stabilization problem can be completely and analyti-
cally solved in the near future.
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