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Adaptive Observer for a Class of

Nonlinear Systems

DONG Ya-Li1 MEI Sheng-Wei2

Abstract This paper investigates the means to design the ob-
server for a class of nonlinear systems with Lipschitz conditions
and unknown parameters. A new design approach of full-order
state adaptive observer is proposed. The constructed observer
could guarantee the error of state and the error of parameter
estimation to asymptotically converge to zero. Furthermore, a
numerical example is provided to verify the effectiveness of the
observer.
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1 Introduction

The means to design adaptive observers through estima-
tion of states and parameters in linear and nonlinear sys-
tems has been actively studied in recent years[1∼10]. Some
early work on adaptive observers for linear systems can
be found in [1, 2], and the design of an adaptive observer
for a linear time invariant system has been well analyzed
in [3]. In addition, adaptive observers of nonlinear sys-
tems have attracted much attention due to their wide uses
in theory and practice. Some results on design of adap-
tive observers for nonlinear systems have been reported in
[4∼6]. However, the nonlinear systems in the above men-
tioned works must satisfy the exact linearizable condition.
The means to design robust adaptive observers for a class
of nonlinear systems was presented in [7], in which some
sufficient conditions for state estimate to converge asymp-
totically were given. A systematic algorithm for adaptive
observer synthesis for nonlinear systems was presented in
[8], and a numerically efficient interior point method was
used to solve an inequality obtaining observer gains. A
novel recursive design scheme of state observer for a class
of nonlinear systems was proposed in [9]. Using nonlinear
state transformation, a nonlinear canonical form observer
design approach for general multi-input and multi-output
systems was developed in [11]. The nonlinear observer de-
sign technique by dynamic observer error linearization was
presented in [12]. But, in all these papers[9,11,12], unknown
parameters could not be involved.

To overcome such limitations in this paper, the means to
design the adaptive observers design for a class of nonlinear
systems with unknown parameters is investigated that sat-
isfies Lipschitz condition but cannot be linearized exactly.
A new approach of adaptive observe design is proposed,
and some new sufficient conditions for estimate error to
converge to zero asymptotically are presented. Finally, a
numerical example is given to show the validity of the pro-
posed method.
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2 Problem statement

Consider the nonlinear system

ẋxx = A0xxx + f(xxx) + g(xxx)uuu + ψ(t)θθθ

y = CCC0xxx
(1)

where xxx(t) ∈ Rn, uuu(t) ∈ Rl, and y(t) ∈ R, are system
state, input, and output, respectively.

A0 =




0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0


 , CCC0 = [1 0 · · · 0], (2)

f : Rn → Rn, g : Rn → Rn × Rl are two nonlinear
functions in the triangular form

f(xxx) =




f1(x1)
f2(x1, x2)

...
fn(x1, x2, · · · , xn)




g(xxx) =




g1(x1)
g2(x1, x2)

...
gn(x1, x2, · · · , xn)




(3)

ψ(t) ∈ Rn ×Rn is a matrix of known signals, and θθθ ∈ Rn

is an unknown constant parameter. It is assumed that uuu(t)
and ψ(t) are both uniformly bounded.

System (1) is very important because its observer design
has important roles in theory and in the practical engi-
neering areas such as power system and robot. Especially
in theory, system (1) can be transformed into the following
more general affine system under some conditions. That is,
if

ξ̇ξξ = F (ξξξ) + G(ξξξ)uuu, ξξξ ∈ Rn, uuu ∈ Rl

y = H(ξξξ), y ∈ RRR
(4)

is observable, and the transformation

Φ(ξξξ) = [H(ξξξ) LF H(ξξξ) · · · Ln−1
F H(ξξξ)]T

and its inverse transformation are global Lipschitz
diffeomorphism[10], then by global coordinate transforma-
tion, system (4) can be transformed into a new system de-
scribed in

ẋxx = A0xxx + f(xxx) + g(xxx)uuu

y = CCC0xxx
(5)

where A0,CCC0, f(xxx), and g(xxx)have the same form as (2) and
(3).

System (1) has one more term ψ(t)θθθ than system (3),
where θθθ is an unknown constant parameter.

In a word, the aim of this work is to design an adaptive
observer for system (1) which guarantees that the errors
x̂xx− xxx tend to zero when t →∞.

It should be pointed that the premise of this work is
that system (1) cannot be linearized exactly by coordinate
change and feedback, otherwise the classical method could
be applied to solve the design problem of observer.
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3 Main result
For any positive real number ρ, define

Λ =




1 0 · · · 0
0 ρ−1 · · · 0
...

...
. . .

...

0 0 · · · ρ−(n−1)


 (6)

Let S be the solution of the matrix equation

AT
0 S + SA0 + S = CCCT

0 CCC0 (7)

and

K =
1

2
S−1CCCT

0 (8)

Remark 1. According to [10], S is a positive definite
matrix for any n ≥ 1.

The following assumptions are required for the design of
observer.

Assumption 1. The functions f(xxx) and g(xxx) are
globally Lipschitz, and ψ(t) is a uniformly continuously
bounded function.

Assumption 2. The input uuu stays in a bounded subset
U of R, and the unknown parameter vector θθθ is bounded.

The design of adaptive observer is stated as follows.
Theorem 1. Consider system (1) and let Assumption

1 and Assumption 2 hold. If there exist matrices E(t) ∈
Rn×n1 and G(t) ∈ Rn1such that ψT(t)ΛST = E(t)G(t)CCC0,
then for sufficiently large ρ > 0, the following conclusions
are reached.

1) The adaptive observer

˙̂xxx = A0x̂xx+ f(x̂xx)+ g(x̂xx)uuu+ψ(t)θ̂θθ(t)+ρΛ−1K[y(t)−CCC0x̂xx(t)]
(9)

˙̂
θθθ = −2EG(CCC0x̂xx− y) (10)

is convergent, x̃xx = x̂xx − xxx → 000, when t → ∞, and ψ(t)(θ̂θθ −
θθθ) → 0, when t →∞;

2) if there exist δ > 0, T > 0 such that, for all t ≥ 0 ,
the following inequality holds:

∫ t+T

t

ψT(t)ψ(t)dt ≥ δI

then the error θ̃θθ = θ̂θθ − θθθ tends to zero when t →∞.
Proof. Set coordinate transformation zzz = Λxxx, and no-

tice that
ΛA0 = ρA0Λ, CCC0Λ = CCC0

Then, system (1) becomes

żzz = ρA0zzz + Λf(Λ−1zzz) + Λg(Λ−1zzz)uuu + Λψ(t)θθθ

y = CCC0zzz
(11)

Let ẑzz = Λx̂xx. Then

˙̂zzz = ρA0ẑzz+Λf(Λ−1ẑzz)+Λg(Λ−1ẑzz)uuu+Λψ(t)θ̂θθ(t)+ρKCCC0(xxx−x̂xx)
(12)

Denote x̃xx = x̂xx− xxx, θ̃θθ = θ̂θθ − θθθ, z̃zz = ẑzz − zzz. Then

˙̃zzz = ρ(A0 −KCCC0)z̃zz + ηηη + Λψ(t)θ̃θθ (13)

where

ηηη = Λ(f(Λ−1ẑzz)−f(Λ−1zzz))+Λ(g(Λ−1ẑzz)−g(Λ−1zzz))uuu (14)

Furthermore, the Lyapunov function candidate is defined
as

V = z̃zzTSz̃zz +
1

2
θ̃θθ

T
θ̃θθ

Then, the derivative of V along the trajectories of system
(13), (10) is given by

V̇ = ρz̃zzT(AT
0 S + SA0 −CCCT

0 CCC0)z̃zz + 2z̃zzTSηηη + θ̃θθ
T ˙̃
θθθ+

2z̃zzTSΛψ(t)θ̃θθ =

ρz̃zzT(AT
0 S + SA0 −CCCT

0 CCC0)z̃zz + 2z̃zzTSηηη+

(
˙̃
θθθT + 2z̃zzTSΛψ(t))θ̃θθ

Because

˙̃
θθθ =

˙̂
θθθ = −2EG(CCC0x̂xx− y) = −2EGCCC0(x̂xx− xxx) =

−2EGCCC0Λ(x̂xx− xxx) = −2ψT(t)ΛSTz̃zz

we have

V̇ = −ρz̃zzTSz̃zz + 2z̃zzTSηηη

Because f and g are globally Lipschitz and have the tri-
angular form, we have

‖ηηη‖ ≤ β(ρ−1)‖z̃zz‖

where β(ρ−1)is a polynominal in ρ−1depending on the Lip-
schitz constants of the function f and g and on the bounds
of uuu. Then

V̇ ≤ −ρz̃zzTSz̃zz + λ(ρ−1)z̃zzTSz̃zz =

−[ρ− λ(ρ−1)]z̃zzTSz̃zz

where λ(ρ−1) is a polynominal in ρ−1.
For a sufficiently large ρ, there exists ε > 0 such that the

following inequality holds:

V̇ ≤ −εz̃zzTz̃zz.

Integrating the above inequality, we obtain

V (t) ≤ V (0)− ε

∫ t

0

z̃zzTz̃zzdt

Because V (t) ∈ L∞ and V (0) is finite, we have z̃zz ∈ L2.

From (13), we obtain ˙̃zzz ∈ L∞. Hence z̃zz ∈ L∞, z̃zz ∈ L2, ˙̃zzz ∈
L∞. By Barbalat′s lemma [3], z̃zz → 000, when t → ∞. So
when t →∞, x̃xx → 000.

Because
∫ ∞

0

˙̃zzzdt = lim
t→∞

z̃zz(t)− z̃zz(0) = −z̃zz(0)

is bounded, by (13), using the Lipschitz continuity of f

and g, ˙̃zzz is uniformly continuous. According to Barbalat′s
lemma [3], we have ˙̃zzz → 000. From (13), we obtain ψ(t)θ̃θθ → 000.

Hence, ψT(t)ψ(t)θ̃θθ → 000.
Define D(τ) =

∫ τ

t
ψT(s)ψ(s)ds. Using integration by

part, we have

∫ t+T

t
ψT(s)ψ(s)θ̃θθ(s)ds = D(t + T )θ̃θθ(t + T )−D(t)θθθ(t)−

∫ t+T

t
D(s)

˙̃
θθθ(s)ds
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Noticing D(t) = 0, we obtain

∫ t+T

t
ψT(s)ψ(s)θ̃θθ(s)ds = D(t + T )θ̃θθ(t + T )−

∫ t+T

t
D(s)

˙̃
θθθ(s)ds

(15)

Because ψT(t)ψ(t)θ̃θθ → 0, for any finite T , we have

∫ t+T

t

ψT(s)ψ(s)θ̃θθ(s)ds → 0

Moreover, ψ(τ) is bounded for any finite T and t ≤ τ ≤
t + T . Because t →∞,

˙̃
θθθ → 000, we obtain

∫ t+T

t

D(s)
˙̃
θθθ(s)ds → 000, t →∞

From (15), we obtain D(t+T )θ̃θθ(t+T ) → 000. By assumption

D(t + T ) =

∫ t+T

t

ψT(s)ψ(s)ds ≥ δI

for some δ > 0; therefore, θ̃θθ(t + T ) → 000, implying θ̃θθ(t) → 000.
¤

4 A numerical example
Consider the following nonlinear system:

ẋ1 = x2 + ϕ1(t)θ1 + 1
2
ρϕ1(t)θ2

ẋ2 = cos x2 + 2ρ−1ϕ2(t)θ1 + ϕ2(t)θ2

where ϕ1(t) = cos 10t + sin 2t, ϕ2(t) = sin 3t + cos 20t, and
ρ = 30. It is obvious that

A0 =

[
0 1
0 0

]
,CCC0 = [1 0]

From AT
0 S + SA0 + S = CCCT

0 CCC0 it follows that S =[
1 −1
−1 2

]
. Hence, we obtain KKK =

[
1

0.5

]
. The adap-

tive observer is given by

˙̂x1 = x̂2 + ϕ1(t)θ̂1 + 1
2
ρϕ1(t)θ̂2 + ρ(y −CCC0x̂xx)

˙̂x2 = cos x̂2 + 2ρ−1ϕ2(t)θ̂1 + ϕ2(t)θ̂2 + ρ2

2
(y −CCC0x̂xx)

˙̂
θ1 = ϕ1(t)(y −CCC0x̂xx)

˙̂
θ2 = 2ρ−1ϕ2(t)(y −CCC0x̂xx)

Set θ1 = 1, θ2 = 1.5, and set the initial values at

x1(0) = 50, x2(0) = 32, x̂1(0) = −24

x̂2(0) = −20, θ̂1(0) = 0.8, θ̂2(0) = 1.4

In Figs. 1 and 2, the plotted curves show the state estima-
tion errors. The results show that state estimation errors
converge to zero when t → 0.

5 Conclusion
This paper has addressed the design problem of a class

of nonlinear systems with unknown parameters, and pro-
posed a novel constructing method of full state adaptive
observers. Under certain conditions, the constructed ob-
server enables the state and parameter estimation errors to
converge to zero asymptotically. This method will find wide

applications because the studied nonlinear system cannot
be linearized exactly. In addition, a numerical example has
been presented to show the validity of the results.

Fig. 1 Error estimation x1 − x̂1

Fig. 2 Error estimation x2 − x̂2
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