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Discrete-time Direct Model Reference Adaptive Control:

A Systematic Approach
LI Jun-Ling1 XIE Xue-Jun1,2

Abstract For a class of discrete-time systems, the design and analysis of direct model reference adaptive control (MRAC) with
normalized adaptive law are investigated. We reprove the discrete-time conclusions on the Lp and L2δ relationship properties
between the input and the output, and the discrete-time swapping Lemmas 1 and 2. We also establish the properties of discrete-time
adaptive law, define the normalizing signal, and relate the signal with all the signals in the closed-loop system. Thus, the stability and
convergence properties of the discrete-time MRAC scheme are analyzed rigorously in a systematic fashion as in the continuous-time
case.
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1 Introduction

During the past two decades, for linear continuous-time
systems, the “certainty equivalence” adaptive controllers
with normalized adaptive laws have dominated the liter-
ature of adaptive control due to the simplicity of the de-
sign as well as the robustness properties in the presence of
modeling errors[1∼5]. An important feature of this class of
adaptive controllers is the use of error normalization, which
allows the complete separation of the adaptive and control
laws design. By using the properties of L2δ-norm, swapping
lemmas, and Bellman-Gronwall Lemma, a more elaborate
but yet more systematic method is given in the analysis of
adaptive control schemes.

As we know, the first analogous theoretical result for the
discrete-time systems seems to be due to Ydstie[6], who
used the internal model control (IMC) implementation for
the extended horizon adaptive control scheme. In [7], Silva
and Datta further considered the adaptive IMC in the pres-
ence of modelling errors. However, up to now, there has
been no result with respect to the design and analysis of
the discrete-time control schemes in a systematic fashion
as in the continuous-time case.

The purpose of this paper is to solve the problem in
the context of model reference adaptive control (MRAC)
for the discrete-time systems. Our main work is composed
of three parts. 1) For continuous-time systems, some im-
portant conclusions and mathematical tools in [2], such as
lemma 3.3.2, i.e., the Lp and L2δ relationship properties
between the input and the output, continuous-time swap-
ping lemmas A1 and A2, etc., are often used in the analysis
of adaptive controllers. Whereas for the discrete-time case,
these conclusions and mathematical tools are no longer ap-
plicable, so it is much difficult to extend the existing results
to the discrete-time case. Due to the utmost importance
of these conclusions and mathematical tools in the anal-
ysis of the stability of adaptive control systems, proving
them constitutes one objective of this paper. 2) By finding
the properties of discrete-time adaptive law and defining
the normalizing signal, the relationship properties between
the normalizing signal and all the signals in the closed-
loop system are established. 3) Stability and convergence
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properties of the discrete-time MRAC scheme are analyzed
rigorously in a systematic fashion as in the continuous-time
case.

2 Problem statement

Let us consider the discrete-time linear time-invariant
plant

Rp(z)y(t) = kpZp(z)u(t), t = 0, 1, 2, · · · (1)

where u(t) and y(t) ∈ R are the input and output, respec-

tively, Rp(z) = zn +
∑n−1

i aiz
i, Zp(z) = zm +

∑m−1
j bjz

j

with unknown constants kp, ai, and bj . z is used to de-
note the Z-transform variable or time-advance operator
zx(t) = x(t + 1), i.e., z−1 is the time-delay operator
z−1x(t) = x(t− 1).

The reference model is chosen as

ym(t) = Wm(z)r(t) =
1

Pm(z)
r(t), t = 0, 1, 2, · · · (2)

where r is the reference input which is assumed to be uni-
formly bounded.

The objective of MRAC is to find an control signal u(t)
for (1) such that all the signals in the closed-loop plant are
uniformly bounded and the tracking error e(t) = y(t) −
ym(t) → 0 as t →∞.

To design and analyze the MRAC scheme for (1), one
needs the following assumptions.

Plant assumptions:
A1. Zp(z) is stable, and 1/Zp(z) is analytic in |z| ≥

√
δ

for some given δ ∈ (0, 1].
A2. n, m, and the relative degree n∗ = n −m ≥ 1 are

known.
A3. The sign of kp is known, and there exists a known

constant k0
p > 0 such that |kp| < k0

p.
Reference model assumption:
M1. The monic polynomial Pm(z) is stable, and Wm(z)

is also analytic in |z| ≥
√

δ for the above δ, and the degree
of Pm(z) is n∗.

Remark 1. As explained in [2, 5], if the plant is ex-
pressed as the form (1), then the plant is realized as a state
space plant with zero initial conditions, and the results ob-
tained in this paper are free of initial conditions.

Notations. In the sequel, we sometimes denote the
time function x(t) by x, H(z)x(t) (H(z) denotes any Z-
transform operator polynomial) by H(z)x, and the discrete-

time L2δ norm ‖xxxt‖2δ = (
∑t

i=0 δt−ixxxT(i)xxx(i))1/2 by ‖xxxt‖,
and c denotes some positive constant. By the definition of
z, obviously, z[ab](t) = [ab](t+1) = a(t+1)b(t+1) for any
a(t) and b(t).
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3 Discrete direct MRAC with norma-
lized adaptive law

In this section, we give the design of discrete di-
rect MRAC with normalized adaptive law. As in the
continuous-time case, assume that all the parameters of
plant (1) are known. Then, the model reference control
structure is chosen as

u(t) = θθθ∗Twww (3)

where θθθ∗T = [θθθ∗T1 , θθθ∗T2 , θ∗3 , θ∗4 ], ωωω = [ωωωT
1 ,ωωωT

2 , y, r]T, ωωω1 =
ααα(z)

Λ(z)
u, ωωω2 =

ααα(z)

Λ(z)
y, ααα(z) = [zn−2, · · · , z, 1]T, Λ(z) is arbi-

trary Hurwitz polynomial, and its eigenvalue is in |z| ≤
√

δ
for the above δ > 0. Using the matching equations

θ∗4 = k−1
p

θθθ∗T1 ααα(z)Rp(z) +
(
θθθ∗T2 ααα(z) + θθθ∗3Λ(z)

)
kpZp(z) =

Λ(z) (Rp(z)− θ∗4Pm(z)kpZp(z)) (4)

y = ym can be easily achieved. The existence of θθθ∗ can
be guaranteed as in [5]. Using (4), r = Pm(z)ym, and
e = y − ym, one obtains the parametric model on θθθ∗:

e = Wm(z)
1

θ∗4

(
u− θθθ∗Tωωω

)
(5)

For (5), the certain equivalence adaptive control law is cho-
sen as

u = θθθTωωω (6)

where θθθ = [θθθT
1 , θθθT

2 , θ3, θ4]
T is the estimate of θ∗. Since θ∗4 is

constant, (5) can be rewritten as

$ = Wm(z)u = θθθ∗Tφφφp (7)

where φφφp = Wm(z)ωωωp, ωωωp = [ωωωT
1 ,ωωωT

2 , y, W−1
m (z)y]T.

Choosing the estimate $̂ of $ as $̂ = θθθTφφφp, the normalized
estimation error can be constructed as

ε =
$ − $̂

m2
= − θ̃θθ

T
φφφp

m2
, m2 = 1 + φφφT

p φφφp (8)

where θ̃θθ = θθθ − θθθ∗. For t = 0, 1, · · · , the adaptive law for
chosen as

θθθ(t + 1) = θθθp(t + 1) +444(t + 1), θθθ(0) = θθθ0

θθθp(t + 1) = θθθ(t) + Γφφφp(t)ε(t), (9)

444(t + 1) =

{
0 θp

4(t + 1)sgn(kp) ≥ c0
τττ1

τ2
(c0sgn(kp)− θp

4(t + 1)) otherwise

where θθθp = [θθθpT
1 , θθθpT

2 , θp
3 , θp

4 ]T, Γ = diag{λ1, · · · , λ2n} is a
gain matrix with 0 < λi < 2, i = 1, · · · , 2n, θθθ(0) is an initial
estimate of θθθ∗, c0 = 1/k0

p > 0, τττ1 is the last column of Γ,
and τ2 is the last element of τττ1. The estimation algorithm
(9) has the following properties.

Lemma 1. The adaptive update law (9) guarantees
that for all t = 0, 1, · · · ,

1) |θ4(t)| ≥ c0; 2) θθθ(t) and ε(t)m(t) ∈ L∞; 3) ε(t)m(t)
and θθθ(t + 1)− θθθ(t) ∈ L2 .

Proof. See Section 5.

4 Main results

Before giving the main results, we need some preliminar-
ies.

Lemma 2[5,8]. If u ∈ L2e and H(z) is analytic in
|z| ≥ 1, then ‖yt‖2 ≤ ‖H(z)‖∞‖ut‖2, where ‖H(z)‖∞ =
supω∈[0,2π] |H(ejω)|.

Lemma 3. Consider a discrete linear time-invariant
plant y(t) = H(z)u(t) (See equation (2.235) in [5] for more
details of the expression), where H(z) is a rational transfer
function in which z denotes the z-transform variable. If
H(z) is analytic in |z| ≥

√
δ for some δ ∈ (0, 1] and u ∈ L2e,

then for all t = 0, 1, 2, · · ·
‖yt‖2δ ≤ ‖H(z)‖∞δ‖ut‖2δ

Furthermore, if H(z) is strictly proper, then

|y(t)| ≤ ‖zH(z)‖2δ‖ut−1‖2δ

where ‖H(z)‖∞δ = supω∈[0,2π] |H(
√

δejω)|, ‖zH(z)‖2δ =
1√
2π

(
∫ 2π

0
|
√

δejωH(
√

δejω)|2dω)1/2.

Proof. See Section 5.
Lemma 4 (Discrete-time swapping Lemma 1).

Let θ̃θθ,ωωω : ZZZ+ 7→ RRRn and W (z) be a proper stable rational
transfer function with a minimal realization (A, B, C, d),
i.e., W (z) = CT(zI − A)−1B + d, d ∈ RRR. Then, for any
t = 0, 1, 2, · · ·

W (z)[θ̃θθ
T
ωωω](t) =

θ̃θθ
T
(t)W (z)[ωωω](t) + W1(z)[(W2(z)z[ωωωT])((z − 1)[θ̃θθ])](t)

where W1(z) = −CT(zI −A)−1, W2(z) = (zI −A)−1B.
Proof. See Section 5.
Lemma 5 (Discrete-time swapping Lemma 2).

Let θ̃θθ,ωωω : ZZZ+ 7→ RRRn. Then, for any t ∈ {0, 1, 2, · · · }

[θ̃θθ
T
ωωω](t) = F1(z, a0)[θ̃θθ

T
ωωω](t− 1) + F (z, a0)[θ̃θθ

T
ωωω](t)

where F (z, a0) = ak
0/(z + a0)

k, F1(z, a0) = (1−F (z, a0))z,
k ≥ 1, and a0 is any constant with |a0| < 1. Furthermore,

for |a0| ≤
√

δ/2, F1(z, a0) satisfies ‖F1(z, a0)‖∞δ ≤ ca0 for
a finite positive constant c which is independent of a0 and
any given constant δ ∈ (0, 1], where ‖(·)‖∞δ is defined in
Lemma 3.

Proof. See Section 5.
The fictitious normalizing signal mf is defined by

m2
f (t) = 1 + ‖ut−1‖22δ + ‖yt−1‖22δ (10)

The relationship properties between mf and all the signals
in the closed-loop plant are established by the following
lemma.

Lemma 6. Consider the closed-loop plant output y =

Wm(z)(r + 1
θ∗4

θ̃θθ
T
ωωω) and the control law (6). For any t ≥ 0,

one has
1) ωωωi(t)/mf (t), ‖(ωωωi)t−1‖2δ/mf (t), ‖ωωωt−1‖2δ/mf (t) ∈

L∞, i=1,2;
2) If θθθ(t) ∈ L∞, then u(t)/mf (t), y(t)/mf (t),

ωωω(t)/mf (t),ωωωp(t)/mf (t), ‖(ωωωp)t−1‖2δ/mf (t),φφφp(t)/mf (t),
m(t)/mf (t), W (z)ωωω(t)/mf (t), W (z)ωωωp(t)/mf (t) ∈ L∞,
where W (z) is any proper function that is analytic in

|z| ≥
√

δ for the given δ in A1.
Proof. See Section 5.
Remark 2. By Lemma 1, θθθ ∈ L∞ can be guaranteed,

hence conclusion 2) of Lemma 6 holds.
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We are now in a position to state the main results.
Theorem 1. Consider the direct MRAC scheme con-

sisting of (1), (2), (6), and (9). If assumptions A1 ∼ A3
and M1 hold, then

1) All the signals of the closed-loop plant are uniformly
bounded;

2) The tracking error e(t) converges to zero as t →∞.
Proof. This theorem is proved in four steps.
Step 1. Express the input and output of the closed-loop

plant in terms of θ̃θθ
T
ωωω.

From (1), (2), (5), (6), and assumptions A1, A2, and M1,
it follows that

y = Wm(z)
(
r +

1

θ∗4
θ̃θθ

T
ωωω

)
(11)

u =
Rp(z)

kpZp(z)
Wm(z)

(
r +

1

θ∗4
θ̃θθ

T
ωωω

)
(12)

and
Rp(z)

kpZp(z)
Wm(z) is stable and proper, where θ̃θθ = θθθ −

θθθ∗. Applying Lemma 3 to (11) and (12), it follows that

‖yt−1‖ ≤ c + c‖(θ̃θθT
ωωω)t−1‖, ‖ut−1‖ ≤ c + c‖(θ̃θθT

ωωω)t−1‖, and
then substituting them in (10) results in

m2
f (t) ≤ c + c‖(θ̃θθT

ωωω)t−1‖2 (13)

Step 2. Using the discrete-time swapping lemmas and

Lemma 6 to bound ‖θ̃θθT
ωωω‖ mentioned from above.

Define ωωω0 = [ωωωT
1 ,ωωωT, y]T, θθθ∗0 = [θθθ∗T1 , θθθ∗T2 , θ∗3 ]T, θθθ0 =

[θθθT
1 , θθθT

2 , θ3]
T, and θ̃θθ0 = θθθ0 − θθθ∗0. Obviously, θθθTωωω = θ̃θθ

T

0 ωωω0 +

θ̃4r. From (11), by some calculation, it follows that

θ̃θθ
T
ωωωp =

θ4

θ∗4
θ̃θθ

T
ωωω (14)

where ωωωp is defined in (7). Using φφφp = Wm(z)ωωωp and
Lemma 4, we can get

Wm(z)[θ̃θθ
T
ωωωp](t− 1) =

[θ̃θθ
T
φφφp](t− 1) + Wc(z)[(Wb(z)z[ωωωT

p ])(z − 1)[θ̃θθ]](t− 1)

(15)

where Wc(z) and Wb(z) are strictly proper and have the
same poles as those of Wm(z). From Lemma 5, by choosing

a0 to satisfy |a0| ≤
√

δ/2, it is easy to obtain

[θ̃θθ
T
φφφp](t− 1) =

F1(z, a0)[θ̃θθ
T
φφφp](t− 2) + F (z, a0)[θ̃θθ

T
φφφp](t− 1) (16)

and ‖F1(z, a0)‖∞δ ≤ ca0, ‖F (z)W−1
m (z)‖∞δ ≤ cf(a0),

where c is a constant independent of a0, and f(·) is a known

polynomial with the degree n∗, F (z, a0) = an∗
0 /(z + a0)

n∗ ,
and F1(z, a0) = (1− F (z, a0))z. Substituting (8), (14) and
(15) in (16) leads to

[θ̃θθ
T
ωωωp](t− 1) =

F1(z, a0)
[ θ4

θ∗4
θ̃θθ

T
ωωω

]
(t− 2) + F (z, a0)W

−1
m (z)

[
− εm2 +

Wc(z)[(Wb(z)z[ωωωT
p ])(z − 1)[θ̃θθ]]

]
(t− 1) (17)

which implies that

∥∥(θ̃θθ
T
ωωωp)t−1

∥∥ ≤

‖F1(z, a0)‖∞δ‖z−1‖∞δ

∥∥∥
( θ4

θ∗4
θ̃θθ

T
ωωω

)
t−1

∥∥∥ +

‖F (z, a0)W
−1
m (z)‖∞δ

(∥∥(εm2)t−1

∥∥ +

‖Wc(z)‖∞δ‖((Wb(z)z[ωωωT
p ])(z − 1)[θ̃θθ])t−1‖

) ≤

ca0

∥∥∥
( θ4

θ∗4
θ̃θθ

T
ωωω

)
t−1

∥∥∥ + cf(a0)
(
‖(εm2)t−1‖+

‖((Wb(z)z[ωωωT
p ])(z − 1)[θ̃θθ])t−1‖

)
(18)

by using Lemma 3 and (16), where c is a constant
independent of a0. By the definition of Wb(z) and
Lemma 6, it is known that Wb(z)z[ωωωT

p ](t − 1)/mf (t −
1) ∈ L∞, therefore, ‖((Wb(z)z[ωωωT

p ])(z − 1)[θ̃θθ])t−1‖ ≤
c‖(((z − 1)[θ̃θθ])mf )t−1‖. Because θ4, θ̃θθ ∈ L∞ by Lemma

1, it follows from Lemma 6 that ‖( θ4

θ∗4
θ̃θθ

T
ωωω)t−1‖ ≤

c‖(θ̃θθT
ωωω)t−1‖ ≤ c‖ωωωt−1‖ ≤ cmf (t). According to the con-

clusion 2) in Lemma 6, we have ‖(εm2)t−1‖ ≤ c‖(εmmf‖.
Hence ‖(θ̃θθT

ωωωp)t−1‖ ≤ ca0mf (t) + cf(a0)‖(εmmf )t−1‖ +

cf(a0)‖(((z − 1)[θ̃θθ])mf )t−1‖, by which together with (14)
and Lemma 1 gives

‖(θ̃θθT
ωωω)t−1‖ ≤ c‖(θ̃θθT

ωωωp)t−1‖ ≤
ca0mf (t) + cf(a0)‖(g̃mf )t−1‖ (19)

where c is a constant independent of a0, and g̃2 = |(z −
1)[θ̃θθ]|2 +(εm)2, which means that g̃ ∈ L2 by the conclusion
2) in Lemma 1.

Step 3. Using discrete-time Bellman-Gronwall lemma
to establish signal boundedness.

Using (19) in (13) yields

m2
f (t) ≤ c + cf2(a0)‖(g̃mf )t−1‖2 + ca2

0m
2
f (t) (20)

where the coefficient c of the third term on the right-hand
side of (21) is independent of a0. By choosing appropri-
ately small a0 such that ca2

0 < 1/2, we have m2
f (t) ≤

c + cf2(a0)‖(g̃mf )t−1‖2. Using the discrete-time Bellman-
Gronwall lemma in [5] and g̃ ∈ L2, and following the similar
discussion in [7], it is easy to conclude that mf (t) ∈ L∞,
from which conclusion 1) holds for Lemma 6.

Step 4. Establish the convergence of the tracking error
e.

By (6) ∼ (8) and $̂ = θθθTφφφp, we have εm2 =

Wm(z)[θθθTωωω] − θθθTφφφp. Applying Lemma 4 to Wm(z)θθθTωωω,
one has

εm2 = θθθT(Wm(z)ωωω −φφφp) + Wc(z)
[
(Wb(z)z[ωωωT])(z − 1)θθθ

]

= −θ4e + Wc(z)
[
(Wb(z)z[ωωωT])(z − 1)θθθ

]
(21)

by using Wm(z)ωωω −φφφp = [0, · · · , 0,−e]T; therefore

e =
1

θ4

(
− εm2 + Wc(z)

[
(Wb(z)z[ωωωT])(z − 1)θθθ

])
(22)

By Lemma 1, 1/θ4 ∈ L∞, εm(t), θθθ(t + 1) − θθθ(t) ∈ L2.
Noting that Wc(z) and Wb(z) are strictly proper and have
the same poles as those of Wm(z), from m, ωωω ∈ L∞, it
follows that e ∈ L2, which implies that limt→∞ e(t) = 0. ¤

5 Proofs of Lemmas 1, 3 ∼ 6

Proof of Lemma 1. 1) Let us prove it for two cases.
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a) If kp > 0, we have θ4(t) ≥ c0. In fact, when
θp
4sgn(kp) ≥ c0, we have ∆(t) = 0 and then θ4(t) = θp

4 ≥ c0;
when θ4(t) < c0, it follows that θ4(t) = c0 from the defini-
tions of τττ1, τ2 and (9).

b) If kp < 0, similarly, θ4(t) ≤ −c0. Hence, conclusion
1) holds.

2) We define I(t) = ∆T(t + 1)φφφ(t)ε(t) + θ̃θθ
T
(t)Γ−1∆(t +

1) + ∆T(t + 1)Γ−1∆(t + 1). When θp
4(t + 1)sgn(kp) ≥ c0,

obviously, I(t) = 0; otherwise, I(t) = (c0sgn(kp) − θp
4(t +

1))λ−1
2n (c0sgn(kp)−θ∗4) < 0 from (4), (9), and the definitions

of τττ1, τ2, and ∆(t + 1). Choose V (θ̃θθ(t)) = θ̃θθ
T
(t)Γ−1θ̃θθ(t),

whose time increment along (9) satisfies

V (θ̃θθ(t + 1))− V (θ̃θθ(t)) ≤−
(
2− φφφT

p (t)Γφφφp(t)

m2(t)

)
ε2(t)m2(t)+

2I(t) ≤ −α1ε
2(t)m2(t) (23)

where α1 = 2 − maxi=1,··· ,2n(λi) > 0. The conclusion 2)
holds from (8) and (23).

3) Let J(t) = ∆T(t + 1)((θθθp(t + 1) − θθθ(t)) + ∆(t + 1)).
When θp

4(t + 1)sgn(kp) ≥ 0, obviously, otherwise, J(t) =
(c0sgn(kp)− θp

4(t + 1))(c0sgn(kp)− θ4(t)) < 0 from conclu-
sion 1) and the definitions of τττ1, τ2 and ∆(t + 1). Then

∞∑
t=0

∆θθθT(t)∆θθθ(t) ≤

∞∑
t=0

((φφφT
p (t)Γφφφp(t)

m2(t)

)
ε2(t)m2(t) + 2J(t)

)
≤

max
i=1,··· ,2n

{λi}
∞∑

t=0

ε2(t)m2(t) (24)

which implies that ∆θθθ(t) = θθθ(t + 1)− θθθ(t) ∈ L2 by (9) and
conclusion 2). ¤

Proof of Lemma 3. 1) Define yδ(t) = δ−t/2y(t),

hδ(t) = δ−t/2h(t), uδ(t) = δ−t/2u(t). Then, yδ(t) =

δ−t/2y(t) = δ−t/2 ∑t
i=0 h(t − i)u(i) =

∑t
i=0 δ−(t−i)/2h(t −

i)δ−i/2u(i) = hδ ∗ uδ. Now u ∈ L2e implies that

uδ ∈ L2e. Since H(z) is analytic in |z| ≥
√

δ

and Hδ(z) =
∑∞

t=0 hδ(t)z
−t =

∑∞
t=0 δ−t/2h(t)z−t =∑∞

t=0 h(t)(
√

δz)−t = H(
√

δz), which imply that H(
√

δz)
is analytic in |z| ≥ 1, thus by Lemma 2, ‖(yδ)t‖2 ≤
‖Hδ(z)‖∞‖(uδ)t‖2 = ‖H(

√
δz)‖∞‖(uδ)t‖2. Because

‖(yδ)t‖2 = (
∑t

k=0 |yδ(k)|2)1/2 = (
∑t

k=0 δ−k|y(k)|2)1/2 =

δ−t/2‖yt‖2δ, ‖(uδ)t‖2 = δ−t/2‖ut‖2δ and ‖H(
√

δz)‖∞ =

supω∈[0,2π] |H(
√

δejω)| = ‖H(z)‖∞δ, 1) follows directly.

2) If H(z) is strictly proper, H(z)z is at least proper.
Defining H(z)z is Z transform of the function h1(t), and

using the Schwartz inequality and Parseval′s theorem[9], we
get

|y(t)| = |H(z)zu(t− 1)| =
∣∣

t−1∑
i=0

h1(t− i− 1)u(i)
∣∣ ≤

t−1∑
i=0

δ−
t−i−1

2 |h1(t− i− 1)|δ t−i−1
2 |u(i)| ≤

( ∞∑
i=0

|δ− t−i
2 h1(t− i)|2) 1

2 ‖ut−1‖2δ = (25)

1√
2π

{∫ π

−π

|
√

δejωH(
√

δejω)|2dω

} 1
2

‖ut−1‖2δ

which concludes the proof. ¤
Proof of Lemma 4. Let xxx(t + 1) = Axxx(t) + Bu(t),

xxx(0) = 0, y = CTxxx(t) + du(t) be a minimal realization of
W (z), which implies that xxx(t) = (zI − A)−1Bu(t), y(t) =

CT(zI − A)−1Bu(t) + du(t) or xxx(t) =
∑t−1

i=0 At−i−1Bu(i),

y(t) = CT ∑t−1
i=0 At−i−1Bu(i)+du(t). Hence, we can obtain

that

W1(z) = −CT
t−1∑
i=0

At−i−1zi−t, W2(z) =

t−1∑
i=0

At−i−1Bzi−t,

and CT(zI −A)−1B = CT
t−1∑
i=0

At−i−1Bzi−t,

from which it follows that

j∑
i=0

Aj−iBωωωT(i) =

(j+1)−1∑
i=0

A(j+1)−i−1Bzi−(j+1)ωωωT(j + 1) =

W2(z)ωωωT(j + 1) = W2(z)zωωωT(j) (26)

and then

W (z)[θ̃θθ
T
ωωω](t) =

d[θ̃θθ
T
ωωω](t) + CT

t−1∑
i=0

At−i−1B[θ̃θθ
T
ωωω](i) =

d[θ̃θθ
T
ωωω](t) + CT

t−1∑
i=0

At−i−1B[θ̃θθ
T
(i)ωωω(i)−

θ̃θθ
T
(t)ωωω(i) + θ̃θθ

T
(t)ωωω(i)] =

d[θ̃θθ
T
ωωω](t) + θ̃θθ

T
(t)CT

t−1∑
i=0

At−i−1Bzi−tωωω(t) +

CT
t−1∑
i=0

At−i−1B
t−1∑
j=i

((1− z)θ̃θθ
T
(j))ωωω(i)) =

θ̃θθ
T
(t)W (z)ωωω(t)− CT

t−1∑
i=0

t−1∑
j=i

At−i−1B[(z − 1)θ̃θθ
T
(j)]ωωω(i) =

θ̃θθ
T
(t)W (z)ωωω(t)− CT

t−1∑
j=0

j∑
i=0

At−i−1B[(z − 1)θ̃θθ
T
(j)]ωωω(i) =

θ̃θθ
T
(t)W (z)ωωω(t)−

CT
t−1∑
j=0

At−j−1[
(

j∑
i=0

Aj−iBωωωT(i))[(z − 1)θ̃θθ(j)]
]

=

θ̃θθ
T
(t)W (z)ωωω(t)−

CT
t−1∑
j=0

At−j−1zj−t
[
(W2(z)zωωωT(t))[(z − 1)θ̃θθ(t)]

]
=

θ̃θθ
T
(t)W (z)ωωω(t)+W1(z)

[
(W2(z)zωωωT(t))[(z−1)θ̃θθ(t)]

]
(27)

¤
Remark 3. The proof is considered when xxx(0) = 000.

When the effect of initial conditions is taken into account,
we find that the above identical operator relations still hold
except for CT(zI − A)−1xxx(0) and CTAtxxx(0)1 which decay
to zero term exponentially, and then the conclusion is

W (z)[θ̃θθ
T
ωωω] = θ̃θθ

T
(t)W (z)[ωωω](t) +

W1(z)[(W2(z)z[ωωωT])((z − 1)[θ̃θθ])](t) + ε(t)

1When xxx(0) 6= 000, y(t) = CTAtxxx(0) + CT ∑t−1
i=0 At−i−1Bu(i) +

du(t) = CT(zI − A)−1xxx(0) + CT ∑t−1
i=0 At−i−1Bu(i) + du(t)
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where ε(t) denotes exponentially decaying to zero term.
Proof of Lemma 5. From F (z, a0) = ak

0/(z + a0)
k, it

follows that

F1(z, a0) =
(z + a0)

k − ak
0

(z + a0)k
z =

a0

k∑
i=1

Ci
k

( z

z + a0

)i+1( a0

z + a0

)k−i−1
(28)

Thus

θ̃θθ
T
(t)ωωω(t) =

F1(z, a0)z
−1(θ̃θθ

T
(t)ωωω(t)) + F (z, a0)(θ̃θθ

T
(t)ωωω(t)) = (29)

F1(z, a0)(θ̃θθ
T
(t− 1)ωωω(t− 1)) + F (z, a0)(θ̃θθ

T
(t)ωωω(t))

Obviously,

∥∥∥ zi+1

(z + a0)i+1

∥∥∥
∞δ

=
∥∥∥ z

z + a0

∥∥∥
i+1

∞δ
=

sup
ω∈[0,2π]

∣∣∣
√

δejω

√
δejω + a0

∣∣∣
i+1

=
∣∣∣

√
δ

a0 −
√

δ

∣∣∣
i+1

(30)

∥∥∥ ak−i−1
0

(z + a0)k−i−1

∥∥∥
∞δ

=
∥∥∥ a0

z + a0

∥∥∥
k−i−1

∞δ
=

sup
ω∈[0,2π]

∣∣∣ a0√
δejω + a0

∣∣∣
k−i−1

(31)

Therefore, for |a0| ≤
√

δ/2

‖F1(z, a0)‖∞δ = a0

k∑
i=1

Ci
k

∥∥∥ z

z + a0

∥∥∥
i+1

∞δ

∥∥∥ a0

z + a0

∥∥∥
k−i−1

∞δ
=

a0

k∑
i=1

Ci
k

∣∣∣ (
√

δ)i+1ak−i−1
0

(a0 −
√

δ)k

∣∣∣ ≤

a0

k∑
i=1

Ci
k

∣∣∣ (
√

δ)i+1(
√

δ
2

)k−i−1

(
√

δ
2

)k

∣∣∣ = (32)

a0

k∑
i=1

Ci
k2i+1 = ca0

where c =
∑k

i=1 Ci
k2i+1 is a constant independent of a0. ¤

Proof of Lemma 6. By using Lemma 3, the proof
of the lemma is similar to that of continuous case Lemma
6.8.1 in [2]. ¤

6 Conclusion

For a class of discrete-time systems, the design and anal-
ysis of direct MRAC with normalized adaptive laws are
investigated in this paper. The stability and convergence
properties of the discrete-time MRAC scheme are analyzed
rigorously in a systematic fashion as in the continuous-time
case. There are some problems that are yet to be investi-
gated, for example, how to design and analyze discrete-
time indirect adaptive control schemes, how to deal with

discrete-time MRAC with the unmodeled dynamics and
disturbances[10], how to generalize the result to MIMO
systems[8], and how to treat with dual-rate and multi-rate
discrete adaptive control schemes[11].
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