
Vol. 33, No. 10 ACTA AUTOMATICA SINICA October, 2007

Stochastic Maximum Principle for a Kind of

Risk-sensitive Optimal Control Problem and

Application to Portfolio Choice
WANG Guang-Chen1, 2 WU Zhen1

Abstract In this paper, we mainly study a kind of risk-sensitive optimal control problem motivated by a kind of portfolio choice
problem in certain financial market. Using the classical convex variational technique, we obtain the maximum principle for this kind
of problem. The form of the maximum principle is similar to its risk-neutral counterpart. But the adjoint equation and the variational
inequality heavily depend on the risk-sensitive parameter γ. This is one of the main difference from the risk-neutral case. We use
this result to solve a kind of optimal portfolio choice problem. The optimal portfolio strategy obtained by the Bellman dynamic
programming principle is a special case of our result when the investor only invests the home bond and the stock. Computational
results and figures explicitly illustrate the relationships between the maximum expected utility and the parameters of the model.
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1 Introduction

Since the publication of the deterministic maximum prin-
ciple by Pontryagin et al.[1], much work has been done on
its generalization to stochastic systems (See [2] ∼ [4]). But
one of their assumptions is that the functions in the cost
functional satisfies the usual linear growth or square growth
conditions. Therefore, this assumption excludes at least
one important case which rises from the portfolio choice
problem in some financial market–the constant relative risk
aversion (CRRA) case (See [5], for example).

For the sake of convenience, let us state the problem
in detail below. Let (Ω,F , (Ft), P ) be a complete fil-
tered probability space with the natural filtration Ft =
σ{W (s), V (s); 0 ≤ s ≤ t}, where (W (·), V (·)) is a standard
two-dimensional Brownian motion defined on this space
with values in R2. We assume F = FT , where T > 0
is a fixed time horizon. Throughout the paper, we only
study the problem in the time interval [0, T ].

We consider a financial market in which two securities
can be continuously traded. One of them is a foreign cur-
rency deposit, whose price B(t) is assumed to satisfy

dB(t) = r(t)B(t)dt

where r(t) is the interest rate of this kind of foreign cur-
rency deposit in bank at time t. The other asset is stock,
and the price is described by

dS(t) = µ(t)S(t)dt + σ(t)S(t)dW (t)

where µ(t) is the instantaneous expected rate of return, and
σ(t) is the instantaneous volatility.

Now, let us consider an investor who invests in the for-
eign currency deposit and the stock and whose decisions
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cannot affect the prices in the financial market. The nu-
meration is the domestic currency. There exists the real
exchange risk for the currency deposit, and the currency
exchange rate e(t) satisfies

de(t) = α(t)e(t)dt + β(t)e(t)dV (t)

where α(t) is the instantaneous expected rate in the cur-
rency exchange market, and β(t) is the instantaneous
volatility. We need to change the foreign currency deposit
value into domestic currency and let θ(t) = e(t)B(t). Then
Itô′s formula implies that

dθ(t) = θ(t)(r(t) + α(t))dt + θ(t)β(t)dV (t)

We assume that the trading of the investor is self-
financed, i.e., there is no infusion or withdrawal of funds
over [0, T ]. We denote by x(t) the wealth of the in-
vestor with some initial endowment x0 > 0, by π(t) the
amount that he invests in the stock. Then, the investor
has x(t) − π(t) savings in bank. Under the notations and
interpretations, we have

dx(t) = (x(t)− π(t))
dθ(t)

θ(t)
+ π(t)

dS(t)

S(t)

Obviously, all the wealth of the investor is modeled by





dx(t) = [(r(t) + α(t))x(t) + (µ(t)− r(t)− α(t))π(t)]dt+

σ(t)π(t)dW (t) + (x(t)− π(t))β(t)dV (t)

x(0) = x0

(1)
Definition 1. An admissible portfolio strategy π(t) is

a Ft−adapted square integrable progress with values in R.
The set of them is denoted by Aad.

The investor wants to maximize his expected utility

J(π(·)) =
K

1−R
E[x(T )]1−R (2)

by choosing an appropriate portfolio from the admissible
set Aad, where K > 0 is a fixed constant and R ∈ (0, 1) is
so called the Arrow-Pratt index of risk aversion[6].

In next section, we study the following optimal control
problem which is a generalization of the above problem (1)
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and (2), i.e., the control system has the non-linear form





dx(t) = b(t, x(t), π(t))dt + f(t, x(t), π(t))dW (t)+

g(t, x(t), π(t))dV (t)

x(0) = x0

(3)

where x0 is given and deterministic. The cost functional
is defined by (4) in next section. Using the classic convex
variational technique, we derive the maximum principle.
In Section 3, we obtain the explicit optimal portfolio of the
problem (1) and (2) by combining the maximum principle
obtained in Section 2 with a direct formulation method. We
also study the sensitivities of the investor′s optimal portfo-
lio strategy and the maximum expected utility on the pa-
rameters of the model in Section 4. Computational results
and figures in this section also support our viewpoints.

2 Optimal control problem and maxi-
mum principle

In this section, we consider the one-dimensional optimal
control problem mentioned in Section 1.

Let n = max{2, d2γe−1}, where γ > 0 is a constant and
dxe denotes the integer part of x. We denote by Ln(0, T )
the space of Ft−adapted processes with values in R such
that E

∫ T

0
[x(t)]ndt < +∞. Let U be a non-empty convex

subset of R. We set Uad = {π(·) ∈ Ln(0, T ) : π(t) ∈
U, a.s., a.e.}. An element of Uad is called admissible.

We assume that
H1. The functions b, f , and g : [0, T ] × R × R → R

are continuously differential with respect to (x, π) and their
partial derivatives are uniformly bounded.

Our problem is to maximize the following cost functional

J(π(·)) =
1

γ
E[Φ(x(T ))]γ , γ > 0 (4)

subject to the stochastic control system (3) and the admis-
sible set Uad. Our task is to seek the necessary condition,
so called the maximum principle, of the optimal control.

The cost functional (4) subject to (3) formulates a kind
of risk-sensitive optimal control problem[7]. γ > 0, a fixed
constant, is called the risk-sensitive parameter. If γ = 1,
then (4) reduces to the usual risk-neutral case. See [2∼4],
for example. Obviously, the function 1/γ[Φ(x)]γ in (4) does
not satisfy the conditions of [3∼5]. Under our framework,
we use the classical convex variational technique to obtain
the maximum principle for this kind of problem.

For our aim, we need the following hypotheses on Φ:
H2. The function Φ : R → [0, +∞) is continuously

differential in x. Φ is bounded by C(1+x) and its derivative
Φx is also bounded.

H3. If 0 < γ ≤ 1, we assume E[Φ(x(T ))](2γ−2) < +∞;
if γ > 1 then E[x(T )](2γ−2) < +∞.

Remark 1. It appears as if H2 and H3 were rigor-
ous, but it is not difficult to seek some functions satisfying
the above two hypotheses. For example Φ(x) = sin x + 1,
sin(cos x) + 1, cos(sin x), etc. In particular, if x ∈ [0, +∞),
then we let Φ(x) = x, log(1 + x), and arctan x.

Let π(·) be an optimal control for the problem (3) and
(4), and x(·) be the corresponding optimal trajectory. Let
π1(·) ∈ Ln(0, T ) be given such that π(·) + π1(·) ∈ Uad.
We take πε(·) = π(·) + επ1(·), 0 ≤ ε ≤ 1. Since Uad is

convex, πε(·) ∈ Uad. We denote by xε(·) the trajectory of
the control system (3) corresponding to πε(·).

Let us introduce the variational equation





dx1(t) = [bx(t, x(t), π(t))x1(t) + bπ(t, x(t), π(t))π1(t)]dt+

[fx(t, x(t), π(t))x1(t) + fπ(t, x(t), π(t))π1(t)]dW (t)+

[gx(t, x(t), π(t))x1(t) + gπ(t, x(t), π(t))π1(t)]dV (t)

x1(0) = 0
(5)

The following lemma can be proved similar to [2].
Lemma 1. Under the hypothesis H1, we have

lim
ε→0

sup
0≤t≤T

E|x̃ε(t)|2 = 0

where we have already used the notation x̃ε(t) =
1

ε
[xε(t)−

x(t)]− x1(t).
Lemma 2. (Variational inequality) Let H1∼H3

hold. Then, we have

E{[Φ(x(T ))]γ−1Φx(x(T ))x1(T )} ≤ 0 (6)

where x1(T ) is given by the variational equation (5).
Proof. From the fact that J(πε(·))− J(π(·)) ≤ 0, it is

easy to see

1

γ
E{[Φ(xε(T ))]γ − [Φ(x(T ))]γ} ≤ 0

By the Taylor formula, we have

J(πε(·))− J(π(·)) =

εE{[Φ(x(T ))]γ−1Φx(x(T ))(x1(T ) + x̃ε(T ))}+

εE{[Φ(x(T ))]γ−1[Φx(x(T ) + θε(x1(T ) + x̃ε(T )))−
Φx(x(T ))](x1(T ) + x̃ε(T ))} ≤ 0

where θ ∈ (0, 1). Obviously, for any γ > 0,

[Φ(x(T ))]2γ−2[Φx(x(T ) + θε(x1(T ) + x̃ε(T )))−
Φx(x(T ))]2 → 0, ε → 0

Since for γ > 1 there exists

[Φ(x(T ))]2γ−2[Φx(x(T ) + θε(x1(T ) + x̃ε(T )))−
Φx(x(T ))]2 ≤ 4γC2

1C2γ−2(1 + |x(T )|2γ−2)

where we have already used the inequality |m1 + m2|n ≤
2n(|m1|n + |m2|n), n > 0; and for 0 < γ ≤ 1, it follows that

[Φ(x(T ))]2γ−2[Φx(x(T ) + θε(x1(T ) + x̃ε(T )))−
Φx(x(T ))]2 ≤ 4C2

1 [Φ(x(T ))]2γ−2

Then, from the Lebesgue controlled convergence theorem
we derive

E{[Φ(x(T ))]γ−1[Φx(x(T ) + θε(x1(T ) + x̃ε(T )))]

(x1(T ) + x̃ε(T ))} → 0, ε → 0

By Lemma 1, it follows that

εE{[Φ(x(T ))]γ−1Φx(x(T ))x1(T )}+ o(ε) ≤ 0

The above inequality is divided by ε and let ε → 0, then
we obtain the desired result. ¤
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For deriving the maximum principle, we introduce the
following adjoint equation




−dp(t) = [bx(t, x(t), π(t))p(t) + fx(t, x(t), π(t))q(t)+

gx(t, x(t), π(t))k(t)]dt− q(t)dW (t)− k(t)dV (t)

p(T ) = [Φ(x(T ))]γ−1Φx(x(T ))
(7)

H1∼H3 imply that (7) has a pair of unique solution
(p(·), q(·), k(·)) ∈ L2(0, T )× L2(0, T )× L2(0, T ).

By applying Itô′s formula to 〈p(t), x1(t)〉, it can be
checked from Lemma 2 that

E

∫ T

0

〈Hπ(t, x(t), π(t), p(t), q(t), k(t)), π1(t)〉dt ≤ 0 (8)

where the Hamiltonian function H : [0, T ]×R×R×R×
R×R → R is defined as

H(t, x(t), p(t), q(t), k(t), π(t)) =

〈b(t, x(t), π(t)), p(t)〉+ 〈f(t, x(t), π(t)), q(t)〉+

〈g(t, x(t), π(t)), k(t)〉
So for any π̄ ∈ U , we have, a.s., a.e.,

〈Hπ(t, x(t), p(t), q(t), k(t), π(t)), π̄ − π(t)〉 ≤ 0 (9)

Therefore, we get the following theorem.
Theorem 1. (Maximum principle) Assume H1∼H3

hold. Let π(·) be the optimal control to the risk-sensitive
optimal control problem (3) and (4), and x(·) be the cor-
responding optimal trajectory. Then, for any π̄ ∈ U , the
maximum condition (9) holds.

Remark 2. Although the form of the maximum condi-
tion (9) is similar to its risk-neutral counterpart, it is worth
pointing out that both (6) and (7) explicitly depend on γ.
To the best of our knowledge, this is not seen in the existing
literature of the risk-neutral case.

3 Application to portfolio choice prob-
lem

In this section, we study the optimal portfolio choice
problem (1) and (2) mentioned in Section 1.

We assume that
H4. σ(·) > 0, β(·) > 0, r(·), µ(·) and α(·) are deter-

ministic and uniformly bounded, and σ−1(·), β−1(·) are
also uniformly bounded.

Under the hypothesis H4, we can easily get from Theo-
rem 1 that

(µ(t)− r(t)− α(t))p(t) + σ(t)q(t)− β(t)k(t) = 0 (10)

Let π(·) = m(·)x(·), here and below m(·) and n(·) are
deterministic functions, which will be determined later on.
Then, the corresponding optimal wealth equation and the
adjoint equation are




dx(t) = [r(t) + α(t) + (µ(t)− r(t)− α(t))m(t)]x(t)dt+

σ(t)m(t)x(t)dW (t) + (1−m(t))β(t)x(t)dV (t)

x(0) = x0

(11)
and





−dp(t) = [(r(t) + α(t))p(t) + β(t)k(t)]dt−
q(t)dW (t)− k(t)dV (t)

p(T ) = K[x(T )]−R

(12)

To get the explicit optimal portfolio π(·), the usual solv-
ing method is to use Feynman-Kac formula to derive a par-
tial differential equation (PDE), then combine the maxi-
mum condition to obtain the desired result[8]. However, it
is difficult to obtain an explicit solution of the PDE. But if
we note the terminal condition of (12), then we can give a
direct formulation method to avoid the complicated compu-
tation steps. The fact below shows that the direct method
is indeed very convenient and very useful for us to treat the
problem (1) and (2).

Let
p(t) = K[x(t)]−Re

∫ T
t

n(s)ds (13)

Using Itô′s formula to p(t) defined by (13), then, we derive

−dp(t) = {n(t) + R[r(t) + α(t) + (µ(t)− r(t))m(t)]−
1

2
(R + 1)[σ2(t)m2(t) + (1−m(t))2β2(t)]}p(t)dt +

Rm(t)σ(t)p(t)dW (t) + R(1−m(t))β(t)p(t)dV (t)

Comparing the drift term and the diffusion term of the
above expression with (12), we have

n(t) = r(t) + α(t)−R{r(t) + α(t) +

[(µ(t)− r(t)− α(t))m(t) + (1−m)β2(t)]−
1

2
(R + 1)[σ2(t)m2(t) + (1−m(t))2β2(t)]}

q(t) = −Rm(t)σ(t)p(t)

k(t) = −R(1−m(t))β(t)p(t) (14)

Substituting (14) into (10), we easily get

m(t) =
µ(t)− r(t)− α(t) + Rβ2(t)

(σ2(t) + β2(t))R

Therefore,

π(t) =
µ(t)− r(t)− α(t) + Rβ2(t)

(σ2(t) + β2(t))R
x(t) (15)

where x(t) is the solution of the following corresponding
optimal wealth equation




dx(t) = x(t){[r(t) + α(t)+

(µ(t)− r(t)− α(t))
µ(t)− r(t)− α(t) + Rβ2(t)

(σ2(t) + β2(t))R
]dt+

µ(t)− r(t)− α(t) + Rβ2(t)

(σ2(t) + β2(t))R
σ(t)dW (t)+

r(t) + α(t) + Rσ2(t)− µ(t)

(σ2(t) + β2(t))R
β(t)dV (t)}

x(0) = x0

(16)
Clearly, x(t) > 0 and E[x(t)]−2R < +∞. Therefore, the
hypothesis H3 holds indeed.

Proposition 1. Assume that H4 holds. Then, the op-
timal solution to the optimal portfolio choice problem (1)
and (2) is given by (15) and (16).

Remark 3. We must point out that the optimal invest-
ment proportion π(·)/x(·) defined by (15) clearly depends
on the Arrow-Pratt index of risk aversion of the investor R.
π(·)/x(·) is decreasing with respect to R, r(·), α(·), σ(·),
β(·) and increasing with respect to µ(·). These phenomena
coincide with our intuition. This is usually the so-called
sensitivities on the parameters of the model.
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4 An interesting example

In this section, we study an interesting example. For
simplification, assume that α(·) = β(·) ≡ 0, i.e., the in-
vestor invests the bond in home market. Then, it is under
the framework of Merton[5] and Xu[8]. From Proposition 1
we have

Corollary 1. Assume that H4 holds and α(·) = β(·) ≡
0. Then the optimal portfolio and the corresponding max-
imum utility of the problem (1) and (2) are given by

π(t) =
µ(t)− r(t)

σ2(t)R
e
∫ t
0 [r(s)+(1− 1

2R
)
(µ(s)−r(s))2

σ2(s)R
]ds ·

e
∫ t
0

µ(s)−r(s)
σ(s)R

dW (s)
x0 (17)

Jmax(π(·)) =
K

1−R
x1−R

0 e
(1−R)

∫ T
0 [r(t)+

(µ(t)−r(t))2

2σ2(t)R
]dt

We now study the relationships between the investor′s
expected utility Jmax(π(·)) and the parameters K, x0, r(·),
µ(·), and σ(·). For simplification, hereinafter we assume
that the condition µ(·) ≥ σ2(·)R holds. For the case
µ(·) < σ2(·)R, it is easy to see. Clearly, Jmax(π(·)) is in-
creasing with respect to K, x0, T , µ(·) and decreasing with
respect to σ(·). However, it is difficult for us to identify the
influence of R on Jmax(π(·)).

Generally speaking, the investor pays more attention to
the influence of the parameters µ(·) and r(·) on his maxi-
mum expected utility Jmax(π(·)). Therefore, to do further
research on the relationships between them, we assume that
r(·), µ(·), and σ(·) are all non-zero constants. Then the
maximum expected utility can be rewritten as

Jmax(π(·)) =
K

1−R
x1−R

0 e
(1−R)T [r+

(µ−r)2

2σ2R
]

(18)

In the following figures we suppose that the time unit in
the model is one year and let x0 = 1, R = K = σ = 0.5.

In Fig. 1, we let the interest rate r = 0.125. When
µ ≥ 0.125, Jmax(π(·)) is an increasing function of µ. In
particular, if µ = 0.125, the optimal portfolio strategy (17)
implies that the investor should save all his wealth x(·) in
bank at the interest rate 0.125. Then, the investor′s maxi-
mum expected utility is Jmax(0) = e0.0625.

We plot the relationships between Jmax(π(·)) and r in
Figs. 2∼4. Four points are worth noting:

1) From (18), when r < µ − σ2R, Jmax(π(·)) is a de-
creasing function of r; when r > µ− σ2R, Jmax(π(·)) is an
increasing function of r; when r = µ− σ2R, Jmax(π(·)) at-

tains its minimum value K/(1−R)x1−R
0 e

1
2 T (1−R)(2µ−σ2R).

The above Figs. 2∼4 explicitly illustrate these theoretical
results.

2) In Fig. 2, we let µ = 0.2 and suppose 1/2µ < σ2R <
µ and µ2/(2σ2R) > µ − 1/2σ2R hold. When the interest
rate is 0.2, we know that by (15) the investor′s optimal
portfolio strategy is to save all his wealth x(·) in bank at
the interest rate 0.2. Then, his maximum expected utility
is equal to e0.1.

3) In Fig. 3, we let µ = 0.4 and assume that µ > 2σ2R.
If r = 0, the investor′s optimal portfolio strategy is π(·) =
3.2x(·). It is to say that the investor should borrow π(·)−
x(·) = 2.2x(·) from bank at the interest rate zero and invest

Fig. 1 The relationship between Jmax(π(·)) and µ

Fig. 2 The relationship between Jmax(π(·)) and r

Fig. 3 The relationship between Jmax(π(·)) and r

Fig. 4 The relationship between Jmax(π(·)) and r
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π(·) = 3.2x(·) in the stock. Then, the maximum expected
utility in this case is e0.32. Fig. 3 also describes the fact
that if r ≤ 0.15 then the optimal portfolio strategy is to
borrow money from bank and invest all his wealth in the
stock.

4) In Fig. 4, we let µ = 0.25. It shows a special case
under the condition µ = 2σ2R. When the interest rate r
is equal to zero or 0.25, the investor′s maximum expected
utility has the same value of e0.125. It implies that the
investor has two kinds of different portfolio choice chances
to obtain the same maximum expected utility. One is to
borrow x(·) from bank at the interest rate zero and invests
all his wealth 2x(·) in the stock. The other is to save all
his wealth x(·) in bank at the interest rate r = 0.25.

5 Conclusion

In this paper, using the classical convex variational tech-
nique, we derived the maximum principle for a kind of risk-
sensitive optimal control problem rising from a kind of op-
timal portfolio choice problem in some financial market.
As an application of the risk-sensitive maximum principle
obtained in Section 2, we studied a kind of optimal portfo-
lio choice problem. Some computational results and figures
provided in Section 4 further support our viewpoints.

Acknowledgement

The authors would like to thank the referees for a careful
reading of this paper and helpful suggestions which made
the revised version more readable.

References

1 Pontryagin L S, Boltyanskii V G, Gamkrelidze R V, Mish-
chenko E F. The Mathematical Theory of Optimal Processes.
New York: Gordon and Breach Science Publishers, 1987. 4:
9∼108

2 Bensoussan A. Lectures on stochastic control. In: Proceed-
ings of Nonlinear Filtering and Stochastic Control. Cotorna,

1982. 8∼18

3 Elliot R J. The optimal control of diffusions. Applied Math-
ematics and Optimization, 1990, 22(1): 229∼240

4 Peng S. A general stochastic maximum principle for optimal
control problems. SIAM Journal on Control and Optimiza-
tion, 1990, 28(4): 966∼979

5 Merton R. Optimum consumption and portfolio rules in a
continuous time model. Journal of Economic Theory, 1971,
3(4): 373∼413

6 Karatzas I, Shreve S E. Methods of Mathematical Finance.
New York: Springer-Verlag, 1998. 94∼95

7 Yong J, Zhou X Y. Stochastic Controls, Hamiltonian Sys-
tems and HJB Euqations. New York: Springer-Verlag, 1999.
88∼89

8 Xu W S. Maximum principle for a stochastic optimal control
problem and application to portfolio/consumptionchoice.
Journal of Optimization Theory and Applications, 1998.
98(3): 719∼731

WANG Guang-Chen Lecture at
School of Mathematical Sciences, Shan-
dong Normal University. He received his
master degree and Ph.D. degree both from
Shandong University in 2004 and 2007,
respectively. His research interest covers
stochastic differential games, stochastic
control, and financial mathematics. Cor-
responding author of this paper.
E-mail: wgcmathsdu@sohu.com

WU Zhen Professor at School of Math-
ematics and Systems Sciences, Shandong
University. He received his master de-
gree and Ph.D. degree both from Shandong
University in 1994 and 1997, respectively.
His research interest covers stochastic dif-
ferential equation, stochastic control, and
financial mathematics.
E-mail: wuzhen@sdu.edu.cn


