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Online Wavelet Denoising via a Moving Window
XIA Rui1 MENG Ke1 QIAN Feng1 WANG Zhen-Lei1

Abstract In this paper, shortcoming of traditional wavelet denoising in real-time signal processing is discussed, requirements of
online denoising are considered, and a moving window is introduced into traditional wavelet transform. Using the moving window,
an online wavelet denoising approach is proposed. Some problems of online denoising, such as border distortion and pseudo-Gibbs
phenomena, are discussed. To solve these problems, window extension and window cycle spinning are also proposed. Different
approaches are tested by the signal widely used in denoising domain. Both the visual results and the quantitative measures are
presented to highlight the availability of the new approach.
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1 Introduction

Because of some key advantages over Fourier analysis,
wavelet analysis has become a widely used tool in signal
estimation, classification, and compression. Wavelet trans-
form tends to concentrate the signal energy into a relatively
small number of large coefficients. On this basis, a method
called wavelet shrinkage to use thresholding in wavelet do-
main was proposed, and it was shown to be asymptotically
near optimal for a wide range of signals corrupted by addi-
tive Gaussian noise[1,2].

Denoising with traditional wavelet transforms always ex-
hibit visual artifacts because of translation-variant, such
as pseudo-Gibbs phenomena in the neighborhood of dis-
continuities. Methods of cycle spinning and translation-
invariant denoising produced reconstructions with signif-
icantly weaker artifacts than with traditional orthogonal
wavelet transform[3].

However, in most cases, wavelet denoising for real-time
signal is actualized via offline processing, which limits the
real-time applications. In this paper, an online wavelet de-
noising method using a moving window is proposed. Here,
some problems that may occur in real-time wavelet denois-
ing, such as border distortion and pseudo-Gibbs phenom-
ena, are discussed. To solve these problems, methods of
using window extension and window circle spinning, are
developed. Quantitative measures describing the denoising
effect and computation complexity of different approaches
are presented.

2 Online wavelet denoising approach

2.1 Review of offline wavelet denoising

The energy concentration property makes wavelet trans-
form a powerful method for data compression and noise
elimination.

In denoising, the pure signal from the noise-corrupted
data should be reconstructed

xxx = yyy + zzz (1)

where yyy is the desired signal and zzz is the additive noise.
After wavelet transform in wavelet domain, we have

{
XXX = Txxx,YYY = Tyyy,ZZZ = Tzzz

XXX = YYY + ZZZ
(2)

where T denotes the wavelet coefficient matrix.
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A reasonable method for wavelet-based signal denoising
is to shrink the small entries of X while retaining the large
entries that contain the desired information. The nonlinear
wavelet shrinkage can be viewed as a diagonal filtering op-
eration in wavelet domain. If filter is denoted by H, then
after inverse wavelet transform, we get the denoised data

x̂xx = T−1HTxxx (3)

One method of reducing visual artifacts in wavelet de-
noising is to first perform cycle spinning for the signal, and
then to do thresholding. Another method, based on cir-
cle spinning, is to spin the whole circle shifts of signal,
termed fully translation-invariant (TI) denoising. The lat-
ter method can suppress the artifacts more effectively. For
details regarding about wavelet shrinkage, see [4, 5].

2.2 Moving window based online denoising

Although normal wavelet shrinkage plays an important
role in denoising, it can hardly satisfy the requirements of
real-time application. We may use a moving window to
solve this problem. A similar idea also can be seen in [6].

At the first stage of online denoising, when sampled data
are not long enough for a wavelet transform, we keep the
data as such. As soon as the minimum length is reached,
the first window initiates and online denoising begins. Sub-
sequently, the window moves ahead step by step with the
width fixed.

During the interval of sampling time ts between x(i) and
x(i + 1), we obtain the window

Wi =

{
none, i < lx

{x(i− lx + 1), x(i− lx + 2), · · · , x(i)}, i ≥ lx

(4)
where x(i) is the ith value of real-time signal, lx is the
length of the signal cut by current window. If there is no
signal extension, the width of window lw is equal to lx.

We define the scaling function ϕj,k(t) and the wavelet
function ψj,k(t) as

{
ϕj,k(t) = 2−

j
2 ϕ(2−jt− k)

ψj,k(t) = 2−
j
2 ψ(2−jt− k)

(5)

where j and k are integers scaling and shifting the mother
function to generate families of functions.

Based on multi-resolution analysis, we can get the
double-scaling equations as





ϕ(2−jt) =
√

2
∑
k

hkϕ(2−(j−1)t− k)

ψ(2−jt) =
√

2
∑
k

gkϕ(2−(j−1)t− k)
(6)



898 ACTA AUTOMATICA SINICA Vol. 33

We let ci,0,k be equal to Wi(k), do discrete wavelet trans-
form (DWT) inside the current window Wi, compute the
scaling coefficients ci,j,k and the wavelet coefficients di,j,k

as the following functions.





ci,j,k =
∑
n

hn−2kci,j−1,n

di,j,k =
∑
n

gn−2kci,j−1,n
, j ≥ 1 (7)

where the coefficients hn−2k and gn−2k can be deduced from
(6) as {

hn−2k = 〈ϕj,k, ϕj−1,n〉
gn−2k = 〈ψj,k, ϕj−1,n〉 (8)

After threshold shrinkage, we obtain the shrunk wavelet

coefficients d̂i,j,k. The signal reconstruction can be com-
puted by

ĉi,j−1,n =
∑

k

hn−2k ĉi,j,k +
∑

k

gn−2kd̂i,j,k , j ≥ 1 (9)

In digital signal processing, the wavelet decomposition is
equivalent to the analysis part of a two-channel filter bank,
and the inverse transform corresponds to the synthesis part.
The fast DWT algorithm based on this idea is also called
Mallat algorithm. For more about that, see [4,7].

Notice that at the coarsest level, we only need to com-
pute the lxth denoised value

ĉi,0,lx =
∑

k

hlx−2k ĉi,1,k +
∑

k

glx−2kd̂i,1,k (10)

Ŵi(lx) is the updated data, which is equal to ĉi,0,lx.

Ŵi(lx) comprises the denoised value x̂xx.

x̂(i) = Ŵi(lx) = ĉi,0,lx (11)

As soon as x(i + 1) is sampled, the above steps are re-
peated to get x̂(i + 1).

2.3 Problem of distortion

We choose two from the four demosignals constructed
and analyzed for wavelet denoising in [8]. Fig. 1 shows the
two original signals (Blocks and HeaviSine) and their noisy
versions.

Fig. 1 Original and noisy version of the demosignals

For comparison of different approaches, in this section we
use the same wavelet basis (sym4), decompose at the same
depth (J = 5) and apply soft shrinkage with the universal

threshold τ = σ
√

2 ln(N). Fig. 2 presents the results of
simple online wavelet denoising, where lw = lx = 512. Af-
ter x(512) is sampled, the window initiates and moves. To
each window, simple wavelet shrinkage is applied. Wavelet
shrinkage of the latest window is also shown in Fig. 2.

Fig. 2 Simple online wavelet denoising

The oscillations we see from the latest window denois-
ing are pronounced, especially on the right border Wi(lw),
which is marked with a circle in the figure. Here, each up-

dated data Ŵi(lx) is located at the border, so the whole
denoised signal is awful.

Because circle spinning and TI denoising are effective
weapons against pseudo-Gibbs phenomena and border dis-
tortion, we may bring the idea into real-time applications.
Fig. 3 shows the effect when TI is applied to online de-
noising. Although TI denoising makes denoised signal in a
single window smoother than that in Fig. 2, the whole on-
line denoised signal still has a serious distortion compared
to the original version. Averaging does not affect online ap-
plications because only one denoised value goes into effect
in each window, furthermore, it is on the border.

Fig. 3 Fully TI based online wavelet denoising

2.4 Window extension

We know that in offline wavelet denoising, signal exten-
sion can be used to reduce the border distortion. Familiar
extensions include zero extension, smooth extension, sym-
metric extension, periodized extension, and so on[9].

In real-time wavelet denoising, one key point is that the
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updated data must be located beyond discontinuities. Zero
extension and periodized extension always add great dis-
continuity to the border, although the distortions of the
low frequency component are canceled by reconstruction
when using periodized extension. If we truncate some of
the coefficients corresponding to the high frequency signal
as we do denoising, the border effect may be slightly no-
ticeable and annoying in the reconstructed signal. Here, we
suggest some extension methods that keep the continuity
in the area of updated data, such as smooth extension and
symmetric extension.

Fig. 4 shows the results of online denoising, where
smooth window extension is used. Here, lx = 256, and
lw = 2lx.

Wi =





none, i < lx

{x(i− lx + 1), · · · , x(i),

smooth︷ ︸︸ ︷
x(i), · · · , x(i)}, i ≥ lx

(12)
After wavelet shrinkage, x(i) located at the center of

Wi(Wi(256)) updates, as marked by a circle in the figure
of the latest window.

Fig. 4 Online denoising with smooth window extension

Fig. 5 shows the result when symmetric window exten-
sion is applied. Here,

Wi =





none, i < lx

{x(i− lx + 1), · · · , x(i),

symmetric︷ ︸︸ ︷
x(i), · · · , x(i− lx + 1)}, i ≥ lx

(13)

As is evident in Figs. 4 and 5, artifacts are reduced
efficiently compared with approaches without extensions.
Symmetric extension even gets a higher score than smooth
extension.

To reduce the load of computation, a short extension
method is suggested. The length for extension is denoted
by lt (lt < lx). The length of extended window is then
given as lw = lx + lt. The short-extended window can be
expressed as

Wi =





none, i < lx

{x(i− lx + 1), · · · , x(i),

short-symmetric︷ ︸︸ ︷
x(i), · · · , x(i− lt + 1)}, i ≥ lx

(14)

Fig. 5 Online denoising with symmetric extension

Fig. 6 gives the results of this approach with lx = 240
and lt = 16. More results of different window extension
approaches are presented in quantitative measures below.

Fig. 6 Online denoising with short-symmetric window
extension

2.5 Window circle spinning

Approach of circle spinning is successful in reducing os-
cillation in [3]. Here, some cases of applying it to online
denoising are presented. Fig. 7 gives the results using sym-
metric window extension and averaging over a range of 16
circle spinning shifts.

Fig. 7 Online denoising with symmetric extension and circle
spinning
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Fig. 8 presents the results of online denoising with sym-
metric window extension and fully TI.

Fig. 8 Online denoising with symmetric extension and full TI

Although the oscillations are reduced to some extent,
averaging of all shifts only benefits one window. In the
whole denoised signal, the averaging effect is reduced. On
the other hand, one key element of real-time application is
speediness. In this case, few shifts may be available, fully

TI denoising that costs a large mount of computation is not
desirable.

3 Quantitative measures

The original signal without noise is denoted by x(i) and
the denoised one is denoted by x̂(i), and define root of mean
square error (RMSE) as

RMSE =

√√√√ 1

N

N∑
i=1

(x(i)− x̂(i))2 (15)

Table 1 summarizes the numerical performances of differ-
ent online denoising approaches shown in the above figures.
Performances of offline denoising are also summarized by
comparison.

Table 2 summarizes the results where more parameters
are adjusted to meet different real-time requirements.

Table 1 RMSE of the above wavelet denoising approaches

Parameters Blocks HeaviSine

Offline, sym4, no spin 0.8190 0.2621

Offline, sym4, 16 spin-shifts 0.7465 0.2574

Offline, sym4, fully TI 0.7244 0.2607

Online, sym4, no spin, no extend (512+0) 3.2810 3.3809

Online, sym4, fully TI, no extend (512+0) 3.1197 3.1934

Online, sym4, no spin, smooth (256+256) 0.8060 0.4999

Online, sym4, no spin, symmetric (256+256) 0.7598 0.4156

Online, sym4, no spin, short-sym (240+16) 0.7475 0.6752

Online, sym4, 16 spin-shifts, symmetric (256+256) 0.7407 0.4725

Online, sym4, fully TI, symmetric (256+256) 0.7299 0.4278

Table 2 RMSE for more choices of parameters

Parameters Blocks HeaviSine

Online, sym8, no spin, symmetric (256+256) 0.8104 0.4285

Online, sym8, 16 spin-shifts, symmetric (256+256) 0.7633 0.4513

Online, db4, no spin, symmetric (256+256) 0.8398 0.4897

Online, db8, no spin, symmetric (256+256) 0.8823 0.4613

Online, haar, no spin, symmetric (256+256) 0.7484 0.6736

Online, sym4, no spin, short-sym (384+128) 0.7187 0.4250

Online, sym4, no spin, short-sym (500+12) 0.7221 0.5247

Table 3 Mean denoising time of online wavelet denoising

Parameters Blocks(ms) HeaviSine(ms)

Online, sym4, J=5, no spin, smooth (256+256) 3.8 3.7

Online, sym4, J=5, no spin, symmetric (256+256) 3.6 3.4

Online, sym4, J=5, 16 spin-shifts, symmetric (256+256) 53.9 54.9

Online, sym4, J=5, fully TI, symmetric (256+256) 1619.1 1634.6

Online, sym4, J=5, no spin, short-sym(240+16) 3.2 3.1

Online, sym4, J=7, no spin, symmetric (256+256) 4.6 4.5

Online, sym4, J=3, no spin, symmetric (256+256) 2.7 2.8

Online, sym4, J=3, no spin, short-sym (240+16) 2.3 2.2

Online, sym4, J=3, no spin, short-sym (56+8) 1.9 1.9

Online, sym4, J=3, 16 spin-shifts, short-sym (56+8) 27.8 27.0
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Although computation complexity is not the main is-
sue in this paper, online denoising must take into account
not only denoised extent but also speediness. We record
denoising time T (i) of x(i) and define the mean time of
online denoising MDT as

MDT =

√√√√ 1

N

N∑
i=1

T (i) (16)

As a reference, Table 3 summarizes performances of dif-
ferent approaches mostly in correspondence to Tables 1 and
2. These results are all obtained at the same simulation en-
vironment.

4 Conclusions

In this paper, we emphasize on the availability of online
wavelet denoising. It is visually and quantitatively demon-
strated that the online wavelet denoising approach has the
following properties:

1) Adaptivity to real-time applications.
2) Noise almost suppressed .
3) Weak visual artifacts.
4) Adjustable parameters.
To meet different real-time conditions, some parameters

are made adjustable in this approach, such as wavelet ba-
sis, decomposing depth, window width, window extension
methods, and spinning shifts.

According to the quantitative measures, both the accu-
racy and the speediness of online wavelet denoising are
indispensable. The choice of different parameters should
cater for real-time requirement. In principle, if it is a se-
vere real-time application, we suggest an approach with a
short window width and short extension, but without cir-
cle spinning; else methods using available shifts of circle
spinning are preferred.
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