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Delay-dependent Robust
Stability of Neutral Systems

with Mixed Delays and
Nonlinear Perturbations

ZHANG Wen-An1 YU Li1

Abstract This paper concerns the delay-dependent robust
stability problem of uncertain neutral systems with mixed neu-
tral and discrete delays. Nonlinear time-varying parameter per-
turbations are considered. Based on the newly established in-
tegral inequalities, the neutral-delay-dependent and discrete-
delay-dependent stability criterion is derived without using a
fixed model transformation. The condition is presented in terms
of linear matrix inequality and can be easily solved by existing
convex optimization techniques. A numerical example is given
to demonstrate the less conservatism of the proposed results.
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1 Introduction
The problem of the stability of various neutral delay-

differential systems has received considerable attention in
recent years[1∼5]. Current stability criteria for the neu-
tral systems can be roughly divided into two categories,
namely delay-independent criteria and delay-dependent cri-
teria. Since the delay-dependent criteria contain informa-
tion about the delay size, they are generally less conserva-
tive than the delay-independent ones as might be expected,
especially when the delay is small. So, more attention has
been paid to delay-dependent criteria.

Various different techniques have been proposed by many
researchers to derive the delay-dependent stability crite-
ria for a number of different neutral systems, for ex-
ample, model transformation techniques[1,2,4,5], the im-
proved bounding techniques[6,7], and the properly chosen
Lyapunov-Krasovskii functionals[3,8]. The model transfor-
mation techniques have been widely used in the deriva-
tion of the delay-dependent stability criteria for neutral
systems. However, these model transformations often in-
troduce additional dynamics or require some additional as-
sumptions, which leads to relatively conservative results
(see discussions in [1, 4, 5] ). Besides, for neutral sys-
tems with mixed discrete and neutral delays, most of the
aforementioned methods can only provide discrete-delay-
dependent and neutral-delay-independent results. In [9],
a new approach was proposed to analyze the stability of
neutral systems with mixed delays by incorporating some
free weighting matrices, and the less conservative crite-
ria, which were both discrete-delay-dependent and neutral-
delay-dependent, were obtained without considering the
model transformations. However, some of the free matrices
did not serve to reduce the conservatism of the results that
were obtained. Furthermore, to the best of the authors′

knowledge, few results have been reported in the literature
concerning the problem of robust stability of the neutral
systems with nonlinear perturbations and mixed neutral
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and discrete delays. In [10], the authors studied this prob-
lem and presented neutral-delay-independent stability cri-
teria.

In this paper, we propose a new approach for dealing
with the problem of robust stability of the neutral sys-
tems with mixed discrete and neutral delays and nonlin-
ear perturbations. First, a new integral inequality that is
particularly suitable for the analysis of the stability of the
neutral systems under investigation is established. Then,
a new delay-dependent criterion is derived by combining
the newly established integral inequality and the new Lya-
punov function used in [4]. The condition that is ob-
tained is both discrete-delay-dependent and neutral-delay-
dependent. Therefore, it is less conservative than that in
[10].

2 Problem statement
Consider the following neutral system with time-varying

discrete delay

ẋxx(t)− Cẋxx(t− τ2) = Axxx(t) + Bxxx(t− τ1(t)) + fff1(xxx(t), t)+

fff2(xxx(t− τ1(t)), t) + fff3(ẋxx(t− τ2), t) (1)

where xxx(t) ∈ Rn is the state vector; A ∈ Rn, B ∈ Rn,
and C ∈ Rn are constant matrices; τ1(t) is the time-varying
discrete delay and τ2 is the unknown but constant neutral
delay, and they are assumed to satisfy

0 ≤ τ1(t) ≤ τ1m, τ̇1(t) ≤ τ1d, 0 ≤ τ2 ≤ τ2m (2)

where τ1m, τ2m, and τ1d are known constants. fff1(xxx(t), t),
fff2(xxx(t−τ1(t)), t), and fff3(ẋxx(t−τ2), t) are the nonlinear per-
turbations in the system model. They satisfy that fff1(0, t) =
0, fff2(0, t) = 0, and fff3(0, t) = 0. The initial condition of
system (1) is described by

xxx(t0 + θ) = ψψψ(θ), ẋxx(t0 + θ) = ψ̇ψψ(θ)

∀ θ ∈ [−max(τ1m, τ2m), 0] (3)

where ψψψ(·) is a vector-valued initial function. It is assumed
that the nonlinear perturbations are bounded in magni-
tude, i.e.,

‖fff1(xxx(t), t)‖ ≤ α1‖xxx(t)‖
‖fff2(xxx(t− τ1(t)), t)‖ ≤ α2‖xxx(t− τ1(t))‖
‖fff3(ẋxx(t− τ2), t)‖ ≤ α3‖ẋxx(t− τ2)‖, ∀ t > 0 (4)

where α1, α2, and α3 are known positive scalars.
It should be noted that system (1) encompasses many

natural models of time-delay systems and can be used to
represent many important physical systems, for example,
networks containing lossless transmission lines, vibrating
masses attached to an elastic bar. In addition, if

fff1(xxx(t), t) = 4A(t)xxx(t)

fff2(xxx(t− τ1(t)), t) = 4B(t)xxx(t− τ1(t))

fff3(ẋxx(t− τ2), t) = 4C(t)ẋxx(t− τ2) (5)

then the nonlinear perturbations are reduced to be the
norm-bounded uncertainties that are well known in robust
control of uncertain systems.

The objective of this paper is to develop a new stability
criterion for system (1) with nonlinear perturbations (4).
To this end, we establish the following integral inequality,
which plays a key role in the derivation of the main results.

Lemma 1. For any matrices Z = ZT > 0, Y1, Y2, Y3, Y4

and positive scalars τ1, τ2, the following inequality holds

−
∫ t

t−τ1

ẋxxT(α)Zẋxx(α)dα ≤ ρρρT(t)Ỹ ρρρ(t)+ρρρT(t)FTτ1Z
−1Fρρρ(t)

(6)

where

ρρρT(t) =
[

xxxT(t) ẋxxT(t) xxxT(t− τ1) ẋxxT(t− τ2)
]

F =
[

Y T
1 Y T

2 Y T
3 Y T

4

]

Ỹ =




Y1 + Y T
1 Y T

2 −Y1 + Y T
3 Y T

4

∗ 0 −Y2 0
∗ ∗ −Y3 − Y T

3 −Y T
4

∗ ∗ ∗ 0




Proof. Define N =
[

NT
1 NT

2 NT
3 NT

4

]
and Yi =

−Ni for i = 1, · · · , 4, where Ni are any matrices with ap-
propriate dimensions. Then, by the well-known inequality
2aaaTbbb ≤ aaaTQaaa + bbbTQ−1bbb , we have

−
∫ t

t−τ1

ẋxxT(α)Zẋxx(α)dα ≤

− 2

∫ t

t−τ1

ẋxxT(α)Nρρρ(t)dα+

∫ t

t−τ1

ρρρT(t)NTZ−1Nρρρ(t)dα=

2[xxxT(t)− xxxT(t− τ1)](−N)ρρρ(t)+

ρρρT(t)(−N)Tτ1Z
−1(−N)ρρρ(t) =

2[xxxT(t)− xxxT(t− τ1)]Fρρρ(t) + ρρρT(t)FTτ1Z
−1Fρρρ(t) =

2ρρρT(t)[I 0 − I 0]T[Y T
1 Y T

2 Y T
3 Y T

4 ]ρρρ(t)+

ρρρT(t)FTτ1Z
−1Fρρρ(t) =

ρρρT(t)Ỹ ρρρ(t) + ρρρT(t)FTτ1Z
−1Fρρρ(t) ¤

Remark 1. An integral-inequality method was pro-
posed in [11] for the robust stabilization of a class of uncer-
tain time-delay systems. Inspired by this idea, we establish
the above inequality that is suitable for the analysis of the
stability of the neutral system (1).

3 Main results
In this section, a sufficient condition for the stability

of system (1) with nonlinear perturbations (4) is derived
based on the integral inequality (6). The main result is
given as the following theorem.

Theorem 1. Given positive scalars α1, α2, α3, τim, and
τ1d, system (1) is asymptotically stable if ‖C‖+α3 < 1 and
there exist symmetric positive-definite matrices P1, Q, S,
R1, R2, Z1, Z2, matrices P2, P3, Yi1, Yi2, Yi3, Yi4 and
positive scalars εj , i = 1, 2, j = 1, · · · , 6, satisfying the
LMI (7), as shown at the top of next page, where

ϕ11 = ATP2 + PT
2 A + QA + ATQ + R1 + R2+

Y11 + Y T
11 + Y21 + Y T

21 + (ε1 + ε4)α
2
1I

ϕ12 = P1 − PT
2 + ATP3 + Y T

12 + Y T
22

ϕ13 = PT
2 B + QB − Y11 + Y T

13

ϕ14 = −ATQC − Y21 + Y T
23, ϕ15 = PT

2 C + Y T
14 + Y T

24

ϕ22 = −P3 − PT
3 + S + τ1mZ1 + τ2mZ2

ϕ23 = PT
3 B − Y12, ϕ24 = −Y22

ϕ33 = −(1− τ1d)R1 − Y13 − Y T
13 + (ε2 + ε5)α

2
2I

ϕ34 = −BTQC, ϕ44 = −R2 − Y23 − Y T
23

ϕ55 = −S + (ε3 + ε6)α
2
3I

Ψa1 = [PT
2 PT

2 PT
2 ], Ψa2 = [PT

3 PT
3 PT

3 ]

Ψb1 = [Q Q Q], Ψb2 = [−CTQ − CTQ − CTQ]

4a = diag{−ε1I, − ε2I, − ε3I}



No. 8 ZHANG Wen-An and YU Li: Delay-dependent Robust Stability of Neutral Systems with · · · 865




ϕ11 ϕ12 ϕ13 ϕ14 ϕ15 τ1mY11 τ2mY21 Ψa1 Ψb1

∗ ϕ22 ϕ23 ϕ24 PT
3 C τ1mY12 τ2mY22 Ψa2 0

∗ ∗ ϕ33 ϕ34 −Y T
14 τ1mY13 0 0 0

∗ ∗ ∗ ϕ44 −Y T
24 0 τ2mY23 0 Ψb2

∗ ∗ ∗ ∗ ϕ55 τ1mY14 τ2mY24 0 0
∗ ∗ ∗ ∗ ∗ −τ1mZ1 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −τ2mZ2 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 4a 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4b




< 0 (7)

4b = diag{−ε4I, − ε5I, − ε6I}
Proof. Define υυυ(t) = xxx(t) − Cxxx(t − τ2), and choose the
candidate Lyapunov-Krasovskii functional to be

V (t) = V1(t) + V2(t) + V3(t) + V4(t) (8)

where

V1(t) = υυυT(t)Qυυυ(t)+
[

xxx(t)
ẋxx(t)

]T [
I 0
0 0

] [
P1 0
P2 P3

] [
xxx(t)
ẋxx(t)

]

V2(t) =

∫ t

t−τ1(t)

xxxT(α)R1xxx(α)dα +

∫ t

t−τ2

xxxT(α)R2xxx(α)dα

V3(t) =

∫ t

t−τ2

ẋxxT(α)Sẋxx(α)dα

V4(t) =

2∑
i=1

∫ 0

−τim

∫ t

t+β

ẋxxT(α)Ziẋxx(α)dαdβ

Define χχχ(t) = Axxx(t)−ẋxx(t)+Bxxx(t − τ1(t)) +Cẋxx(t − τ2)
+fff1(xxx(t), t) +fff2(xxx(t−τ1(t)), t) +fff3(ẋxx(t−τ2), t). It follows
from (1) that χχχ(t) = 0. By (4) and the well-known inequal-
ity 2aaaTbbb ≤ εaaaTaaa +ε−1bbbTbbb, where ε is a positive scalar, and
the derivative of V1(t) along any solution of system (1) is
given by

V̇1(t)=2υυυT(t)Qυ̇υυ(t)+2

[
xxx(t)
ẋxx(t)

]T[
P1 0
P2 P3

]T[
ẋxx(t)
0

]
=

2υυυT(t)Q[Axxx(t) + Bxxx(t− τ1(t)) + fff1(xxx(t), t)+

fff2(xxx(t− τ1(t)), t) + fff3(ẋxx(t− τ2), t)]+

2

[
xxx(t)
ẋxx(t)

]T [
P1 0
P2 P3

]T [
ẋxx(t)
χχχ(t)

]
≤

2[xxxT(t)− xxxT(t− τ2)C
T]Q[Axxx(t) + Bxxx(t− τ1(t))]+

(

3∑
i=1

ε−1
i )

[
xxx(t)

xxx(t− τ2)

]T[
Q

−CT Q

][
Q

−CT Q

]T

×

[
xxx(t)

xxx(t− τ2)

]
+ ε2α

2
2xxx

T(t− τ1(t))xxx(t− τ1(t))+

ε1α
2
1xxx

T(t)xxx(t) + ε3α
2
3ẋxx

T(t− τ2)ẋxx(t− τ2)+

2

[
xxx(t)
ẋxx(t)

]T [
P1 0
P2 P3

]T

×
[

ẋxx(t)
Axxx(t)− ẋxx(t) + Bxxx(t− τ1(t)) + Cẋxx(t− τ2)

]
+

(

6∑
i=4

ε−1
i )

[
xxx(t)
ẋxx(t)

]T [
PT

2

PT
3

] [
PT

2

PT
3

]T [
xxx(t)
ẋxx(t)

]
+

ε4α
2
1xxx

T(t)xxx(t) + ε5α
2
2xxx

T(t− τ1(t))xxx(t− τ1(t))+

ε6α
2
3ẋxx

T(t− τ2)ẋxx(t− τ2) (9)

Computing V̇2(t) and V̇3(t), we have

V̇2(t) ≤ xxxT(t)(R1 + R2)xxx(t)− xxxT(t− τ2)R2xxx(t− τ2)−
xxxT(t− τ1(t))(1− τ1d)R1xxx(t− τ1(t)) (10)

V̇3(t) = ẋxxT(t)Sẋxx(t)− ẋxxT(t− τ2)Sẋxx(t− τ2) (11)

By Lemma 1, we obtain

V̇4(t) = ẋxxT(t)(τ1mZ1 + τ2mZ2)ẋxx(t)−
2∑

i=1

∫ t

t−τim

ẋxxT(α)Ziẋxx(α)dα ≤

ẋxxT(t)(τ1mZ1+τ2mZ2)ẋxx(t)−
∫ t

t−τ2

ẋxxT(α)Z2ẋxx(α)dα−
∫ t

t−τ1(t)

ẋxxT(α)Z1ẋxx(α)dα ≤

ẋxxT(t)(τ1mZ1 + τ2mZ2)ẋxx(t) + ξξξT
1 (t)Ỹ1ξξξ1(t)+

ξξξT
2 (t)Ỹ2ξξξ2(t) + ξξξT

1 (t)FT
1 τ1(t)Z

−1
1 F1ξξξ1(t)+

ξξξT
2 (t)FT

2 τ2Z
−1
2 F2ξξξ2(t) ≤

2∑
i=1

(ẋxxT(t)τimZiẋxx(t) + ξξξT
i (t)Ỹiξξξi(t)+

ξξξT
i (t)FT

i τimZ−1
i Fiξξξi(t)) (12)

where

ξξξT
1 (t) = [xxxT(t) ẋxxT(t) xxxT(t− τ1(t)) ẋxxT(t− τ2)]

ξξξT
2 (t) = [xxxT(t) ẋxxT(t) xxxT(t− τ2) ẋxxT(t− τ2)]

Ỹi =




Yi1 + Y T
i1 Y T

i2 −Yi1 + Y T
i3 Y T

i4

∗ 0 −Yi2 0
∗ ∗ −Yi3 − Y T

i3 −Y T
i4

∗ ∗ ∗ 0




Fi = [Y T
i1 Y T

i2 Y T
i3 Y T

i4 ], i = 1, 2

Combining (9)∼(12) yields V̇ (t) ≤ ηηηT(t)Ωηηη(t), where

ηηηT(t) = [xxxT(t) ẋxxT(t) xxxT(t− τ1(t)) xxxT(t− τ2) ẋxxT(t− τ2)]

Ω = Ω0 +

2∑
i=1

FT
i0τimZ−1

i Fi0 + La(−∆a)−1LT
a +

Lb(−∆b)
−1LT

b

LT
a =

[
ΨT

a1 0 0 ΨT
a2 0

]
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Ω0 =




ϕ11 ϕ12 ϕ13 ϕ14 ϕ15

∗ ϕ22 ϕ23 ϕ24 PT
3 C

∗ ∗ ϕ33 ϕ34 −Y T
14

∗ ∗ ∗ ϕ44 −Y T
24

∗ ∗ ∗ ∗ ϕ55




FT
10 =




Y11

Y12

Y13

0
Y14


 , FT

20 =




Y21

Y22

0
Y23

Y24


 , Lb =




Ψb1

Ψb2

0
0
0




Ω < 0 implies that the time derivative of V (t) is negative.
Therefore, it follows from Theorem 1.6 in [12] that system
(1) is asymptotically stable under the assumption ‖C‖ +
α3 < 1. By Schur complements, Ω < 0 is equivalent to the
LMI (7). ¤

Remark 2. Since the condition in Theorem 1 is both
neutral-delay-dependent and discrete-delay-dependent, it is
less conservative than some existing results of the stabil-
ity for the systems with mixed neutral and discrete de-
lays. Furthermore, instead of using the model transfor-
mations, which usually leads to conservative results and
complex derivation procedure, we combine the newly es-
tablished integral inequalities with the new Lyapunov func-
tional method used in [4] to derive the delay-dependent
condition. Therefore, the derivation procedure is much sim-
pler, and the result is less conservative.

Remark 3. The method proposed in this paper can be
easily extended to the neutral systems with multiple mixed
neutral and discrete delays and nonlinear perturbations.

Remark 4. The norm-bounded uncertainties can be
treated as a special case of nonlinear perturbations. There-
fore, the stability criterion for system (1) with norm-
bounded uncertainties can be obtained by following a sim-
ilar line as in Theorem 1.

4 Illustrative example

A numerical example is provided in this section to illus-
trate the effectiveness of our results.

Example. Consider the system (1) with

A=

[ −1.2 0.1
−0.1 −1

]
, B =

[ −0.6 0.7
−1 −0.8

]
, C =

[
c 0
0 c

]

‖fff1(xxx(t), t)‖ ≤ α1‖xxx(t)‖
‖fff2(xxx(t− τ1(t)), t)‖ ≤ α2‖xxx(t− τ1(t))‖
‖fff3(ẋxx(t− τ2), t)‖ ≤ α3‖ẋxx(t− τ2)‖ (13)

where α1 ≥ 0, α2 ≥ 0, α3 ≥ 0, and 0 ≤ |c| < 1.
We now consider the effect of the bound α3 on the max-

imal allowable value τ1m. For c = 0.1, τ2m = 1, τ1d =
0.5, α2 = 0.1, and different values of α3, we apply The-
orem 1 to calculate the maximal allowable value τ1m that
guarantees the asymptotical stability of the system. Table 1
shows the comparison of our results with those in [10]. This
example demonstrates that the stability criterion in The-
orem 1 in this paper gives a less conservative result than
that in [10].

Table 1 Bound τ1m for different values of α3

α3 0 0.10 0.20 0.30

Method in [10] (α1 = 0) 0.9328 0.7402 0.5637 0.4042

Proposed Method (α1 = 0) 0.9488 0.7695 0.6087 0.4667

Method in [10] (α1 = 0.1) 0.8148 0.6439 0.4864 0.3433

Proposed Method (α1 = 0.1) 0.8408 0.6841 0.5420 0.4144

5 Conclusion
This paper has proposed a new approach for dealing with

the problem of robust stability of the uncertain neutral sys-
tems with mixed neutral and discrete delays and nonlinear
perturbations. A new delay-dependent stability criterion
with reduced conservatism is obtained. Based on the newly
established integral inequalities, it is much simpler to de-
rive the delay-dependent results. An example has also been
given to show the significant improvements over some ex-
isting results in the literature.
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