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Fault Estimation and Accommodation for Networked
Control Systems with Transfer Delay

MAO Ze-Hui1 JIANG Bin1

Abstract In this paper, a method of fault estimation and fault tolerant control for networked control system (NCS) with transfer
delay and process noise is presented. First, the networked control system is modeled as a multiple-input-multiple-output (MIMO)
discrete-time system with transfer delays, process noise, and model uncertainties. Under this model and under some conditions,
a fault estimation method is proposed to estimate the system faults. On the basis of the information on fault estimation and the
sliding mode control theory, a fault tolerant controller is designed to recover the system performance. Finally, simulation results are
used to verify the efficiency of the method.
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1 Introduction

Networked control systems (NCSs) are control systems
in which controller and plant are connected via a communi-
cation channel[1]. There are many advantages using NCSs,
such as low cost, simple installation procedure and mainte-
nance, increased system agility, and reduced system wiring.
Due to these advantages, real-time control networks (such
as DeviceNet, Profit-bus, FireWire, and Ethernet) are wi-
dely applied in real-time distributed control cases, such as
electronics, communications, transportation, aircraft, and
automatic manufacturing. However, the network itself is
a dynamical system that includes the following problems:
data dropout, limited bandwidth, time delay due to data
transmission, and information loss due to encoding and
quantization[2]. Thus, compared with conventional point-
to-point control systems, these problems make the analysis
and design of NCSs more complex.

Many results on analysis and controller design of NCSs
with network-induced delays have been obtained during the
last ten years (e.g.[3]∼[6]). But, in these research works,
system faults have not been considered. When faults oc-
cur in NCSs, the initial control laws always cannot guar-
antee the stability of the systems. So the study on fault
detection (FD) and fault-tolerant control (FTC) of NCSs
becomes necessary. As for faults detection of the NCSs,
the observer-based methods are widely used (e.g. [7] ∼ [9]).
Meanwhile, some work has been done to deal with the fault
tolerant-control in the NCSs (see [10] ∼ [12]). Compared
with fault detection and isolation (FDI), fault estimation
and accommodation are not easy tasks. Until now, some
results have been obtained on such issue with applications
to the aircraft, power systems, robotics, and process control
(e.g. [13] ∼ [17]).

In this paper, we deal with the fault estimation and ac-
commodation for a kind of networked control systems with
transfer delays modeled by discrete-time systems. The rest
of this paper is organized as follows. Section 2 describes
the model of the networked control system. Section 3 pro-
poses the fault estimation scheme. In Section 4, the fault
tolerant controller is designed to make the faulty system
state track the desired trajectory. Section 5 presents sim-
ulation results of a numerical example, followed by some
concluding remarks in Section 6.
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2 Preliminaries

Consider an NCS as shown in Fig. 1. The continuous-
time, state-space model of the linear time-invariant plant
dynamics can be described by the following standard form

ẋxx(t) = Axxx(t) + Buuu(t) + Efff(t) + www(t) (1)

yyy(t) = Cxxx(t) = [0 I]xxx(t) (2)

where xxx ∈ Rn denotes the state vector, uuu ∈ Rm is the
control input vector, yyy ∈ Rr is the measurable output vec-
tor, fff(t) ∈ Rq is the vector function to model the process
fault or actuator fault, the process noise www(t) is a bounded
zero mean random sequence with known covariance matrix
and known bounds. A, B, C are known parameter matrices
with proper dimensions.

Fig. 1 The block of the networked control system

Remark 1. In the above system, the output matrix C
is described as [0 I]. If C is of full row rank, C = [0 C1],
and C1 is an r × r nonsingular matrix, then there exists a

similarity transformation xxx =

»
In−r 0

0 C1

–−1

x̄xx that can

transform the output equation into the desired form. For
this NCS, we give the following assumptions, as in [5].

Assumption 1. The sampling period of the NCS is T ,
sensor is time-driven, controller is event-driven, and actua-
tor is time-division-driven. We use τsc and τca to represent
the sensor-controller and controller-actuator delay, respec-
tively, and they are not larger than the sampling period,
i.e. τsc < T , τca < T , and τ = τsc + τca < 2T .

Assumption 2. In order to prevent the loss of informa-
tion of the sensor and actuator, buffers that are longer than
the biggest delay should be separately set at the sending
points of the sensor and actuator.

Considering the effect of delay τ and sampling period T ,
the above plant model is transformed into a stochastic NCS
model

xxx(k + 1) = Acxxx(k) +

2X
j=0

Bjuuu(k − j) + Ecfff(k) + www(k) (3)
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yyy(k) = Cxxx(k) = [0 I]xxx(k) (4)

where xxx(k) = xxx(kT ) , yyy(k) = yyy(kT ) , fff(k) = fff(kT ) ,
Ac = eAT .

If (T − τsc) > τca then

B0 =

Z T

τsc+τca

eA(T−t)dBt

B1 =

Z τsc+τca

0

eA(T−t)dBt, B2 = 0

else

B0 = 0, B1 =

Z T

τsc+τca−T

eA(T−t)dBt

B2 =

Z τsc+τca−T

0

eA(T−t)dBt

Ec =

Z T

0

eA(T−t)Edt, www(k) =

Z T

0

eA(T−t)www(kT + t)dt

Due to the known covariance matrix and bound of the
www(t), as in [18], the bound and covariance matrix of www(k)
can be expressed as ηc and Qc = QT

c > 0.
In practice, the delays of the NCSs are time-variant. So

we use time-stamped[19] and delay window (DW)[18] tech-
nique to obtain the delays τsc and τca, respectively. Mean-
while, according to [20], the current delay values of NCSs
can be estimated online using Markov process.

Considering the the errors between the real delay val-
ues and the estimated ones, the system (3) and (4) can be
rewritten as

xxx(k + 1) = Acxxx(k) +

2X
j=0

Bjuuu(k − j)+

Ecfff(k) + Bcζζζ(k) + www(k) (5)

yyy(k) = Cxxx(k) = [0 I]xxx(k) (6)

where Bc =
R T

0
eA(T−t)dBt, ζζζ(k) is an unknown vector de-

noting the modeling uncertainties, Bcζζζ(k) is the estimation
error.

Remark 2. The transfer delays can be estimated online,
and we use them to model the NCSs, thus, the terms Bj

(j = 0, · · · , 2) are known in the above system. From the

equations of the delays τsc and τca, we can get Bc =
2P

j=0

Bj .

Thus the estimated errors are in the linear form of the Bc,
which can be described as Bcζζζ(k).

3 Fault estimation design

Consider systems (5) and (6). To estimate the fault fff(k),
the equations are rewritten as

2
4

xxx1(k + 1)
xxx2(k + 1)
xxx3(k + 1)

3
5 =

2
4

Ac1

Ac2

Ac3

3
5xxx(k) +

2X
j=0

2
4

Bj1

Bj2

Bj3

3
5uuu(k − j)+

2
4

Ec1

Ec2

Ec3

3
5fff(k) +

2
4

Bc1

Bc2

Bc3

3
5ζζζ(k) +

2
4

www1(k)
www2(k)
www3(k)

3
5

(7)

yyy(k) =

»
yyy1(k)
yyy2(k)

–
=

»
O Ir−q O
O O Iq

–
xxx(k) (8)

where xxx1(k) ∈ Rn−r, xxx2(k) ∈ Rr−q and xxx3(k) ∈ Rq.
Therefore, only xxx1(k) needs to be estimated in the mean
sense.

Assumption 3. Rank(CE) = q and Ec3 is nonsingular.
Define

Āc1 , Ac1 − Ec1E
−1
c3 Ac3, Āc2 , Ac2 − Ec2E

−1
c3 Ac3 (9)

B̄j1 , Bj1 − Ec1E
−1
c3 Bj3, B̄j2 , Bj2 − Ec2E

−1
c3 Bj3 (10)

B̄c1 , Bc1 − Ec1E
−1
c3 Bc3, B̄c2 , Bc2 − Ec2E

−1
c3 Bc3 (11)

Āc1 , [Āc11 Āc12 Āc13], Āc2 , [Āc21 Āc22 Āc23] (12)

with Āc11 ∈ R(n−r)×(n−r), Āc12 ∈ R(n−r)×(r−q), Āc13 ∈
R(n−r)×q, Āc21 ∈ R(r−q)×(n−r), Āc22 ∈ R(r−q)×(r−q),
Āc23 ∈ R(r−q)×q, j = 0, 1, 2.

The following theorem presents a method to estimate the
state x1 of the system described by (7) and (8).

Theorem 1. Suppose that (Āc11, Āc21) is an observable
pair and that Assumption 1 holds. Furthermore, suppose
that E[(xxx1(0) − x̂xx1(0))(xxx1(0) − x̂xx1(0))T] , P (0) is given.
Then the state xxx1 of the discrete time system in (7) and (8)
can be estimated with unbiased minimum variance using
the following observer

ξ̂ξξ(k + 1) =

»
Āc11 B̄c1

O I

–
ξ̂ξξ(k) +

»
ρρρ(k + 1)

O

–
+

K(k)[λλλ(k + 1)− [Āc21 B̄c2]ξ̂ξξ(k)] (13)

where ξ̂ξξ(k +1), ρρρ(k +1) and λλλ(k +1) are defined as follows

ξ̂ξξ(k + 1) ,
»

x̂xx1(k + 1)

ζ̂ζζ(k)

–
(14)

ρρρ(k + 1) , Āc12yyy1(k) + Āc13yyy2(k) +

Ec1E
−1
c3 yyy2(k + 1) +

2P
j=0

B̄j1uuu(k − j) (15)

λλλ(k + 1) , yyy1(k)− Ec2E
−1
c3 yyy2(k + 1)−

Āc22yyy1(k)− Āc23yyy1(k)−
2P

j=0

B̄j2uuu(k − j) (16)

and K(k) is a Kalman filter gain defined as

K(k) =

»
Āc11 B̄c1

O I

–
P (k)[Āc21 B̄c2]

T ×

{[Āc21 B̄c2]P (k)[Āc21 B̄c2]
T + S̄}−1 (17)

where the error covariance matrix P (k) , E[(xxx1(k) −
x̂xx1(k))(xxx1(k)− x̂xx1(k))T] is updated by

P (k + 1) =

»
Āc11 B̄c1

O I

–
P (k)

»
Āc11 B̄c1

O I

–T
+

»
Q̄ O
O O

–
−K(k){[Āc21 B̄c2]P (k)[Āc21 B̄c2]

T + S̄}KT(k)

(18)

with

S̄ , T1QcT
T
1 , Q̄ , T2QcT

T
2 (19)

T1 , [I O − Ec1E
−1
c3 ], T2 , [O I − Ec2E

−1
c3 ] (20)

Proof. By pre-multiplying (7) by
2
4

I O −Ec1E
−1
c3

O I −Ec1E
−1
c3

O O I

3
5 (21)
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one can obtain
2
4

xxx1(k + 1)− Ec1E
−1
c3 yyy2(k − 1)

yyy1(k + 1)− Ec2E
−1
c3 yyy2(k + 1)

yyy2(k + 1)

3
5 =

2
4

Ac1 − Ec1E
−1
c3 Ac3

Ac2 − Ec2E
−1
c3 Ac3

Ac3

3
5xxx(k)+

pX
j=0

2
4

Bj1 − Ec1E
−1
c3 Bj3

Bj2 − Ec2E
−1
c3 Bj3

Bj3

3
5uuu(k − j)+

2
4

O
O

Ec3

3
5fff(k) +

2
4

Bc1 − Ec1E
−1
c3 Bc3

Bc2 − Ec2E
−1
c3 Bc3

Bc3

3
5ζζζ(k)+

2
4

www1(k)− Ec1E
−1
c3 www3(k)

www2(k)− Ec2E
−1
c3 www3(k)

www3(k)

3
5 (22)

Now note that only part of the state of the system, i.e.
xxx1(k), needs to be estimated by the estimator. Using the
definitions in (9)∼(12), the first and second block row of
(22) can be written as

xxx1(k + 1) = Āc11xxx1(k) + ρρρ(k + 1) + B̄c1ζζζ(k) + w̄ww(k) (23)

λλλ(k + 1) = Āc21xxx1(k) + B̄c2ζζζ(k) + v̄vv(k) (24)

where

w̄ww(k) , www1(k)− Ec1E
−1
c3 www3(k) (25)

v̄vv(k) , www2(k)− Ec2E
−1
c3 www3(k) (26)

and ρρρ(k + 1), λλλ(k + 1) are defined in (15) and (16).

Note that in the dynamical system described by (23) and
(24), λλλ(k + 1) is completely known. The state of the above
system and the unknown vector ζζζ can be estimated by using
the extended Kalman filter (EKF) approach. First, define
a new state vector as in (14)

ξξξ(k),
»

xxx1(k)
ζζζ(k)

–
(27)

The augmented system is described as follows

ξξξ(k + 1) =

»
Āc11xxx1(k) + ρρρ(k + 1) + B̄c1ζζζ(k)

ζζζ(k + 1)

–
+

»
w̄ww(k)

O

–
(28)

λλλ(k + 1) = Āc21xxx1(k) + B̄c2ζζζ(k) + v̄vv(k) (29)

To prove the stability of the resulting estimator using the
gain in (17) and (18), we denote the estimation error eee(k) ,
ξξξ − ξ̂ξξ, and then model the estimation error dynamics as
follows

eee(k) =

„»
Āc11B̄c1

O I

–
−K[Āc21 B̄c2]

«
eee(k − 1)+

w̄ww(k − 1)−Kv̄vv(k − 1) (30)

From (25), (26), and (30), as in [21], one can conclude
that the estimation error eee1(k) will converge to zero in

the mean sense if all the eigenvalues of the matrix Ā0 ,„»
Āc11 B̄c1

O I

–
−K[Āc21 B̄c2]

«
are within the unit cir-

cle. ¤

According to Theorem 1 and (4), the estimation of the
state for the linear stochastic system as defined in (3) and
(4) is given by

x̂xx(k) =

»
x̂xx1(k)
yyy(k)

–
(31)

where x̂xx1(k) is given by (13).
From Assumption 1 and (22) or (3), the system fault can

be estimated as follows

f̂ff(k − 1) = E−1
c3 [yyy2(k)−Ac3x̂xx(k − 1)−

2X
j=0

Bj3uuu(k − j)−Bc3ζ̂ζζ(k − 1)] (32)

where x̂xx(k − 1) is given by (31).
Remark 3. From (32), it can be seen that the faulty

signal at time instant k can be estimated only after the
measurements from time instant (k + 1) become available.
It means that there is a one-step delay in the fault estima-
tion, whose effect on the dynamic response can be neglected
for practical application[15]. However, we can avoid such a
problem by setting a new vector containing the yyy2(k), as in
[22].

Remark 4. A good feature of the method proposed in
this paper is that it provides information on the shape of
the fault, which is not investigated in the existing work on
FDD for NCSs.

4 Fault-tolerant controller design

In this section, we consider fault-tolerant controller de-
sign for faulty systems to recover the system performance.
On the basis of the sliding mode control theorem, we design
the control law to achieve the desired performance.

A tracked known time-varying reference rrr(k) is generated
by a specific control purpose under the faulty system. First,
we design the controller for the nominal system (i.e. fff(k) =
000, www((k) = 000). Define the sliding surface by the following
equations

SSSc(k)=Mx̃xx(k), x̃xx(k) = rrr(k)− xxx(k) (33)

where M is the m×n matrix such that MB0 is nonsingular.
Since the state vectors xxx(k) and ζζζ(k) are unavailable, the

estimation values x̂xx(k) and ζ̂ζζ(k) are substituted for xxx(k)

and ζζζ(k). Then, the error equation is rewritten as x̃xx(k) ,
rrr(k)− x̂xx(k).

The discrete-time equivalent control for the nominal sys-
tem can be obtained by solving the equation SSSc(k + 1) = 000

uuueq(k) = (MB0)
−1MAcx̃xx(k)−

(MB0)
−1M

2X
j=1

Bjuuu(k − j)− (MB0)
−1MBcζ̂ζζ(k)+

(MB0)
−1M [rrr(k + 1)−Acrrr(k)] (34)

The transient response can be shaped by introducing an
additional parameter to the desired sliding function dynam-
ics such that SSSc(k+1) = βSSSc(k). By solving this equation,
the control input is obtained as follows

uuuβ(k)=uuueq(k)− (MB0)
−1MβSSSc(k), 0 ≤ β < 1 (35)

To compensate for the process noise www(k), an additive term
vvv(k) is added to the control. So we obtain the following
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equation

uuu2(k) = uuuβ(k) + vvv(k) =

uuueq(k)− (MB0)
−1MβSSSc(k) + vvv(k) (36)

where vvv(k) can be chosen as[18]

vvv(k) = (MB−1
0 )Mηηηcsgn(x̃xx(k)) (37)

Now, the sliding surface is designed. A similarity trans-
formation Ts ∈ Rn×n such that

TsB0 =

»
G
O

–
, G ∈ Rm×m (38)

is introduced. The transformed state variables are defined
by γγγ(k) , Tsx̃xx(k), and then the error dynamics is described
by

γγγ(k + 1) = Ts[rrr(k + 1)−Acrrr(k)] +

Fγγγ(k)−
»

G
O

–
uuu(k)− Tswww(k) (39)

where F , TsAcT
−1
s =

»
f11 f12

f21 f22

–
, f11 ∈ Rm×m, f12 ∈

Rm×(n−m), f21 ∈ R(n−m)×m, and f22 ∈ R(n−m)×(n−m).
Accordingly, sliding surface is designed such that the eigen-
values of (f22 − f21M

−1
1 M2) are within the unit circle cen-

tered at zero to ensure the stability of the system, where
M = [M1 M2], M1 ∈ Rm×m, M2 ∈ Rm×(n−m).

After designing the healthy system controller, we con-
sider the fault-tolerant control for the faulty system. To
compensate for the effect of the faults, an additive input
term is proposed as follows

uuu1(k) = −(MB0)
−1MEcf̂ff(k) (40)

where f̂ff(k) is given by (32).
The overall fault-tolerant controller design is summa-

rized in the following theorem.
Theorem 2. Considering the system described by (7)

and (8), the faulty system states can follow the desired tra-
jectory under the fault-tolerant controller uuuR(k) designed
as follows

uuuR(k) = uuu1(k) + uuu2(k) (41)

where uuu1(k) and uuu2(k) are given by (40) and (36).
Proof. Applying the control (41) to faulty system (7),

we get the state dynamic equation

xxx(k + 1) = Acxxx(k) +

2X
j=1

Bjuuu(k − j)+

B0uuu2(k) + Bcζζζ(k) + www(k) + Ecf̃ff(k) (42)

where uuu2(k) is given by (36), f̃ff(k) = fff(k)− f̂ff(k).

Note that if f̃ff(k) = 000, the closed-loop system (42) with
uuu2 being given by the healthy control law (36) can track
the desired trajectories. Then, we can get

rrr(k + 1)− xxx(k + 1) = Ecf̃ff(k) =

−EcE
−1
c3 [Ac3(x̂xx(k − 1)−

xxx(k − 1)) + Bc3(ζ̂ζζ(k − 1)− ζζζ(k − 1))] (43)

From the above equation, it is clear that the tracking error
depends on the state and modeling uncertainty estimation

error. Also, we have proved that the state and the modeling
uncertainties estimation errors converge to zero in Section
3. Thus the tracking error can converge to zero, and the
faulty system states can track the desired trajectory effec-
tively under the fault-tolerant controller given by Theorem
2. ¤

5 Simulation

In this section, the proposed approach is applied to ac-
tuator fault estimation and fault tolerant control of an air-
craft in the vertical plane[24]. The discrete-time system
with delay can be described as follows

Ac =

2
664

0.9996 0.0003 0.0002 −0.0037
0.0005 0.9900 −0.0002 −0.0406
0.0010 0.0037 1.0453 10.5644
0.0000 0.0000 0.0101 1.0524

3
775

B0 =

2
664

0.0000 −0.0001
−0.0003 0.0004
−0.0075 0.0049
0.0000 −0.0001

3
775 , B1 =

2
664

0.0044 0.0019
0.0356 −0.0759
−0.0484 0.0405
−0.0003 0.0003

3
775

C =

2
4

1 0 0 0
0 −1 0 0
0 0 1 0

3
5

where the state variable vector xxx(k) ∈ R4 is composed of
x1 = u, the longitudinal velocity, x2 = ω, the vertical veloc-
ity, x3 = ωy, the rate of pitch, and x4 = θ, the pitch angle.
The components of command vector are u1, the general
cyclic command, and u2 longitudinal cyclic command.

The covariance matrix for the process noise sequence is
Q = diag{0.12 0.12 0.012 0.012}. The loss of actuator
effectiveness is considered, that is

E = −B, f(k) =

»
r1(k) 0

0 r2(k)

–
(44)

with 0 ≤ ri(k) ≤ 1 individually representing the percentage
degradations in actuator input channels. It can be verified
whether all the assumptions in Theorem 1 are satisfied in
this aircraft model. In fact, rank(CE) = 2. In the simula-
tion, the two actuator faults are created as follows

r1(k) =


0, t < 4(sec)
0.4, 4 ≤ t ≤ 10(sec)

r2(k) =


0, t < 2(sec)
0.7, 2 ≤ t ≤ 10(sec)

and the modeling uncertainty is ζ(k) = 0.1.
According to Theorem 1, the state estimation is given by

(13) and (31), and then the actuator faults are estimated
by (32) and compensated by Theorem 2. The sampling pe-
riod in the simulation is chosen as 0.01s. Fig. 2 shows the
actuator fault estimation with satisfactory accuracy. Fig. 3
shows the estimation result of the modeling uncertainty.
Fig. 4 depicts the state trajectories of the closed-loop sys-
tem. It can be seen that the dynamic system states can
track the desired trajectory effectively using the proposed
fault tolerant controller.

6 Conclusion

In this paper, a novel method of fault estimation and
fault tolerant control is proposed for networked control sys-
tems, which are modeled as discrete-time systems with de-
lay, noise, and uncertainties. An extended Kalman filter is
presented to estimate the unavailable state, from which
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(a) Actuator 1

(b) Actuator 2

Fig. 2 Estimation of actuator faults

Fig. 3 Estimation of the modeling uncertainty

(a) State x1

(b) State x2

(c) State x3
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(d) State x4

Fig. 4 State trajectories

the fault estimation can be obtained. According to the
sliding mode control theory, a fault tolerant controller is
designed to achieve the state tracking. Besides networks
inducing delays, data drop could be considered. FDI for
networked control systems then becomes more complex and
practical. As a result, extension of the proposed method
in this paper to such systems will be investigated in our
future work.
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